Dietary Malondialdehyde Damage to the Growth Performance and Digestive Function of Hybrid Grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu♂)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Experimental Feed
2.3. Fish and Experimental Conditions
2.4. Sample Collection and Pre-Treatment
2.5. Chemical Composition Analysis
2.6. Biochemical Indexes Analyses
2.7. Histological Observation
2.8. Extraction of RNA and Real-Time Quantitative PCR Analysis
2.9. Calculation and Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Whole Body Composition
3.3. Digestion and Absorption Enzymes Activities
3.4. Intestinal Permeability
3.5. Intestine and Stomach Tissue Structure
3.5.1. SEM of Gastric Mucosa Cells
3.5.2. Intestinal Morphology
3.5.3. TEM of Intestinal Mucosal Cells
3.6. Antioxidant-Related Index
3.7. The Relative Expression of Oxidative Stress-Related Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turchini, G.M.; Torstensen, B.E.; Ng, W.K. Fish oil replacement in finfish nutrition. Rev. Aquac. 2009, 1, 10–57. [Google Scholar] [CrossRef]
- Sullivan, J.C.; Budge, S.M. Monitoring fish oil volatiles to assess the quality of fish oil. Lipid Technol. 2010, 22, 230–232. [Google Scholar] [CrossRef]
- Liu, D.; Tan, B.; Chi, S.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S. Effects of different storage time and dosage of antioxidant on quality of fish oil. China Oils Fats 2018, 43, 80–84. [Google Scholar] [CrossRef]
- Lewis-Mccrea, L.M.; Lall, S.P. Effects of moderately oxidized dietary lipid and the role of vitamin E on the development of skeletal abnormalities in juvenile Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 2007, 262, 142–155. [Google Scholar] [CrossRef]
- Krohne, T.U.; Kaemmerer, E.; Holz, F.G.; Kopitz, J. Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action. Exp. Eye Res. 2010, 90, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ye, Y.; Cai, C.; Wu, P.; Huang, Y.; Wu, T.; Lin, X.; Luo, Q.; Zhang, B.; Xiao, P.; et al. Effects of MDA on the growth performance, structure and function of hepatopancreas and intestine of grass carp (Ctenopharyngodon idellus). Acta Hydrobiol. Sin. 2016, 40, 779–792. [Google Scholar] [CrossRef]
- Vandemoortele, A.; Heynderickx, P.M.; Leloup, L.; Meulenaer, B.D. Kinetic modeling of malondialdehyde reactivity in oil to simulate actual malondialdehyde formation upon lipid oxidation. Food. Res. Int. 2021, 140, 110063. [Google Scholar] [CrossRef]
- Duryee, M.J.; Klassen, L.W.; Schaffert, C.S.; Tuma, D.J.; Hunter, C.D.; Garvin, R.P.; Anderson, D.R.; Thiele, G.M. Malondialdehyde–acetaldehyde adduct is the dominant epitope after MDA modification of proteins in atherosclerosis. Free Radic. Bio. Med. 2010, 49, 1480–1486. [Google Scholar] [CrossRef]
