Bump Feeding Improves Sow Reproductive Performance, Milk Yield, Piglet Birth Weight, and Farrowing Behavior
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Reproductive Performance
2.3. Body Condition Score and Backfat Thickness Determination
2.4. Farrowing Behavior and Postural Changes
2.5. Statistical Analysis
3. Results
3.1. Physiological Condition
3.2. Sows’ Reproductive Performance
3.3. Farrowing Behavior and Postural Changes
3.4. Piglet Growth from Birth to Weaning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mallmann, A.L.; Camilotti, E.; Fagundes, D.P.; Vier, C.E.; Mellagi, A.P.G.; Ulguim, R.R.; Bernardi, M.L.; Orlando, U.A.D.; Gonçalves, M.A.D.; Kummer, R.; et al. Impact of Feed Intake during Late Gestation on Piglet Birth Weight and Reproductive Performance: A Dose-Response Study Performed in Gilts. J. Anim. Sci. 2019, 97, 1262–1272. [Google Scholar] [CrossRef]
- Town, S.C.; Patterson, J.L.; Pereira, C.Z.; Gourley, G.; Foxcroft, G.R. Embryonic and Fetal Development in a Commercial Dam-Line Genotype. Anim. Reprod. Sci. 2005, 85, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Foxcroft, G.R.; Dixon, W.T.; Novak, S.; Putman, C.T.; Town, S.C.; Vinsky, M.D.A. The Biological Basis for Prenatal Programming of Postnatal Performance in Pigs. J. Anim. Sci. 2006, 84, E105–E112. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.V.; Sbardella, P.E.; Bernardi, M.L.; Coutinho, M.L.; Vaz Jr, I.S.; Wentz, I.; Bortolozzo, F.P. Effect of Birth Weight and Colostrum Intake on Mortality and Performance of Piglets after Cross-Fostering in Sows of Different Parities. Prev. Vet. Med. 2014, 114, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of Piglets’ Birth Weight and Consequences on Subsequent Performance. Livest. Prod. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- Fix, J.S.; Cassady, J.P.; Herring, W.O.; Holl, J.W.; Culbertson, M.S.; See, M.T. Effect of Piglet Birth Weight on Body Weight, Growth, Backfat, and Longissimus Muscle Area of Commercial Market Swine. Livest. Sci. 2010, 127, 51–59. [Google Scholar] [CrossRef]
- Alvarenga, A.L.N.; Chiarini-Garcia, H.; Cardeal, P.C.; Moreira, L.P.; Foxcroft, G.R.; Fontes, D.O.; Almeida, F. Intra-Uterine Growth Retardation Affects Birthweight and Postnatal Development in Pigs, Impairing Muscle Accretion, Duodenal Mucosa Morphology and Carcass Traits. Reprod. Fertil. Dev. 2013, 25, 387–395. [Google Scholar] [CrossRef]
- Magnabosco, D.; Bernardi, M.L.; Wentz, I.; Cunha, E.C.P.; Bortolozzo, F.P. Low Birth Weight Affects Lifetime Productive Performance and Longevity of Female Swine. Livest. Sci. 2016, 184, 119–125. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhang, X.M.; Zhou, Y.F.; Wang, C.; Xiong, J.; Guo, L.L.; Wang, L.; Jiang, S.W.; Peng, J. Effect of Increasing Feed Intake during Late Gestation on Piglet Performance at Parturition in Commercial Production Enterprises. Anim. Reprod. Sci. 2020, 218, 106477. [Google Scholar] [CrossRef]
- Rehfeldt, C.; Kuhn, G. Consequences of Birth Weight for Postnatal Growth Performance and Carcass Quality in Pigs as Related to Myogenesis1. J. Anim. Sci. 2006, 84, E113–E123. [Google Scholar] [CrossRef]
