Molecular Factors Involved in the Reproductive Morphophysiology of Female Domestic Cat (Felis catus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Estrous Cycle of Domestic Cats
3. Placentation in Cats
4. Factors Associated with Uterine, Ovary, and Placental Morphophysiology of the Domestic Cat
4.1. Hormonal Factors
4.1.1. Pituitary Gonadotropins
Ovary
4.1.2. Sex Hormones
Uterus and Placenta
Ovary
4.1.3. Anti-Müllerian Hormone (AMH)
Ovary
4.1.4. Relaxin (RLN)
Uterus and Placenta
4.1.5. Kisspeptin/Kiss1r System
Uterus and Placenta
Ovary
4.2. Growth Factors and Proteases
4.2.1. Uterus and Placenta
Tissue | Estrous Cycle Stage/Gestational Stage | Main Findings | Ref. |
---|---|---|---|
Endometrium and placenta | Pregnant or non-pregnant cats (All stages) | IGFBP-1 (IHC) in implantation sites from the 16th gestational day. | [120] |
Endometrium and placenta | Pregnant cats (All stages) | ↑ TGF- Æ (IHC) after stimulation with E2 + P4. | [121] |
Endometrium and placenta | Pregnant or non-pregnant cats (All stages) | ↑ Igf2 (RT-qPCR) in the pregnant uterus; ↑ Mmp2 and Egf (RT-qPCR) in the post-implantation uterus. | [19] |
Endometrium | Non-gestation, pre-implantation, implantation, early and mid-pregnancy | ↑ Igf1 (RT-qPCR) in pre-implantation, implantation, and early pregnancy; ↓ Igf2 (RT-qPCR) in pre-implantation; ↓ Igfr1 (RT-qPCR) in mid-pregnancy; ↑ Igfbp1 and Igfbp3 (RT-qPCR) in early and mid-pregnancy; ↓ Igfbp4 (RT-qPCR) in pre-implantation; ↑ Igfbp5 (RT-qPCR) in mid-pregnancy. | [20] |
Endometrium | Non-gestation, early, mid-, and late pregnancy | ↑ Vegf (RT-qPCR) in the interplacental region in late pregnancy. | [18] |
Endometrium | Early pregnancy | Paf1β, Paf1γ, Paf:ah e Pafr (RT-qPCR) expression in early pregnancy. | [124] |
Endometrium | Proestrus/estrus, diestrus, anestros | ↑ VEGF and Flk-1 (IHC) in proestrus/estrus or diestrus compared to anestros; ↑ Vegf and Plgf (RT-qPCR) in the diestrus stage. | [14] |
4.2.2. Ovary
4.3. Immune Factors
4.3.1. Uterus and Placenta
Tissue | Estrous Cycle Stage/Gestational Stage | Main Findings | Ref. |
---|---|---|---|
Endometrium | Anestrus, proestrus/estrus, diestrus, and pyometra | ↑ INFγ, MIF, and TNFα (IHC) in proestrus/estrus and diestrus in relation to anestrus; ↑ Infγ (RT-qPCR) in proestrus/estrus stage; ↑ Mif (RT-qPCR) in the diestrus stage. | [14] |
Endometrium | Estrus and diestrus | ↑ TNFα (IHC) in estrus; ↓ TNFα (IHC) in diestrus; ↑ TNFα (IHC) in deep glands after P4 administration. | [28] |
Endometrium | Estrus, diestrus, and interestrous | ↓ Tnf (RT-qPCR) and TNFα (WB) in the interestrous; ↑ Tnfr1 (RT-qPCR) in diestrus; ↑ PGF2α [ ] at estrus and PGE2 [ ] at diestrus after 12 h incubation with TNF. | [154] |
Endometrium | Mid- and late-luteal stage | ↑ Pgfs, Pges, and Ptgs2 (RT-qPCR) in mid-luteal stage. | [158] |
Uterus and uterine tubes | Cats with or without CL in the ovary | ↓ PTGS2 (IHC) in cats with CL versus cats without CL. | [83] |
Endometrium | Mid-luteal stage | ↑ PGF2α [ ] after stimulation with AA, E2, and E2/P4 in epithelial cells. ↑ PGE2 [ ] after stimulation with AA and E2 in epithelial cells; ↑ PGF2α and PGE2 [ ] after stimulation with AA in stromal cells. | [159] |
Endometrium | Early and Late Pregnancy | ↑ Foxp3 and Ctla4 (RT-qPCR) in early pregnancy. | [167] |
Endometrial culture | Anestrus, estrus, mid- and late diestrus | ↑ Pges and Ptgs2 (RT-qPCR) after incubation with TNFα or LPS; ↑ Pgfs (RT-qPCR) after incubation with TNFα or LPS; ↑ PGE2 [ ] after incubation with LPS or TNFα; ↑ PGF2α [ ] after incubation with LPS or TNFα. | [155] |