- Monahan, F.J.; Gray, J.I.; Asghar, A.; Haug, A.; Shi, B.; Buckley, D.J.; Morrissey, P.A. Effect of dietary lipid and vitamin E supplementation on free radical production and lipid oxidation in porcine muscle microsomal fractions. Food Chem. 1993, 46, 1–6. [Google Scholar] [CrossRef]
- Long, J.; Wang, X.; Gao, H.; Liu, Z.; Liu, C.; Miao, M.; Liu, J. Malonaldehyde acts as a mitochondrial toxin: Inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci. 2006, 79, 1466–1472. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, J.; Liu, R.; Wang, B. Malondialdehyde induces apoptosis in murine bone marrow-derived mesenchymal stem cells in vitro. Life Sci. Res. 2014, 18, 129–133. [Google Scholar] [CrossRef]
- Yao, S.; Ye, Y.; Cai, C.; Zhang, B.; Xiao, P.; Liu, H.; Huang, Y. Damage of MDA on intestinal epithelial cells in vitro of grass carp (Ctenopharyngodon idella). Acta Hydrobiol. Sin. 2015, 39, 133–141. [Google Scholar] [CrossRef]
- Lin, X.; Ye, Y.; Cai, C.; Wu, P.; Huang, Y.; Chen, K.; Xu, D.; Peng, K.; Luo, Q. Malondialdehyde causes glutathione/glutathione transferase pathway oxidative stress in intestine and hepatopancreas of grass carp (Ctenopharyngodon idellus). Chin. J. Anim. Nutr. 2015, 27, 9. [Google Scholar] [CrossRef]
- James, C.M.; Al-Thobaiti, S.A.; Rasem, B.M.; Carlos, M.H. Potential of grouper hybrid (E. pinephelus fuscoguttatus x E. polyphekadion) for aquaculture. AquaDocs 1999, 22, 19–23. [Google Scholar]
- Fan, X.; Qin, X.; Zhang, C.; Chen, J.; Zhu, Q. Nutritional and volatile flavor components of dorsal and ventral muscle from hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). J. GDOU 2018, 38, 39–46. [Google Scholar] [CrossRef]
- Ai, C.; Li, S.; Wang, G.; Lin, Q. A review of nutrient requirements and diets of groupers. Mar. Fish. Res. 2004, 25, 86–92. [Google Scholar] [CrossRef]
- Xie, R.; Amenyogbe, E.; Chen, G.; Huang, J. Effects of feed fat level on growth performance, body composition and serum biochemical indices of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus polyphekadion). Aquaculture 2021, 530, 735813. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, C.; Xu, F.; Luo, X.; Huang, X.; Huang, Z.; Yu, W.; Xun, P.; Wu, Y.; Lin, H. Effects of partial replacement of fish meal with porcine meat meal on growth performance, antioxidant status, intestinal morphology, gut microflora and immune response of juvenile golden pompano (Trachinotus ovatus). Aquaculture 2022, 561, 738646. [Google Scholar] [CrossRef]
- Long, S.; You, Y.; Dong, X.; Tan, B.; Zhang, S.; Chi, S.; Yang, Q.; Liu, H.; Xie, S.; Yang, Y.; et al. Effect of dietary oxidized fish oil on growth performance, physiological homeostasis and intestinal microbiome in hybrid grouper (♀ Epi-nephelus fuscoguttatus × ♂ Epinephelus lanceolatus). Aquac. Rep. 2022, 24, 101130. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995; Volume 6. [Google Scholar]