- Zindove, T.J.; Dzomba, E.F.; Kanengoni, A.T.; Chimonyo, M. Effects of Within-Litter Birth Weight Variation of Piglets on Performance at 3 Weeks of Age and at Weaning in a Large White×Landrace Sow Herd. Livest. Sci. 2013, 155, 348–354. [Google Scholar] [CrossRef]
- Feyera, T.; Højgaard, C.K.; Vinther, J.; Bruun, T.S.; Theil, P.K. Dietary Supplement Rich in Fiber Fed to Late Gestating Sows during Transition Reduces Rate of Stillborn Piglets1. J. Anim. Sci. 2017, 95, 5430–5438. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, A.J.; van Rens, B.T.T.M.; van der Lende, T.; Taverne, M.A.M. Factors Affecting Duration of the Expulsive Stage of Parturition and Piglet Birth Intervals in Sows with Uncomplicated, Spontaneous Farrowings. Theriogenology 2005, 64, 1573–1590. [Google Scholar] [CrossRef] [PubMed]
- Herpin, P.; Le Dividich, J.; Hulin, J.C.; Fillaut, M.; De Marco, F.; Bertin, R. Effects of the Level of Asphyxia during Delivery on Viability at Birth and Early Postnatal Vitality of Newborn Pigs. J. Anim. Sci. 1996, 74, 2067–2075. [Google Scholar] [CrossRef]
- Pereira, L.P.; Hilgemberg, J.O.; Mass, A.P.H.; Lehnen, C.R. Implications of Nutritional Modulators in Productive Performance of Pregnant and Lactating Sows. Livest. Sci. 2020, 232, 103919. [Google Scholar] [CrossRef]
- Ren, P.; Yang, X.J.; Kim, J.S.; Menon, D.; Baidoo, S.K. Effect of Different Feeding Levels during Three Short Periods of Gestation on Sow and Litter Performance over Two Reproductive Cycles. Anim. Reprod. Sci. 2017, 177, 42–55. [Google Scholar] [CrossRef]
- Pollesel, M.; Tassinari, M.; Frabetti, A.; Fornasini, D.; Cavallini, D. Effect of does parity order on litter homogeneity parameters. Ital. J. Anim. Sci. 2020, 19, 1188–1194. [Google Scholar] [CrossRef]
- Ramanau, A.; Kluge, H.; Spilke, J.; Eder, K. Effects of Dietary Supplementation of L-Carnitine on the Reproductive Performance of Sows in Production Stocks. Livest. Sci. 2008, 113, 34–42. [Google Scholar] [CrossRef]
- Gonçalves, M.A.D.; Gourley, K.M.; Dritz, S.S.; Tokach, M.D.; Bello, N.M.; DeRouchey, J.M.; Woodworth, J.C.; Goodband, R.D. Effects of Amino Acids and Energy Intake during Late Gestation of High-Performing Gilts and Sows on Litter and Reproductive Performance under Commercial Conditions1,2. J. Anim. Sci. 2016, 94, 1993–2003. [Google Scholar] [CrossRef]
- Moreira, R.H.R.; Mendes, M.F.d.S.A.; Palencia, J.Y.P.; Lemes, M.A.G.; Roque, A.R.; Kutschenko, M.; Ferreira, R.A.; de Abreu, M.L.T. L-Arginine Supplementation during the Final Third of Gestation Improves Litter Uniformity and Physical Characteristics of Neonatal Piglet Thermoregulation. J. Anim. Physiol. Anim. Nutr. 2020, 104, 645–656. [Google Scholar] [CrossRef]
- Gonçalves, M.A.D.; Dritz, S.S.; Tokach, M.D.; Piva, J.H.; DeRouchey, J.M.; Woodworth, J.C.; Goodband, R.D. Fact Sheet —Impact of Increased Feed Intake during Late Gestation on Reproductive Performance of Gilts and Sows. J. Swine Health Prod. 2016, 24, 264–266. [Google Scholar]
- Mun, H.S.; Dilawar, M.A.; Jeong, M.G.; Rathnayake, D.; Won, J.S.; Park, K.W.; Lee, S.R.; Ryu, S.B.; Yang, C.J. Effect of a Heating System Using a Ground Source Geothermal Heat Pump on Production Performance, Energy-Saving and Housing Environment of Pigs. Animals 2020, 10, 2075. [Google Scholar] [CrossRef]