Uterus and placenta | Diestrus, mid- and late pregnancy | ↑ INFy, TNFα, and MIF (IHC) in mid-pregnancy uterus; ↑ Tnf and Il-10 (qPCR) in the pregnant uterus; ↑ INFγ, TNFα, and IL-10 (IHC) in the placenta in mid-pregnancy; ↑ Infγ, Il-6, and Il-10 (qPCR) in the placenta in mid-pregnancy. | [26] |
Uterus | Anestrus, estrus, and late diestrus | ↑ Pge2 (qPCR) in late diestrus in relation to anestrus. | [29] |
Endometrial culture | Estrus, mid- and late diestrus, anestros | ↑ Tlr2 (qPCR) after 2 h and 12 h of incubation with TNFα; ↑ Tlr4 (qPCR) after 2 h of incubation with TNFα; ↑ Tlr2 (qPCR) in estrus and late diestrus after incubation with TNFα; ↑ Tlr4 (qPCR) in estrus after incubation with TNFα. | [163] |
4.3.2. Ovary
4.4. Redox Mediators
4.4.1. Uterus and Placenta
4.4.2. Ovary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, C.J.; Thomas, D.G.; Yapura, J.; Potter, M.A. Reproductive Biology of the 38 Extant Felid Species: A Review. Mammal Rev. 2019, 49, 16–30. [Google Scholar] [CrossRef]
- Thongphakdee, A.; Sukparangsi, W.; Comizzoli, P.; Chatdarong, K. Reproductive Biology and Biotechnologies in Wild Felids. Theriogenology 2020, 150, 360–373. [Google Scholar] [CrossRef] [PubMed]
- IUCN. The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org (accessed on 25 January 2023).
- Wildt, D.E.; Seager, S.W.; Chakraborty, P.K. Effect of Copulatory Stimuli on Incidence of Ovulation and on Serum Luteinizing Hormone in the Cat. Endocrinology 1980, 107, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Lawler, D.F.; Johnston, S.D.; Hegstad, R.L.; Keltner, D.G.; Owens, S.F. Ovulation without Cervical Stimulation in Domestic Cats. J. Reprod. Fertil. Suppl. 1993, 47, 57–61. [Google Scholar] [PubMed]
- Binder, C.; Aurich, C.; Reifinger, M.; Aurich, J. Spontaneous Ovulation in Cats—Uterine Findings and Correlations with Animal Weight and Age. Anim. Reprod. Sci. 2019, 209, 106167. [Google Scholar] [CrossRef] [PubMed]
- Malandain, E.; Rault, D.; Froment, E.; Baudon, S.; Desquilbet, L.; Begon, D.; Chastant-Maillard, S. Follicular Growth Monitoring in the Female Cat during Estrus. Theriogenology 2011, 76, 1337–1346. [Google Scholar] [CrossRef]
- Griffin, B. Prolific Cats: The Estrous Cycle. Compendium 2001, 23, 1049–1057. [Google Scholar]
- Faya, M.; Carranza, A.; Priotto, M.; Abeya, M.; Diaz, J.D.; Gobello, C. Domestic Queens under Natural Temperate Photoperiod Do Not Manifest Seasonal Anestrus. Anim. Reprod. Sci. 2011, 129, 78–81. [Google Scholar] [CrossRef]
- Bristol-Gould, S.; Woodruff, T.K. Folliculogenesis in the Domestic Cat (Felis catus). Theriogenology 2006, 66, 5–13. [Google Scholar] [CrossRef]
- Da Silva, M.L.M.; de Oliveira, R.P.M.; de Oliveira, F.F. Evaluation of Sexual Behavior and Reproductive Cycle of Bitches/Avaliação Do Comportamento Sexual e Ciclo Reprodutivo de Cadelas. Braz. J. Dev. 2020, 6, 84186–84196. [Google Scholar] [CrossRef]
- Kanca, H.; Karakas, K.; Dalgic, M.A.; Salar, S.; Izgur, H. Vaginal Cytology after Induction of Ovulation in the Queen: Comparison of Postoestrus and Dioestrus. Aust. Vet. J. 2014, 92, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.J.; Thomas, D.G.; Welch, M.V.; Yapura, J.; Potter, M.A. Monitoring Ovarian Function and Detecting Pregnancy in Felids: A Review. Theriogenology 2020, 157, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.; dos Anjos Cordeiro, J.M.; da Silva Santana, L.; Santana, L.R.; Santos, B.R.; Barbosa, E.M.; da Silva, T.Q.M.; Corrêa, J.M.X.; Lavor, M.S.L.; da Silva, E.B.; et al. Pyometra and Estrous Cycle Modulate the Uterine Expression of the Kisspeptin System and Angiogenic and Immune Factors in Cats. Biol. Reprod. 2021, 104, 548–561. [Google Scholar] [CrossRef]