- Huang, B.; Zhang, S.; Dong, X.; Chi, S.; Yang, Q.; Liu, H.; Tan, B.; Xie, S. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Fish Shellfish Immun. 2021, 120, 497–506. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Liu, Y.; Tian, L.; Mai, K.; Zhou, Q.; Yang, H.; Ye, C. Maize oil can replace fish oil in the diet of grouper postlarvae (Epinephelus coioides) without adversely affecting growth or fatty acid composition. Am. J. Agric. Biol. Sci. 2007, 2, 81–87. [Google Scholar] [CrossRef]
- Liu, D.; Chi, S.; Tan, B.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S.; Han, F.; He, Y. Effects of fish oil with difference oxidation degree on growth performance and expression abundance of antioxidant and fat metabolism genes in orange spotted grouper, Epinephelus coioides. Aquac. Res. 2019, 50, 188–197. [Google Scholar] [CrossRef]
- Gao, J.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Ren, T.; Komilus, C.F.; Han, Y. Effects of dietary palm oil supplements with oxidized and non-oxidized fish oil on growth performances and fatty acid compositions of juvenile Japanese sea bass, Lateolabrax japonicus. Aquaculture 2012, 324, 97–103. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Guo, Z.; Zhao, Y.; Gao, Y.; Yu, T.; Chen, Y.; Zhang, D.; Wang, G. Effects of dietary oxidized fish oil on growth performance and antioxidant defense mechanism of juvenile Rhynchocypris lagowski Dybowski. Aquaculture 2019, 512, 734368. [Google Scholar] [CrossRef]
- Song, C.; Liu, B.; Xu, P.; Ge, X.; Zhang, H. Emodin ameliorates metabolic and antioxidant capacity inhibited by dietary oxidized fish oil through PPARs and Nrf2-Keap1 signaling in Wuchang bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2019, 94, 842–851. [Google Scholar] [CrossRef]
- Yu, L.; Wen, H.; Jiang, M.; Wu, F.; Liu, W. Effects of ferulic acid on intestinal enzyme activities, morphology, microbiome composition of genetically improved farmed tilapia (Oreochromis niloticus) fed oxidized fish oil. Aquaculture 2020, 528, 1–9. [Google Scholar] [CrossRef]
- Yang, E.; Zhang, J.; Yang, L.; Amenyogbe, E.; Chen, G. Effects of hypoxia stress on digestive enzyme activities, intestinal structure and the expression of tight junction proteins coding genes in juvenile cobia (Rachycentron canadum). Aquac. Res. 2021, 52, 5630–5641. [Google Scholar] [CrossRef]
- Kamiya, S.; Nagino, M.; Kanazawa, H.; Komatsu, S.; Mayumi, T.; Takagi, K.; Asahara, T.; Nomoto, K.; Tanaka, R.; Nimura, Y. The value of bile replacement during external biliary drainage: An analysis of intestinal permeability, integrity, and microflora. Ann. Surg. 2004, 239, 510–517. [Google Scholar] [CrossRef]