- Weldon, W.C.; Lewis, A.J.; Louis, G.F.; Kovar, J.L.; Giesemann, M.A.; Miller, P.S. Postpartum Hypophagia in Primiparous Sows: I. Effects of Gestation Feeding Level on Feed Intake, Feeding Behavior, and Plasma Metabolite Concentrations during Lactation2. J. Anim. Sci. 1994, 72, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Hosseindoust, A.; Kim, M.J.; Kim, K.Y.; Lee, J.H.; Kim, Y.H.; Kim, J.S.; Chae, B.J. Additional Feeding during Late Gestation Improves Initial Litter Weight of Lactating Sows Exposed to High Ambient Temperature. R. Bras. Zootec. 2019, 48, e20180028. [Google Scholar] [CrossRef]
- Dwyer, C.M.; Stickland, N.C.; Fletcher, J.M. The Influence of Maternal Nutrition on Muscle Fiber Number Development in the Porcine Fetus and on Subsequent Postnatal Growth1. J. Anim. Sci. 1994, 72, 911–917. [Google Scholar] [CrossRef]
- Cerisuelo, A.; Baucells, M.D.; Gasa, J.; Coma, J.; Carrión, D.; Chapinal, N.; Sala, R. Increased Sow Nutrition during Midgestation Affects Muscle Fiber Development and Meat Quality, with No Consequences on Growth Performance1. J. Anim. Sci. 2009, 87, 729–739. [Google Scholar] [CrossRef]
- Shelton, N.W.; Neill, C.R.; DeRouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Dritz, S.S. Effects of Increasing Feeding Level during Late Gestation on Sow and Litter Performance. Kans. Agric. Exp. Stn. Res. Rep. 2009, 10, 38–50. [Google Scholar] [CrossRef]
- Soto, J.; Greiner, L.; Connor, J.; Allee, G. Effects Increasing Feeding Levels in Sows during Late Gestation on Piglet Birth Weights. J. Anim. Sci 2011, 89, 239. [Google Scholar]
- Mun, H.-S.; Ampode, K.M.B.; Dilawar, M.A.; Mahfuz, S.; Chem, V.; Kim, Y.-H.; Moon, J.-P.; Yang, C.-J. Renewable Energy Sources: A Novel Technology for Eco-Friendly and Sustainable Pig Production. J. Biosyst. Eng. 2022, 47, 489–501. [Google Scholar] [CrossRef]
- Chem, V.; Mun, H.S.; Ampode, K.M.B.; Mahfuz, S.; Chung, I.B.; Dilawar, M.A.; Yang, C.J. Heat Detection of Gilts Using Digital Infrared Thermal Imaging Camera. Adv. Anim. Vet. Sci. 2022, 10, 2142–2147. [Google Scholar] [CrossRef]
- Van der Peet-Schwering, C.M.C.; Swinkels, J.W.; den Hartog, L.A. The Lactating Sow; Wageningen Academic: Wageningen, The Netherlands, 1998. [Google Scholar]
- Hawe, S.J.; Scollan, N.; Gordon, A.; Magowan, E. Impact of Sow Lactation Feed Intake on the Growth and Suckling Behavior of Low and Average Birthweight Pigs to 10 Weeks of Age. Transl. Anim. Sci. 2020, 4, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Hu, L.; Wu, C.; Xu, Q.; Zhou, Q.; Peng, X.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; et al. Effects of Increased Energy and Amino Acid Intake in Late Gestation on Reproductive Performance, Milk Composition, Metabolic, and Redox Status of Sows1. J. Anim. Sci. 2019, 97, 2914–2926. [Google Scholar] [CrossRef] [PubMed]
- Filha, W.S.A.; Bernardi, M.L.; Wentz, I.; Bortolozzo, F.P. Reproductive Performance of Gilts According to Growth Rate and Backfat Thickness at Mating. Anim. Reprod. Sci. 2010, 121, 139–144. [Google Scholar] [CrossRef]
- Renaudeau, D.; Noblet, J. Effects of Exposure to High Ambient Temperature and Dietary Protein Level on Sow Milk Production and Performance of Piglets. J. Anim. Sci. 2001, 79, 1540. [Google Scholar] [CrossRef] [PubMed]