- Holst, B.S. Feline Breeding and Pregnancy Management: What Is Normal and When to Intervene. J. Feline Med. Surg. 2022, 24, 221–231. [Google Scholar] [CrossRef]
- Carter, A.M.; Enders, A.C. Placentation in Mammals: Definitive Placenta, Yolk Sac, and Paraplacenta. Theriogenology 2016, 86, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.M.; Mess, A.M. MammaLian Placentation: Implications for Animal Models. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms; Elsevier: Amsterdam, The Netherlands, 2014; pp. 2423–2442. [Google Scholar] [CrossRef]
- Agaoglu, O.K.; Agaoglu, A.R.; Guzeloglu, A.; Kurar, E.; Kayis, S.A.; Ozmen, O.; Schäfer-Somi, S.; Aslan, S. Expression of Hypoxia-Inducible Factors and Vascular Endothelial Growth Factor during Pregnancy in the Feline Uterus. Theriogenology 2015, 84, 24–33. [Google Scholar] [CrossRef]
- Agaoglu, O.K.; Agaoglu, A.R.; Guzeloglu, A.; Aslan, S.; Kurar, E.; Kayis, S.A.; Schäfer-Somi, S. Gene Expression Profiles of Some Cytokines, Growth Factors, Receptors, and Enzymes (GM-CSF, IFNγ, MMP-2, IGF-II, EGF, TGF-β, IGF-IIR) during Pregnancy in the Cat Uterus. Theriogenology 2016, 85, 638–644. [Google Scholar] [CrossRef]
- Korkmaz Ağaoğlu, Ö.; Ağaoğlu, A.R.; Özmen, Ö.; Saatci, M.; Schäfer-Somi, S.; Aslan, S. Expression of the Insulin-like Growth Factor (IGF) Gene Family in Feline Uterus during Pregnancy. Biotech. Histochem. 2021, 96, 439–449. [Google Scholar] [CrossRef]
- Fujihara, M.; Yamamizu, K.; Wildt, D.E.; Songsasen, N. Expression Pattern of Matrix Metalloproteinases Changes during Folliculogenesis in the Cat Ovary. Reprod. Domest. Anim. 2016, 51, 717–725. [Google Scholar] [CrossRef]
- Rojo, J.L.; Linari, M.; Young, K.A.; Peluffo, M.C. Stromal-Derived Factor 1 Directly Promotes Genes Expressed within the Ovulatory Cascade in Feline Cumulus Oocyte Complexes. J. Assist. Reprod. Genet. 2018, 35, 785–792. [Google Scholar] [CrossRef]
- Santos, L.C.; Cordeiro, J.M.d.A.; Santana, L.d.S.; Barbosa, E.M.; Santos, B.R.; da Silva, T.Q.M.; de Souza, S.S.; Corrêa, J.M.X.; Lavor, M.S.L.; da Silva, E.B.; et al. Expression Profile of the Kisspeptin/Kiss1r System and Angiogenic and Immunological Mediators in the Ovary of Cyclic and Pregnant Cats. Domest. Anim. Endocrinol. 2022, 78, 106650. [Google Scholar] [CrossRef] [PubMed]
- Zschockelt, L.; Amelkina, O.; Siemieniuch, M.J.; Kowalewski, M.P.; Dehnhard, M.; Jewgenow, K.; Braun, B.C. Synthesis and Reception of Prostaglandins in Corpora Lutea of Domestic Cat and Lynx. Reproduction 2016, 152, 111–126. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Nascimento, A.E.; Santos, L.C.; Santos, B.R.; Santos, E.O.; Cunha, M.C.d.S.G.; Snoeck, P.P.d.N.; de Lavor, M.S.L.; Silva, J.F. Estrogen and Progesterone Receptors and Antioxidant Enzymes Are Expressed Differently in the Uterus of Domestic Cats during the Estrous Cycle. Theriogenology 2023, 203, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.; dos Anjos Cordeiro, J.M.; da Silva Santana, L.; Santos, B.R.; Barbosa, E.M.; da Silva, T.Q.M.; Corrêa, J.M.X.; Niella, R.V.; Lavor, M.S.L.; da Silva, E.B.; et al. Kisspeptin/Kiss1r System and Angiogenic and Immunological Mediators at the Maternal-Fetal Interface of Domestic Cats. Biol. Reprod. 2021, 105, 217–231. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Nascimento, A.E.; Santos, L.C.; Santos, B.R.; Santos, E.O.; Cunha, M.C.d.S.G.; Snoeck, P.P.d.N.; de Lavor, M.S.L.; Silva, J.F. Spatial and Temporal Expression Profile of Sex Steroid Receptors and Antioxidant Enzymes in the Maternal-Fetal Interface of Domestic Cats. Theriogenology 2023, 210, 234–243. [Google Scholar] [CrossRef]