- Geda, F.; Rekecki, A.; Decostere, A.; Bossier, P.; Wuyts, B.; Kalmar, I.D.; Janssen, G. Changes in intestinal morphology and amino acid catabolism in common carp at mildly elevated temperature as affected by dietary mannanoligosaccharide. Anim. Feed Sci. Technol. 2012, 178, 95–102. [Google Scholar] [CrossRef]
- Chen, L.; Feng, L.; Jiang, W.D.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Dietary riboflavin deficiency decreases immunity and antioxidant capacity, and changes tight junction proteins and related signaling molecules mRNA expression in the gills of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015, 45, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, L.; Zhao, H.; Huang, Y.; Cao, J.; Wang, G.; Chen, B.; Sun, Y. Influence of oxidized fish oil on the intestinal health of juvenile yellow catfish (Pelteobagrus fulvidraco) and the use of arginine as an intervention measure. J. Fish. China 2018, 42, 100–111. [Google Scholar] [CrossRef]
- Gu, M.; Jia, Q.; Zhang, Z.; Bai, N.; Xu, X.; Xu, B. Soya-saponins induce intestinal inflammation and barrier dysfunction in juvenile turbot (Scophthalmus maximus). Fish Shellfish Immunol. 2018, 77, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Fukudome, I.; Kobayashi, M.; Dabanaka, K.; Maeda, H.; Okamoto, K.; Okabayashi, T.; Baba, R.; Kumagai, N.; Oba, K.; Fujita, M. Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats. Med. Mol. Morphol. 2014, 47, 100–107. [Google Scholar] [CrossRef]
- Yang, X.; He, Y.; Lin, S.; Dong, X.; Tan, B. Saccharomyces cerevisiae extracts improved the effects of a low fishmeal, complex plant protein diet in the orange-spotted grouper, Epinephelus coioides. Aquac. Rep. 2021, 19, 100574. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Zhou, C.; Zhong, H.; Wang, A. Effects of dietary dandelion extract on intestinal morphology, antioxidant status, immune function and physical barrier function of juvenile golden pompano Trachinotus ovatus. Fish Shellfish Immunol. 2018, 73, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, L.; Liu, H.; Tan, B.; Dong, X.; Yang, Q.; Chi, S.; Zhang, S.; Xie, R. Effects of clostridium butyricum on growth, antioxidant capacity and non-specific immunology of litopenaeus vannamei fed with concentrated cottonseed protein replacement of fishmeal. J. GDOU 2022, 42, 29–37. [Google Scholar] [CrossRef]
- Zhu, X.; Hao, R.; Zhang, J.; Tian, C.; Hong, Y.; Zhu, C.; Li, G. Dietary astaxanthin improves the antioxidant capacity, immunity and disease resistance of coral trout (Plectropomus leopardus). Fish Shellfish Immunol. 2022, 122, 38–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, L.; Guo, H.; Wang, X. Research of curcumin on recovery effect of liver injury in cyprinus carpio induced by carbon tetrachloride. J. GDOU 2020, 40, 1–11. [Google Scholar] [CrossRef]