- Mun, H.-S.; Ampode, K.M.B.; Lagua, E.B.; Dilawar, M.A.; Kim, Y.-H.; Yang, C.-J. Milk Supplementation: Effect on Piglets Performance, Feeding Behavior and Sows Physiological Condition during the Lactation Period. J. Anim. Behav. Biometeorol. 2023, 11, e2023007. [Google Scholar]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Maes, D.G.D.; Janssens, G.P.J.; Delputte, P.; Lammertyn, A.; de Kruif, A. Back Fat Measurements in Sows from Three Commercial Pig Herds: Relationship with Reproductive Efficiency and Correlation with Visual Body Condition Scores. Livest. Prod. Sci. 2004, 91, 57–67. [Google Scholar] [CrossRef]
- Theil, P.K.; Lauridsen, C.; Quesnel, H. Neonatal Piglet Survival: Impact of Sow Nutrition around Parturition on Fetal Glycogen Deposition and Production and Composition of Colostrum and Transient Milk. Animal 2014, 8, 1021–1030. [Google Scholar] [CrossRef]
- Charette, R.; Bigras-Poulin, M.; Martineau, G.-P. Body Condition Evaluation in Sows. Livest. Prod. Sci. 1996, 46, 107–115. [Google Scholar] [CrossRef]
- Kim, J.S.; Yang, X.; Baidoo, S.K. Relationship between Body Weight of Primiparous Sows during Late Gestation and Subsequent Reproductive Efficiency over Six Parities. Asian Australas. J. Anim. Sci. 2016, 29, 768–774. [Google Scholar] [CrossRef]
- Vignola, M. Sow Feeding Management during Lactation. In Proceedings of the 9th London Swine Conference Proceedings. Tools of the Trade, London, ON, Canada, 1–2 April 2009; pp. 107–117. [Google Scholar]
- Kraeling, R.R.; Webel, S.K. Current Strategies for Reproductive Management of Gilts and Sows in North America. J. Anim. Sci. Biotechnol. 2015, 6, 3. [Google Scholar] [CrossRef]
- Cerisuelo, A.; Sala, R.; Gasa, J.; Chapinal, N.; Carrión, D.; Coma, J.; Baucells, M.D. Effects of Extra Feeding during Mid-Pregnancy on Gilts Productive and Reproductive Performance. Span. J. Agric. Res. 2008, 6, 219–229. [Google Scholar] [CrossRef]
- De Rensis, F.; Gherpelli, M.; Superchi, P.; Kirkwood, R.N. Relationships between Backfat Depth and Plasma Leptin during Lactation and Sow Reproductive Performance after Weaning. Anim. Reprod. Sci. 2005, 90, 95–100. [Google Scholar] [CrossRef]
- Serenius, T.; Stalder, K.J.; Baas, T.J.; Mabry, J.W.; Goodwin, R.N.; Johnson, R.K.; Robison, O.W.; Tokach, M.; Miller, R.K. National Pork Producers Council Maternal Line National Genetic Evaluation Program: A Comparison of Sow Longevity and Trait Associations with Sow Longevity1. J. Anim. Sci. 2006, 84, 2590–2595. [Google Scholar] [CrossRef]
- Koketsu, Y.; Tani, S.; Iida, R. Factors for Improving Reproductive Performance of Sows and Herd Productivity in Commercial Breeding Herds. Porc. Health Manag. 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Kummer, R. Growth and Reproductive Maturity of Replacement Gilts. In Proceedings of the 2008 Swine Breeding Management Workshop. Setting up the Herd, Edmonton, AB, Canada; 2008. [Google Scholar]
- Quesnel, H.; Farmer, C.; Devillers, N. Colostrum Intake: Influence on Piglet Performance and Factors of Variation. Livest. Sci. 2012, 146, 105–114. [Google Scholar] [CrossRef]
- Hasan, S.; Orro, T.; Valros, A.; Junnikkala, S.; Peltoniemi, O.; Oliviero, C. Factors Affecting Sow Colostrum Yield and Composition, and Their Impact on Piglet Growth and Health. Livest. Sci. 2019, 227, 60–67. [Google Scholar] [CrossRef]