- Jursza, E.; Szóstek, A.Z.; Kowalewski, M.P.; Boos, A.; Okuda, K.; Siemieniuch, M.J. LPS-Challenged TNF α Production, Prostaglandin Secretion, and TNF α/TNFRs Expression in the Endometrium of Domestic Cats in Estrus or Diestrus, and in Cats with Pyometra or Receiving Medroxyprogesterone Acetate. Mediat. Inflamm. 2014, 2014, 689280. [Google Scholar] [CrossRef]
- Jursza-Piotrowska, E.; Siemieniuch, M.J. Comparison of the Effect of Lipopolysaccharide on Tumor Necrosis Factor α (TNF-α) Secretion and TNF and TNFR1 MRNA Levels in Feline Endometrium throughout the Estrous Cycle during Pyometra and after Medroxyprogesterone Acetate Treatment. J. Reprod. Dev. 2016, 62, 385–391. [Google Scholar] [CrossRef]
- de Jesus Nascimento, A.E.; Santos, L.C.; Santos, B.R.; Santos, E.O.; Cunha, M.C.d.S.G.; Snoeck, P.P.d.N.; de Lavor, M.S.L.; Silva, J.F. Accepted Manuscript—Pyometra Alters the Redox Status and Expression of Estrogen and Progesterone Receptors in the Uterus of Domestic Cats. J. Feline Med. Surg. 2023. [Google Scholar]
- Weaver, C.C.; Burgess, S.C.; Nelson, P.D.; Wilkinson, M.; Ryan, P.L.; Nail, C.A.; Kelly-Quagliana, K.A.; May, M.L.; Reeves, R.K.; Boyle, C.R.; et al. Placental Immunopathology and Pregnancy Failure in the FIV-Infected Cat. Placenta 2005, 26, 138–147. [Google Scholar] [CrossRef]
- Coats, K.S.; Boudreaux, C.E.; Clay, B.T.; Lockett, N.N.; Scott, V.L. Placental Immunopathology in the FIV-Infected Cat: A Role for Inflammation in Compromised Pregnancy? Vet. Immunol. Immunopathol. 2010, 134, 39–47. [Google Scholar] [CrossRef]
- Scott, V.L.; Boudreaux, C.E.; Lockett, N.N.; Clay, B.T.; Coats, K.S. Cytokine Dysregulation in Early- and Late-Term Placentas from Feline Immunodeficiency Virus (FIV)-Infected Cats. Am. J. Reprod. Immunol. 2011, 65, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Scott, V.L.; Shack, L.A.; Eells, J.B.; Ryan, P.L.; Donaldson, J.R.; Coats, K.S. Immunomodulator Expression in Trophoblasts from the Feline Immunodeficiency Virus (FIV)-Infected Cat. Virol. J. 2011, 8, 336. [Google Scholar] [CrossRef]
- Oliveira, I.R.d.C.; Filho, N.d.P.R.; Floriano, B.P.; Ignácio, F.S.; Vieira, G.C.; de Souza, F.B.; Bordolini, S.L.S. Piometra Em Gata—Revisão de Literatura. Alm. Med. Veterinária Zootec. 2017, 3, 1–13. [Google Scholar]
- Verhage, H.G.; Beamer, N.B.; Brenner, R.M. Plasma Levels of Estradiol and Progesterone in the Cat During Polyestrus, Pregnancy and Pseudopregnancy. Biol. Reprod. 1976, 14, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.C.; Nelson, R.W. Canine and Feline Endocrinology and Reproduction, 2nd ed.; Saunders: Philadelphia, PA, USA, 1996. [Google Scholar]
- Zschockelt, L.; Amelkina, O.; Siemieniuch, M.J.; Koster, S.; Jewgenow, K.; Braun, B.C. Corpora Lutea of Pregnant and Pseudopregnant Domestic Cats Reveal Similar Steroidogenic Capacities during the Luteal Life Span. J. Steroid Biochem. Mol. Biol. 2014, 144, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Chatdarong, K.; Rungsipipat, A.; Axnér, E.; Forsberg, C.L. Hysterographic Appearance and Uterine Histology at Different Stages of the Reproductive Cycle and after Progestagen Treatment in the Domestic Cat. Theriogenology 2005, 64, 12–29. [Google Scholar] [CrossRef]
- Liman, N.; Alan, E.; Bayram, G.K.; Gürbulak, K. Expression of Survivin, Bcl-2 and Bax Proteins in the Domestic Cat (Felis catus) Endometrium during the Oestrus Cycle. Reprod. Domest. Anim. 2012, 48, 33–45. [Google Scholar] [CrossRef]
- Baithalu, R.; Maharana, B.R.; Mishra, C. Canine Pyometra. Vet. World 2010, 3, 340–342. [Google Scholar]