Ingredients | % |
---|---|
Fish meal | 45.00 |
Soybean protein concentrate | 21.00 |
Soybean meal | 6.00 |
Wheat flour | 17.91 |
Soybean oil | 5.30 |
Soybean lecithin | 2.00 |
Ca(H2PO4)2 | 1.20 |
Choline chloride | 0.40 |
Vitamin C | 0.03 |
Compound premix 1 | 1.00 |
Cellulose microcrystalline | 0.16 |
Proximate composition | |
Dry matter (DM, %) | 92.34 |
Crude protein (% DM) | 49.62 |
Crude lipid (% DM) | 11.07 |
Ash (% DM) | 16.95 |
Target Gene | Primer Sequence | Genbank Accession No. | TM (°C) |
---|---|---|---|
keap1 1 | F-TCCACAAACCCACCAAAGTAA R-TCCACCAACAGCGTAGAAAAG | XM_018665037.1 | 57.62 58.51 |
nrf2 2 | F-TATGGAGATGGGTCCTTTGGTG R-GCTTCTTTTCCTGCGTCTGTTG | KU892416.1 | 59.49 60.60 |
β-Actin | F-GGCTACTCCTTCACCACCACA R-TCTGGGCAACGGAACCTCT | AY510710.2 | 61.72 60.84 |
Diets 1 | Pr > F 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M1 | M2 | M4 | M8 | M16 | ANOVA | Linear | Quadratic | |
Initial body weight (g) | 14.77 ± 0.01 | 14.78 ± 0.01 | 14.76 ± 0.01 | 14.77 ± 0.01 | 14.77 ± 0.01 | 14.79 ± 0.01 | 0.43 | 0.19 | 0.30 |
Final body weight (g) | 116.39 ± 0.25 b | 116.09 ± 1.39 b | 113.45 ± 1.59 ab | 110.45 ± 0.56 ab | 109.21 ± 1.06 a | 107.19 ± 4.77 a | 0.03 | <0.01 | <0.01 |
Weight gain rate (%) | 688.21 ± 2.17 b | 685.19 ± 9.06 b | 668.80 ± 11.80 ab | 647.98 ± 4.31 ab | 639.23 ± 5.99 a | 624.87 ± 33.15 a | 0.04 | <0.01 | <0.01 |
Specific growth ratio (%/d) | 3.62 ± 0.01 b | 3.62 ± 0.02 b | 3.59 ± 0.02 ab | 3.53 ± 0.01 ab | 3.51 ± 0.01 ab | 3.47 ± 0.08 a | 0.03 | <0.01 | <0.01 |
Feed conversion ratio | 0.83 ± 0.01 a | 0.83 ± 0.01 a | 0.84 ± 0.01 a | 0.87 ± 0.01 ab | 0.90 ± 0.02 ab | 0.92 ± 0.05 b | 0.10 | <0.01 | <0.01 |
Protein efficiency ratio | 2.44 ± 0.03 c | 2.43 ± 0.10 c | 2.38 ± 0.03 bc | 2.24 ± 0.02 abc | 2.16 ± 0.04 ab | 2.01 ± 0.05 a | 0.02 | <0.01 | <0.01 |
Survival rate (%) | 96.67 ± 0.00 | 96.67 ± 3.33 | 93.33 ± 1.93 | 93.33 ± 1.93 | 93.33 ± 3.33 | 90.00 ± 3.33 | 0.50 | 0.05 | 0.15 |
Hepatosomatic index (%) | 4.55 ± 0.12 | 4.08 ± 0.09 | 4.10 ± 0.16 | 3.98 ± 0.09 | 3.90 ± 0.27 | 3.92 ± 0.16 | 0.06 | <0.01 | <0.01 |
Viscerosomatic index (%) | 12.79 ± 0.35 b | 12.01 ± 0.44 ab | 11.86 ± 0.23 ab | 11.77 ± 0.28 ab | 11.50 ± 0.24 a | 11.17 ± 0.39 a | 0.02 | <0.01 | <0.01 |
Condition factor (g/cm3) | 3.01 ± 0.09 | 2.88 ± 0.10 | 2.81 ± 0.11 | 2.77 ± 0.07 | 2.66 ± 0.05 | 2.70 ± 0.03 | 0.08 | <0.01 | <0.01 |
Diets 1 | Pr > F 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M1 | M2 | M4 | M8 | M16 | ANOVA | Linear | Quadratic | |
Moisture (%) | 72.01 ± 0.50 | 71.75 ± 0.24 | 72.33 ± 0.67 | 71.68 ± 0.30 | 71.99 ± 0.28 | 71.31 ± 0.62 | 0.74 | 0.23 | 0.45 |
Crude protein (%) | 16.14 ± 0.33 | 16.09 ± 0.75 | 16.57 ± 0.67 | 16.58 ± 0.20 | 16.20 ± 0.67 | 16.62 ± 0.49 | 0.96 | 0.59 | 0.87 |