- Peltoniemi, O.; Oliviero, C.; Yun, J.; Grahofer, A.; Björkman, S. Management Practices to Optimize the Parturition Process in the Hyperprolific Sow. J. Anim. Sci. 2020, 98, S96–S106. [Google Scholar] [CrossRef]
- Spinka, M.; Illmann, G. Chapter 13. Nursing Behavior. In The Gestating and Lactating sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 2014; pp. 297–318. ISBN 978-90-8686-253-5. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Neves, J.S.; Castro, D.S.; Lopes, S.O.; Santos, S.L.; Silva, S.V.C.; Araújo, V.O.; Vieira, M.F.A.; Muro, B.B.D.; Leal, D.F.; et al. Supplying Sows Energy on the Expected Day of Farrowing Improves Farrowing Kinetics and Newborn Piglet Performance in the First 24 h after Birth. Animal 2020, 14, 2271–2276. [Google Scholar] [CrossRef]
- Kim, S.W.; Weaver, A.C.; Shen, Y.B.; Zhao, Y. Improving Efficiency of Sow Productivity: Nutrition and Health. J. Anim. Sci. Biotechnol. 2013, 4, 26. [Google Scholar] [CrossRef]
- Lewis, A.J.; Speer, V.C. Relationship between yield and composition of sows’ milk and weight gains of nursing pigs. J. Anim. Sci. 1978, 47, 634–638. [Google Scholar] [CrossRef]
- Strathe, A.V.; Bruun, T.S.; Hansen, C.F. Sows with High Milk Production Had Both a High Feed Intake and High Body Mobilization. Animal 2017, 11, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Carrion-Lopez, M.J.; Madrid, J.; Martinez, S.; Hernandez, F.; Orengo, J. Effects of the Feeding Level in Early Gestation on Body Reserves and the Productive and Reproductive Performance of Primiparous and Multiparous Sows. Res. Vet. Sci. 2022, 148, 42–51. [Google Scholar] [CrossRef]
- Campos, P.H.R.F.; Silva, B.a.N.; Donzele, J.L.; Oliveira, R.F.M.; Knol, E.F. Effects of Sow Nutrition during Gestation on Within-Litter Birth Weight Variation: A Review. Animal 2012, 6, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Mateo, R.D.; Wu, G.; Bazer, F.W.; Park, J.C.; Shinzato, I.; Kim, S.W. Dietary L-Arginine Supplementation Enhances the Reproductive Performance of Gilts. J. Nutr. 2007, 137, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Mateo, R.D.; Wu, G.; Moon, H.K.; Carroll, J.A.; Kim, S.W. Effects of Dietary Arginine Supplementation during Gestation and Lactation on the Performance of Lactating Primiparous Sows and Nursing Piglets. J. Anim. Sci. 2008, 86, 827–835. [Google Scholar] [CrossRef]
- King, R.H.; Eason, P.J.; Smits, R.J.; Morley, W.C.; Henman, D.J. The Response of Sows to Increased Nutrient Intake during Mid to Late Gestation. Aust. J. Agric. Res. 2006, 57, 33. [Google Scholar] [CrossRef]
- Amdi, C.; Giblin, L.; Hennessy, A.A.; Ryan, T.; Stanton, C.; Stickland, N.C.; Lawlor, P.G. Feed Allowance and Maternal Backfat Levels during Gestation Influence Maternal Cortisol Levels, Milk Fat Composition and Offspring Growth. J. Nutr. Sci. 2013, 2, e1. [Google Scholar] [CrossRef]
- Smits, R.J.; Campbell, R.G.; King, R.H. The Effect of Increased Feed Intake during Gestation on Fertility, Litter Size and Lactation Performance of Primiparous Sows. In Manipulating Pig Production VI’; Cranwell, P.D., Ed.; Australasian Pig Science Association: Canberra, Australia, 1997; p. 57. [Google Scholar]
- Whittemore, C. The Science and Practice of Pig Production; Longman Scientific and Technical: London, UK, 1993. [Google Scholar]