- Ferré-Dolcet, L.; Yeste, M.; Vendrell, M.; Rigau, T.; Rodríguez-Gil, J.E.; Rivera del Álamo, M.M. Placental and Uterine Expression of GLUT3, but Not GLUT1, Is Related with Serum Progesterone Levels during the First Stages of Pregnancy in Queens. Theriogenology 2018, 121, 82–90. [Google Scholar] [CrossRef]
- Silva, S.C.B.; da Silva, M.C.; Silva, F.L.; Snoeck, P.P.d.N. Indução de Ovulação Com Swab Vaginal Em Gatas Domésticas e Seus Efeitos Sobre a Morfologia Uterina. Cienc. Anim. Bras. 2017, 18, 1–10. [Google Scholar] [CrossRef]
- Amelkina, O.; Braun, B.C.; Dehnhard, M.; Jewgenow, K. The Corpus Luteum of the Domestic Cat: Histologic Classification and Intraluteal Hormone Profile. Theriogenology 2015, 83, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, M.P. Regulation of Corpus Luteum Function in the Domestic Dog (Canis Familiaris) and Comparative Aspects of Luteal Function in the Domestic Cat (Felis catus). In The Life Cycle of the Corpus Luteum; Meidan, R., Ed.; Springer International Publishing Switzerland: Cham, Switzerland, 2017; pp. 133–157. ISBN 9783319432380. [Google Scholar]
- Leyva, H.; Addiego, L.; Stabenfeldt, G. The Effect of Different Photoperiods on Plasma Concentrations of Melatonin, Prolactin, and Cortisol in the Domestic Cat. Endocrinology 1984, 115, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A.B. Early Estrus in the Cat Following Increased Illumination. Endocrinology 1941, 28, 907–910. [Google Scholar] [CrossRef]
- Leiser, R.; Koob, B. Development and Characteristics of Placentation in a Carnivore, the Domestic Cat. J. Exp. Zool. 1993, 266, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Wooding, P.; Burton, G. Endotheliochorial Placentation: Cat, Dog, Bat. In Comparative Placentation; Wooding, P., Burton, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 169–183. [Google Scholar]
- King, B.F. Comparative Studies of Structure and Function in Mammalian Placentas with Special Reference to Maternal-Fetal Transfer of Iron. Integr. Comp. Biol. 1992, 32, 331–342. [Google Scholar] [CrossRef]
- Leiser, R.; Kaufmann, P. Placental Structure: In a Comparative Aspect. Exp. Clin. Endocrinol. Diabetes 1994, 102, 122–134. [Google Scholar] [CrossRef]
- Carter, A.M.; Enders, A.C. Comparative Aspects of Trophoblast Development and Placentation. Reprod. Biol. Endocrinol. 2004, 2, 46. [Google Scholar] [CrossRef]
- Enders, A.C.; Carter, A.M. The Evolving Placenta: Convergent Evolution of Variations in the Endotheliochorial Relationship. Placenta 2012, 33, 319–326. [Google Scholar] [CrossRef]
- Diessler, M.E.; Hernández, R.; Gomez Castro, G.; Barbeito, C.G. Decidual Cells and Decidualization in the Carnivoran Endotheliochorial Placenta. Front. Cell Dev. Biol. 2023, 11, 1134874. [Google Scholar] [CrossRef]
- Leiser, R.; Kohler, T. The Blood Vessels of the Cat Girdle Placenta. Observations on Corosion Casts, Scanning Electron Microscopical and Histological Studies—II. Fetal Vasculature. Anat. Embryol. 1984, 170, 209–216. [Google Scholar] [CrossRef]
- Dempsey, E.W.; Wislocki, G.B. Electron Microscopic Observations on the Placenta of the Cat. J. Biophys. Biochem. Cytol. 1956, 2, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Wislocki, G.B.; Dempsey, E.W. Histochemical Reactions in the Placenta of the Cat. Am. J. Anat. Anat. 1946, 78, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Hoshino, Y.; Miyazaki, H.; Sato, E. Angiogenesis and Microvasculature in the Female Reproductive Organs: Physiological and Pathological Implications. Curr. Pharm. Des. 2012, 18, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Wira, C.R.; Rodriguez-Garcia, M.; Patel, M.V. The Role of Sex Hormones in Immune Protection of the Female Reproductive Tract. Nat. Rev. Immunol. 