Crude lipid (%) | 7.68 ± 0.17 c | 7.59 ± 0.04 c | 7.17 ± 0.21 bc | 6.96 ± 0.15 ab | 6.62 ± 0.12 a | 6.60 ± 0.23 a | <0.01 | <0.01 | <0.01 |
Crude ash (%) | 4.50 ± 0.01 a | 4.60 ± 0.03 ab | 4.72 ± 0.09 bc | 4.75 ± 0.00 bc | 4.84 ± 0.06 c | 4.84 ± 0.06 c | 0.03 | 0.01 | <0.01 |
Diets 1 | Pr > F 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M1 | M2 | M4 | M8 | M16 | ANOVA | Linear | Quadratic | |
Stomach | |||||||||
Pepsin (U/mg protein) | 56.05 ± 2.82 | 54.92 ± 3.46 | 48.68 ± 3.46 | 46.50 ± 4.07 | 42.14 ± 2.97 | 42.42 ± 3.78 | 0.09 | 0.01 | <0.01 |
Intestine | |||||||||
Trypsin (U/μg protein) | 0.25 ± 0.02 b | 0.23 ± 0.02 ab | 0.22 ± 0.02 ab | 0.18 ± 0.01 a | 0.17 ± 0.02 a | 0.18 ± 0.01 a | 0.04 | <0.01 | <0.01 |
Lipase (U/g protein) | 1.65 ± 0.04 | 1.63 ± 0.04 | 1.54 ± 0.06 | 1.53 ± 0.05 | 1.35 ± 0.04 | 1.31 ± 0.02 | 0.09 | <0.01 | <0.01 |
Amylase (U/mg protein) | 0.38 ± 0.00 c | 0.34 ± 0.01 bc | 0.32 ± 0.00 ab | 0.29 ± 0.03 ab | 0.27 ± 0.01 a | 0.27 ± 0.02 a | 0.01 | <0.01 | <0.01 |
Maltase (U/mg protein) | 13.93 ± 1.80 | 13.63 ± 0.94 | 13.35 ± 0.51 | 13.05 ± 0.58 | 11.11 ± 0.73 | 10.54 ± 0.74 | 0.08 | <0.01 | <0.01 |
Na+/K+-ATPase (U/mg protein) | 1.64 ± 0.12 | 1.63 ± 0.10 | 1.56 ± 0.13 | 1.50 ± 0.11 | 1.36 ± 0.07 | 1.27 ± 0.02 | 0.12 | <0.01 | <0.01 |
Ca2+/Mg2+-ATPase (U/mg protein) | 5.71 ± 0.49 | 5.59 ± 0.71 | 5.23 ± 0.37 | 4.98 ± 0.80 | 4.55 ± 0.89 | 4.65 ± 0.33 | 0.74 | 0.15 | 0.21 |
Diets 1 | Pr > F 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M1 | M2 | M4 | M8 | M16 | ANOVA | Linear | Quadratic | |
Fold height (μm) | 643.16 ± 19.54 | 637.28 ± 19.31 | 627.47 ± 20.65 | 607.28 ± 25.21 | 577.45 ± 16.48 | 567.77 ± 18.38 | 0.07 | <0.01 | <0.01 |
Fold width (μm) | 82.28 ± 2.41 | 83.02 ± 6.26 | 79.44 ± 3.85 | 78.21 ± 3.03 | 76.33 ± 2.97 | 77.56 ± 1.86 | 0.62 | 0.18 | 0.18 |
Muscular thickness (μm) | 147.27 ± 7.00 | 144.53 ± 6.43 | 141.22 ± 6.18 | 139.14 ± 8.91 | 135.67 ± 5.41 | 135.21 ± 7.69 | 0.74 | 0.15 | 0.25 |
Diets 1 | Pr > F 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M1 | M2 | M4 | M8 | M16 | ANOVA | Linear | Quadratic | |
Superoxide dismutase (U/mL) | 62.84 ± 2.26 | 58.31 ± 5.41 | 56.84 ± 2.74 | 56.99 ± 3.69 | 51.20 ± 3.28 | 51.44 ± 0.60 | 0.12 | 0.01 | 0.01 |
Catalase (U/mL) | 9.71 ± 1.36 | 8.13 ± 0.69 | 7.28 ± 0.40 | 7.40 ± 1.11 | 5.75 ± 0.98 | 5.87 ± 1.03 | 0.17 | 0.02 | 0.03 |
Peroxidase (U/mL) | 0.34 ± 0.01 b | 0.34 ± 0.01 b | 0.29 ± 0.03 ab | 0.27 ± 0.02 ab | 0.24 ± 0.01 a | 0.26 ± 0.03 a | 0.04 | 0.01 | <0.01 |
Glutathione peroxidase (U/mL) | 0.17 ± 0.01 c | 0.16 ± 0.01 bc | 0.15 ± 0.01 bc | 0.14 ± 0.01 ab | 0.12 ± 0.01 a | 0.12 ± 0.01 a | <0.01 | <0.01 | <0.01 |
Glutathione reductase (U/mL) | 0.15 ± 0.01 c | 0.13 ± 0.01 bc | 0.14 ± 0.01 bc | 0.11 ± 0.01 ab | 0.10 ± 0.01 a | 0.09 ± 0.00 a | <0.01 | <0.01 | <0.01 |