- Lawlor, P.G.; Lynch, P.B.; O connell, M.K.; McNamara, L.; Reid, P.; Stickland, N.C. The Influence of over Feeding Sows during Gestation on Reproductive Performance and Pig Growth to Slaughter. Arch. Tierz. 2007, 50, 82. [Google Scholar]
- Boyd, R.D.; Castro, G.C.; Cabrera, R.A. Nutrition and Management of the Sow to Maximize Lifetime Productivity. Adv. Pork Prod. 2002, 13, 47. [Google Scholar]
- Moehn, S.; Levesque, C.L.; Samuel, R.S.; Ball, R.O. Applying New Research to Reduce Sow Feed Costs. In Advances in Pork Production: Proceedings of the …Banff Pork Seminar; University of Alberta: Edmonton, AB, Canada, 2009. [Google Scholar]
- Johnston, L. Gestating Swine Nutrient Recommendations and Feeding Management. In National Swine Nutrition Guide; Pork Center of Excellence: Des Moines, IA, USA, 2010. [Google Scholar]
- Moehn, S.; Franco, D.; Levesque, C.; Samuel, R. Phase Feeding for Pregnant Sows; Swine Research and Technology Center: Edmonton, AB, Canada, 2012. [Google Scholar]
- Goodband, R.D.; Tokach, M.D.; Goncalves, M.A.D.; Woodworth, J.C.; Dritz, S.S.; DeRouchey, J.M. Nutritional Enhancement during Pregnancy and Its Effects on Reproduction in Swine. Anim. Front. 2013, 3, 68–75. [Google Scholar] [CrossRef]
- Madec, F.; Leon, E. Farrowing Disorders in the Sow: A Field Study. J. Vet. Med. Ser. A 1992, 39, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Han, T.; Björkman, S.; Nystén, M.; Hasan, S.; Valros, A.; Oliviero, C.; Kim, Y.; Peltoniemi, O. Factors Affecting Piglet Mortality during the First 24 h after the Onset of Parturition in Large Litters: Effects of Farrowing Housing on Behaviour of Postpartum Sows. Animal 2019, 13, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, C.; Junnikkala, S.; Peltoniemi, O. The Challenge of Large Litters on the Immune System of the Sow and the Piglets. Reprod. Domest. Anim. 2019, 54, 12–21. [Google Scholar] [CrossRef]
- Whatson, T.S.; Bertram, J.M. Some Observations on Mother-Infant Interactions in the Pig (Sus Scrofa). Appl. Anim. Ethol. 1983, 9, 253–261. [Google Scholar] [CrossRef]
- Harris, M.J.; Gonyou, H.W. Increasing Available Space in a Farrowing Crate Does Not Facilitate Postural Changes or Maternal Responses in Gilts. Appl. Anim. Behav. Sci. 1998, 59, 285–296. [Google Scholar] [CrossRef]
Experimental | Weeks | Days | Feed Amount (kg) |
---|---|---|---|
Control (Low Diet) | 1–12 | 1–83 | 2.50 |
12–16 | 84–114 | 2.50 | |
Treatment (High Diet) | 1–12 | 1–83 | 2.50 |
12–16 | 84–114 | 3.50 |
Item | 6–1 Days before Farrowing | 1 Day after Farrowing | 2–6 Days after Farrowing | 7–13 Days after Farrowing | 14–15 Days after Farrowing | 16–28 Days after Farrowing |
---|---|---|---|---|---|---|
Feeding amount | 2.50/3.50 kg | 2.90 kg | 3.70 kg | 6.00 kg | 8.50 kg | 9.00 kg |
Parameters | Low Diet | High Diet | SEM | p-Value # | ||||
---|---|---|---|---|---|---|---|---|
1st Parity (n = 7) | >1 Parity (n = 7) | 1st Parity (n = 7) | >1 Parity (n = 7) | D | P | I | ||
Backfat (P2) Thickness (mm) at 84 gestation days | ||||||||
Digital | 17.29 | 17.00 | 17.78 | 17.43 | 0.646 | 0.479 | 0.702 | 0.216 |
Vernier Caliper | 17.29 | 17.14 | 17.86 | 17.43 | 0.586 | 0.470 | 0.470 | 0.062 |
Body Condition Score | 3.07 | 3.00 | 2.93 | 3.07 | 0.583 | 0.569 | 0.569 | 0.096 |
Backfat (P2) Thickness (mm) at 107 gestation days | ||||||||