2015, 15, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Monin, L.; Whettlock, E.M.; Male, V. Immune Responses in the Human Female Reproductive Tract. Immunology 2020, 160, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Almeida, H.; Castro, J.P. (In)Fertility and Oxidative Stress: New Insights into Novel Redox Mechanisms Controlling Fundamental Reproductive Processes. Oxidative Med. Cell. Longev. 2020, 2020, 4674896. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, H.; Huo, Z.; Ma, Z.; Dang, J.; Dang, W.; Pan, L.; Chen, J.; Zhong, H. MicroRNA-16 Inhibits Feto-Maternal Angiogenesis and Causes Recurrent Spontaneous Abortion by Targeting Vascular Endothelial Growth Factor. Sci. Rep. 2016, 6, 35536. [Google Scholar] [CrossRef]
- Abdolmohammadi Vahid, S.; Ghaebi, M.; Ahmadi, M.; Nouri, M.; Danaei, S.; Aghebati-Maleki, L.; Mousavi Ardehaie, R.; Yousefi, B.; Hakimi, P.; Hojjat-Farsangi, M.; et al. Altered T-cell Subpopulations in Recurrent Pregnancy Loss Patients with Cellular Immune Abnormalities. J. Cell. Physiol. 2019, 234, 4924–4933. [Google Scholar] [CrossRef]
- Wang, A.; Rana, S.; Karumanchi, S.A. Preeclampsia: The Role of Angiogenic Factors in Its Pathogenesis. Physiology 2009, 24, 147–158. [Google Scholar] [CrossRef]
- Broekhuizen, M.; Hitzerd, E.; van den Bosch, T.P.P.; Dumas, J.; Verdijk, R.M.; van Rijn, B.B.; Danser, A.H.J.; van Eijck, C.H.J.; Reiss, I.K.M.; Mustafa, D.A.M. The Placental Innate Immune System Is Altered in Early-Onset Preeclampsia, but Not in Late-Onset Preeclampsia. Front. Immunol. 2021, 12, 5386. [Google Scholar] [CrossRef]
- Savasan, Z.A.; Romero, R.; Chaiworapongsa, T.; Kusanovic, J.P.; Kim, S.K.; Mazaki-Tovi, S.; Vaisbuch, E.; Mittal, P.; Ogge, G.; Madan, I.; et al. Evidence in Support of a Role for Anti-Angiogenic Factors in Preterm Prelabor Rupture of Membranes. J. Matern. Neonatal Med. 2010, 23, 828–841. [Google Scholar] [CrossRef] [PubMed]
- Green, E.S.; Arck, P.C. Pathogenesis of Preterm Birth: Bidirectional Inflammation in Mother and Fetus. Semin. Immunopathol. 2020, 42, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.M.; Gay, V.L. Luteinizing Hormone in the Cat. I. Tonic Secretion. Endocrinology 1981, 109, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.M.; Gay, V.L. Luteinizing Hormone in the Cat. II. Mating-Induced Secretion. Endocrinology 1981, 109, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Glover, T.E.; Watson, P.F.; Bonney, R.C. Observations on Variability in LH Release and Fertility during Oestrus in the Domestic Cat (Felis catus). J. Reprod. Fertil. 1985, 75, 145–152. [Google Scholar] [CrossRef]
- Concannon, P.; Hodgson, B.; Lein, D. Reflex LH Release in Estrous Cats Following Single and Multiple Copulations. Biol. Reprod. 1980, 23, 111–117. [Google Scholar] [CrossRef]
- Orosz, S.E.; Morris, P.J.; Doody, M.C.; Niemeyer, G.P.; Cortelyou Lee, J.; Eaton, N.L.; Lothrop, C.D. Stimulation of Folliculogenesis in Domestic Cats with Human FSH and LH. Theriogenology 1992, 37, 993–1004. [Google Scholar] [CrossRef]
- Farin, C.E.; Rodriguez, K.F.; Alexander, J.E.; Hockney, J.E.; Herrick, J.R.; Kennedy-Stoskopf, S. The Role of Transcription in EGF- and FSH-Mediated Oocyte Maturation In Vitro. Anim. Reprod. Sci. 2007, 98, 97–112. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Malandain, E.; Thoumire, S.; Remy, B.; Chastant-Maillard, S. Expression of Follicle Stimulating Hormone and Luteinizing Hormone Receptors during Follicular Growth in the Domestic Cat Ovary. Mol. Reprod. Dev. 2007, 74, 989–996. [Google Scholar] [CrossRef]