Total antioxidant capacity (nmol/L) | 1.83 ± 0.05 | 1.80 ± 0.02 | 1.78 ± 0.03 | 1.78 ± 0.01 | 1.74 ± 0.02 | 1.72 ± 0.04 | 0.18 | <0.01 | 0.03 |
Malondialdehyde (nmol/L) | 3.30 ± 0.43 a | 5.10 ± 1.17 ab | 5.99 ± 0.54 b | 6.41 ± 1.03 bc | 5.96 ± 0.33 b | 8.16 ± 0.73 c | <0.01 | <0.01 | <0.01 |
Diets 1 | Pr > F 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M1 | M2 | M4 | M8 | M16 | ANOVA | Linear | Quadratic | |
Superoxide dismutase (U/μg protein) | 0.60 ± 0.01 | 0.59 ± 0.02 | 0.58 ± 0.01 | 0.56 ± 0.03 | 0.56 ± 0.01 | 0.55 ± 0.02 | 0.56 | 0.11 | 0.15 |
Catalase (U/mg protein) | 17.46 ± 0.91 | 16.89 ± 1.15 | 16.45 ± 0.67 | 16.05 ± 1.07 | 14.81 ± 1.34 | 13.97 ± 0.30 | 0.17 | <0.01 | 0.02 |
Peroxidase (U/g protein) | 27.13 ± 3.02 | 25.44 ± 2.33 | 23.35 ± 3.41 | 23.39 ± 3.70 | 21.63 ± 3.98 | 21.00 ± 3.10 | 0.79 | 0.17 | 0.30 |
Glutathione peroxidase (U/mg protein) | 15.27 ± 1.31 b | 14.85 ± 0.89 b | 12.17 ± 0.85 ab | 10.57 ± 1.47 a | 9.78 ± 1.19 a | 9.09 ± 0.83 a | 0.03 | <0.01 | <0.01 |
Glutathione reductase (U/mg protein) | 2.49 ± 0.21 b | 1.98 ± 0.04 ab | 1.93 ± 0.30 ab | 1.66 ± 0.07 a | 1.64 ± 0.14 a | 1.61 ± 0.08 a | 0.05 | 0.03 | 0.01 |
Total antioxidant capacity (mmol/g protein) | 15.00 ± 2.64 | 10.70 ± 1.36 | 10.83 ± 1.22 | 10.00 ± 2.86 | 7.17 ± 2.13 | 8.11 ± 1.30 | 0.16 | 0.04 | 0.03 |
Malondialdehyde (nmol/g protein) | 22.87 ± 5.92 | 30.77 ± 3.88 | 34.16 ± 5.41 | 37.84 ± 5.20 | 41.93 ± 4.60 | 43.11 ± 5.32 | 0.16 | 0.02 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Zhang, Y.; Zhou, H.; Liu, Y.; Cao, Y.; Dou, X.; Fu, X.; Deng, J.; Tan, B. Dietary Malondialdehyde Damage to the Growth Performance and Digestive Function of Hybrid Grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu♂). Animals 2023, 13, 3145. https://doi.org/10.3390/ani13193145
Fan J, Zhang Y, Zhou H, Liu Y, Cao Y, Dou X, Fu X, Deng J, Tan B. Dietary Malondialdehyde Damage to the Growth Performance and Digestive Function of Hybrid Grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu♂). Animals. 2023; 13(19):3145. https://doi.org/10.3390/ani13193145
Chicago/Turabian StyleFan, Jiongting, Yumeng Zhang, Hang Zhou, Yu Liu, Yixiong Cao, Xiaomei Dou, Xinlangji Fu, Junming Deng, and Beiping Tan. 2023. "Dietary Malondialdehyde Damage to the Growth Performance and Digestive Function of Hybrid Grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu♂)" Animals 13, no. 19: 3145. https://doi.org/10.3390/ani13193145
APA StyleFan, J., Zhang, Y., Zhou, H., Liu, Y., Cao, Y., Dou, X., Fu, X., Deng, J., & Tan, B. (2023). Dietary Malondialdehyde Damage to the Growth Performance and Digestive Function of Hybrid Grouper (Epinephelus fuscoguttatus♀ × E. lanceolatu♂). Animals, 13(19), 3145. https://doi.org/10.3390/ani13193145