Digital | 17.36 | 18.00 | 18.79 | 17.64 | 0.573 | 0.359 | 0.666 | 0.132 |
Vernier Caliper | 17.29 | 18.00 | 18.71 | 17.43 | 0.570 | 0.459 | 0.621 | 0.092 |
Body Condition Score | 3.07 | 3.21 | 3.43 | 3.18 | 0.093 | 0.096 | 0.569 | 0.045 |
Backfat (P2) Thickness (mm) at weaning, 28 days | ||||||||
Digital | 14.64 b | 14.43 b | 16.95 a | 15.27 a | 0.539 | 0.007 | 0.091 | 0.186 |
Vernier Caliper | 14.86 b | 14.86 b | 16.86 a | 15.29 a | 0.577 | 0.046 | 0.186 | 0.186 |
Body Condition Score | 2.75 b | 2.71 b | 3.11 a | 2.89 a | 0.078 | 0.002 | 0.122 | 0.264 |
Backfat Thickness (P2) Loss (mm) | ||||||||
Digital | 2.71 b | 3.57 b | 1.84 a | 2.37 a | 0.427 | 0.022 | 0.114 | 0.712 |
Vernier Caliper | 2.43 b | 3.14 b | 1.85 a | 2.14 a | 0.270 | 0.008 | 0.077 | 0.436 |
Body Condition Score | 0.32 | 0.50 | 0.32 | 0.29 | 0.094 | 0.264 | 0.456 | 0.264 |
Parameters | Low Diet | High Diet | SEM | p-Value # | ||||
---|---|---|---|---|---|---|---|---|
1st Parity (n = 7) | >1 Parity (n = 7) | 1st Parity (n = 7) | >1 Parity (n = 7) | D | P | I | ||
Sows’ Production Performance | ||||||||
Initial weight 1 | 195.29 z | 215.71 y | 195.00 z | 214.29 y | 5.313 | 0.873 | 0.001 | 0.915 |
Final weight 2 | 175.86 z | 198.14 y | 178.29 z | 202.14 y | 5.626 | 0.573 | 0.000 | 0.890 |
Body weight loss (kg) | 19.43 | 17.57 | 16.71 | 12.14 | 2.452 | 0.110 | 0.202 | 0.585 |
Feed intake (kg) | 268.17 b | 272.03 b | 297.53 a | 302.67 a | 4.671 | 0.000 | 0.744 | 0.744 |
Total born (head) | 12.86 | 11.57 | 13.43 | 13.29 | 1.101 | 0.310 | 0.523 | 0.609 |
Total live birth (head) | 11.57 | 11.00 | 13.00 | 12.57 | 0.898 | 0.108 | 0.583 | 0.937 |
Mummified piglet (head) | 0.29 | 0.29 | 0.14 | 0.29 | 0.206 | 0.732 | 0.732 | 0.732 |
Stillbirth (head) | 1.00 | 0.29 | 0.29 | 0.43 | 0.538 | 0.600 | 0.600 | 0.433 |
Mortality (Piglet; head) | 1.00 | 1.14 | 1.00 | 1.00 | 0.297 | 0.812 | 0.812 | 0.812 |
Livability, farrowing (%) | 93.33 | 95.92 | 96.70 | 94.90 | 3.801 | 0.760 | 0.919 | 0.569 |
Livability, weaning (%) | 91.26 | 90.05 | 92.57 | 92.24 | 2.371 | 0.467 | 0.750 | 0.853 |
Litter size weaned (head) | 10.57 | 9.86 | 12.00 | 11.57 | 0.803 | 0.062 | 0.483 | 0.860 |
Re-estrus day | 6.14 | 5.57 | 5.43 | 5.00 | 0.311 | 0.050 | 0.121 | 0.820 |
Milk Yield (kg) | ||||||||
At day 3 | 14.51 | 10.27 | 17.41 | 15.80 | 1.510 | 0.060 | 0.183 | 0.544 |
From days 1–28 | 294.18 b | 296.70 b | 362.60 a | 360.26 a | 0.932 | 0.014 | 0.997 | 0.923 |
Parameters | Low Diet | High Diet | SEM | p-Value # | ||||
---|---|---|---|---|---|---|---|---|
1st Parity (n = 7) | >1 Parity (n = 7) | 1st Parity (n = 7) | >1 Parity (n = 7) | D | P | I | ||
Farrowing Interval (minutes) | ||||||||
Average Farrowing Time | 141.71 | 182.29 | 168.57 | 185.86 | 22.620 | 0.508 | 0.213 | 0.612 |
Average Farrowing Interval | 18.14 | 20.29 | 20.14 | 19.29 | 3.200 | 0.877 | 0.843 | 0.644 |
Maximum Farrowing Interval | 42.29 | 65.29 | 58.71 | 56.00 | 14.330 | 0.805 | 0.486 | 0.379 |
Minimum Farrowing Interval | 4.43 b | 4.86 b | 2.71 a | 1.43 a | 0.763 | 0.003 | 0.579 | 0.272 |
Distribution of Farrowing Interval (head) | ||||||||
<10 min | 5.71 b | 4.71 b | 7.43 a | 6.86 a | 0.871 | 0.037 | 0.376 | 0.808 |
10–30 min | 3.71 | 3.86 | 4.14 | 4.14 | 0.764 | 0.644 | 0.926 | 0.926 |
30–60 min | 1.57 | 1.43 | 0.57 | 1.29 | 0.440 | 0.207 | 0.523 | 0.340 |