- Mehl, N.S.; Khalid, M.; Srisuwatanasagul, S.; Swangchan-Uthai, T.; Sirivaidyapong, S. Comparison of the Ovarian and Uterine Reproductive Parameters, and the Ovarian MRNA and Protein Expression of LHR and FSHR between the Prepubertal and Adult Female Cats. Reprod. Domest. Anim. 2017, 52, 41–44. [Google Scholar] [CrossRef]
- Romagnoli, S.; Ferre-Dolcet, L. Reversible Control of Reproduction In Queens: Mastering the Use of Reproductive Drugs to Manipulate Cyclicity. J. Feline Med. Surg. 2022, 24, 853–870. [Google Scholar] [CrossRef]
- Ferré-Dolcet, L.; Frumento, P.; Abramo, F.; Romagnoli, S. Disappearance of Signs of Heat and Induction of Ovulation in Oestrous Queens with Gonadorelin: A Clinical Study. J. Feline Med. Surg. 2021, 23, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Veraguas, D.; Gallegos, P.F.; Velasquez, A.E.; Castro, F.O.; Rodriguez-Alvarez, L. FSH Stimulation of Anestrous Cats Improves Oocyte Quality and Development of Parthenogenetic Embryos. Theriogenology 2017, 87, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Swanson, W.F.; Roth, T.L.; Brown, J.L.; Wildt, D.E. Relationship of Circulating Steroid Hormones, Luteal Luteinizing Hormone Receptor and Progesterone Concentration, and Embryonic Mortality during Early Embryogenesis in the Domestic Cat. Biol. Reprod. 1995, 53, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Conneely, O.M. Perspective: Female Steroid Hormone Action. Endocrinology 2001, 142, 2194–2199. [Google Scholar] [CrossRef]
- Hirai, M.; Hirata, S.; Osada, T.; Hagihara, K.; Kato, J. Androgen Receptor MRNA in the Rat Ovary and Uterus. J. Steroid Biochem. Mol. Biol. 1994, 49, 1–7. [Google Scholar] [CrossRef]
- Weihua, Z.; Ekman, J.; Almkvist, Å.; Saji, S.; Wang, L.; Warner, M.; Gustafsson, J.Å. Involvement of Androgen Receptor in 17β-Estradiol-Induced Cell Proliferation in Rat Uterus. Biol. Reprod. 2002, 67, 616–623. [Google Scholar] [CrossRef]
- Binder, C.; Aurich, J.; Scarlet, D.; Reichart, U.; Walter, I.; Aurich, C. Expression of Nuclear Progesterone Receptor, Progesterone Receptor Membrane Components 1 and 2 and Prostaglandin-Endoperoxide Synthase 2 in the Endometrium and Oviduct of Spontaneously Ovulating Cats. Theriogenology 2021, 172, 200–206. [Google Scholar] [CrossRef]
- Darawiroj, D.; Srisuwatanasagul, K.; Pianchop, S.; Sukjumlong, S. Immunohistochemical Studies of the Estrogen Receptor Alpha in the Ovaries and Uteri of the Domestic Cat At Different Stages of the Oestrous Cycle. Thai J. Vet. Med. 2003, 33, 89–95. [Google Scholar] [CrossRef]
- Amelkina, O.; Zschockelt, L.; Painer, J.; Serra, R.; Villaespesa, F.; Krause, E.; Jewgenow, K.; Braun, B.C. Progesterone, Estrogen, and Androgen Receptors in the Corpus Luteum of the Domestic Cat, Iberian Lynx (Lynx Pardinus) and Eurasian Lynx (Lynx Lynx). Theriogenology 2016, 86, 2107–2118. [Google Scholar] [CrossRef]
- Li, W.; Boomsma, R.A.; Verhage, H.G. Immunocytochemical Analysis of Estrogen and Progestin Receptors in Uteri of Steroid-Treated and Pregnant Cats. Biol. Reprod. 1992, 47, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Siemieniuch, M.J.; Jursza, E.; Szostek, A.Z.; Skarzynski, D.J.; Boos, A.; Kowalewski, M.P. Steroidogenic Capacity of the Placenta as a Supplemental Source of Progesterone during Pregnancy in Domestic Cats. Reprod. Biol. Endocrinol. 2012, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, T.; Suzuki, Y.; Toyonaga, M.; Oba, H.; Mizutani, T.; Hori, T. The Role of the Ovary for the Maintenance of Pregnancy in Cats. Reprod. Domest. Anim. 2009, 44, 120–124. [Google Scholar] [CrossRef]
- Kehoe, S.; Jewgenow, K.; Johnston, P.R.; Braun, B.C. Early Preantral Follicles of the Domestic Cat Express Gonadotropin and Sex Steroid Signaling Potential. Biol. Reprod. 2022, 106, 95–107. [Google Scholar] [CrossRef]