>60 min | 0.43 | 0.43 | 1.00 | 0.29 | 0.277 | 0.446 | 0.209 | 0.209 |
Parameters | Low Diet | High Diet | SEM | Significance of Contrast # | ||||
---|---|---|---|---|---|---|---|---|
1st Parity (n = 7) | >1 Parity (n = 7) | 1st Parity (n = 7) | >1 Parity (n = 7) | D | P | I | ||
Frequency of standing | ||||||||
Before farrowing 1 | 8.86 | 11.29 | 16.43 | 9.00 | 1.363 | 0.064 | 0.079 | 0.001 |
After farrowing 2 | 205.14 | 212.14 | 158.71 | 211.29 | 3.023 | 0.214 | 0.815 | 0.169 |
Duration of Standing (minutes) | ||||||||
Before farrowing 3 | 13.14 | 18.14 | 13.57 | 10.00 | 39.285 | 0.553 | 0.456 | 0.567 |
After farrowing 4 | 209.86 b | 205.86 b | 118.43 a | 151.43 a | 26.958 | 0.012 | 0.596 | 0.499 |
Parameter | Diet 1 | Parity 2 | SEM | p-Value | |
---|---|---|---|---|---|
1st Parity (n = 7) | >1 Parity (n = 7) | ||||
Backfat Thickness (P2), 107 days of gestation (BCS) | |||||
Low | 3.07 | 3.21 | 0.931 | 0.045 | |
High | 3.43 | 3.18 | 0.931 | ||
Frequency of standing before farrowing 3 | |||||
Low | 8.86 | 11.29 | 1.360 | 0.001 | |
High | 16.43 | 9.00 | 1.360 | ||
Frequency of standing during farrowing | |||||
Low | 8.50 | 8.64 | 1.321 | 0.013 | |
High | 16.96 | 10.07 | 1.321 |
Parameters | Low Diet | High Diet | SEM | Significance of Contrast # | ||||
---|---|---|---|---|---|---|---|---|
1st Parity (n = 7) | >1 Parity (n = 7) | 1st Parity (n = 7) | >1 Parity (n = 7) | D | P | I | ||
Birth weight (kg) | 1.38 b | 1.45 b | 1.50 a | 1.57 a | 0.048 | 0.023 | 0.163 | 0.971 |
Body weight at 3 days | 1.67 b | 1.68 b | 1.81 a | 1.87 a | 0.064 | 0.016 | 0.627 | 0.719 |
BWG after 3 days (kg) * | 0.29 | 0.23 | 0.31 | 0.30 | 0.030 | 0.114 | 0.230 | 0.416 |
Weaning weight (kg) | 8.05 | 8.71 | 8.63 | 9.01 | 0.241 | 0.079 | 0.043 | 0.571 |
Feed intake/head (kg) | 0.40 a | 0.40 a | 0.34 b | 0.32 b | 0.008 | 0.000 | 0.173 | 0.644 |
Body weight gain (kg) | 6.67 | 7.25 | 7.13 | 7.44 | 0.222 | 0.154 | 0.055 | 0.544 |
Average daily gain | 0.24 | 0.26 | 0.25 | 0.27 | 0.008 | 0.154 | 0.055 | 0.544 |
Feed conversion ratio | 0.059 bz | 0.055 by | 0.047 az | 0.043 ay | 0.002 | 0.000 | 0.042 | 0.755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampode, K.M.B.; Mun, H.-S.; Lagua, E.B.; Chem, V.; Park, H.-R.; Kim, Y.-H.; Yang, C.-J. Bump Feeding Improves Sow Reproductive Performance, Milk Yield, Piglet Birth Weight, and Farrowing Behavior. Animals 2023, 13, 3148. https://doi.org/10.3390/ani13193148
Ampode KMB, Mun H-S, Lagua EB, Chem V, Park H-R, Kim Y-H, Yang C-J. Bump Feeding Improves Sow Reproductive Performance, Milk Yield, Piglet Birth Weight, and Farrowing Behavior. Animals. 2023; 13(19):3148. https://doi.org/10.3390/ani13193148
Chicago/Turabian StyleAmpode, Keiven Mark B., Hong-Seok Mun, Eddiemar B. Lagua, Veasna Chem, Hae-Rang Park, Young-Hwa Kim, and Chul-Ju Yang. 2023. "Bump Feeding Improves Sow Reproductive Performance, Milk Yield, Piglet Birth Weight, and Farrowing Behavior" Animals 13, no. 19: 3148. https://doi.org/10.3390/ani13193148
APA StyleAmpode, K. M. B., Mun, H. -S., Lagua, E. B., Chem, V., Park, H. -R., Kim, Y. -H., & Yang, C. -J. (2023). Bump Feeding Improves Sow Reproductive Performance, Milk Yield, Piglet Birth Weight, and Farrowing Behavior. Animals, 13(19), 3148. https://doi.org/10.3390/ani13193148