- Braun, B.C.; Jewgenow, K. Role of Sex Steroids and Prostaglandins during the Luteal Life Cycle in Domestic Cats and Lynxes. Domest. Anim. Endocrinol. 2022, 78, 106689. [Google Scholar] [CrossRef] [PubMed]
- DI Clemente, N.; Racine, C.; Pierre, A.; Taieb, J. Anti-Müllerian Hormone in Female Reproduction. Endocr. Rev. 2021, 42, 753–782. [Google Scholar] [CrossRef] [PubMed]
- Moolhuijsen, L.M.E.; Visser, J.A. Anti-Müllerian Hormone and Ovarian Reserve: Update on Assessing Ovarian Function. J. Clin. Endocrinol. Metab. 2020, 105, 3361–3373. [Google Scholar] [CrossRef]
- Flock, U.; Reese, S.; Otzdorff, C.; Klein, R.; Walter, B. Anti–Müllerian Hormone Concentrations in Queens throughout the Estrous Cycle. Domest. Anim. Endocrinol. 2022, 81, 106749. [Google Scholar] [CrossRef]
- Lapuente, C.; Faya, M.; Blanco, P.G.; Grisolia-Romero, M.; Marchetti, C.; Gobello, C. Anti-Müllerian Hormone in Queens: Serum Concentrations and Total Ovarian Follicle Population. Theriogenology 2023, 197, 111–115. [Google Scholar] [CrossRef]
- Snoeck, F.; Sarrazin, S.; Wydooghe, E.; Van Soom, A. Age and Anti-Müllerian Hormone Levels Predict the Success of in Vitro Maturation of Cat Oocytes. Reprod. Domest. Anim. 2017, 52, 98–102. [Google Scholar] [CrossRef]
- Place, N.J.; Hansen, B.S.; Cheraskin, J.L.; Cudney, S.E.; Flanders, J.A.; Newmark, A.D.; Barry, B.; Scarlett, J.M. Measurement of Serum Anti-Müllerian Hormone Concentration in Female Dogs and Cats before and after Ovariohysterectomy. J. Vet. Diagn. Investig. 2011, 23, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Axnér, E.; Ström Holst, B. Concentrations of Anti-Müllerian Hormone in the Domestic Cat. Relation with Spay or Neuter Status and Serum Estradiol. Theriogenology 2015, 83, 817–821. [Google Scholar] [CrossRef]
- Gozer, A.; Bahan, O.; Dogruer, G.; Kutlu, T. Serum Antimüllerian Hormone Concentrations in Female Cats. Relation with Ovarian Remnant Syndrome, Ovarian Cysts and Gonadectomy Status. Theriogenology 2023, 200, 106–113. [Google Scholar] [CrossRef]
- Ferré-Dolcet, L.; Ferro, S.; Contiero, B.; Fontaine, C.; Badon, T.; Gelli, D.; Romagnoli, S. Clinical Use of Anti-Müllerian Hormone to Monitor Resumption of Ovarian Activity Following Removal of a 4.7 Mg Deslorelin Implant in Queens. Vet. Res. Commun. 2022, 46, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Gültiken, N.; Yarim, M.; Aslan, S.; Gürler, H.; Yarim, G.F.; Tuncay, M.; İnal, S.; Schäfer-Somi, S. Expression of Anti-Müllerian Hormone and Its Type 2 Receptor in the Ovary of Pregnant and Cyclic Domestic Cats. Animals 2022, 12, 877. [Google Scholar] [CrossRef] [PubMed]
- Dschietzig, T.; Bartsch, C.; Baumann, G.; Stangl, K. Relaxin-a Pleiotropic Hormone and Its Emerging Role for Experimental and Clinical Therapeutics. Pharmacol. Ther. 2006, 112, 38–56. [Google Scholar] [CrossRef]
- Addiego, L.A.; Tsutsui, T.; Stewart, D.R.; Stabenfeldt, G.H. Determination of the Source of Immunoreactive Relaxin in the Cat. Biol. Reprod. 1987, 37, 1165–1169. [Google Scholar] [CrossRef]
- DiGangi, B.A.; Griffin, B.; Levy, J.K.; Smith, B.F.; Baker, H.J. Use of a Commercially Available Relaxin Test for Detection of Pregnancy in Cats. J. Am. Vet. Med. Assoc. 2010, 237, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- De Haas Van Dorsser, F.J.; Swanson, W.F.; Lasano, S.; Steinetz, B.G. Development, Validation, and Application of a Urinary Relaxin Radioimmunoassay for the Diagnosis and Monitoring of Pregnancy in Felids. Biol. Reprod. 2006, 74, 1090–1095. [Google Scholar] [CrossRef]
- Harris, L.A.; Steinetz, B.G.; Bond, J.B.; Lasano, S.; Swanson, W.F. Refinement of a Commercial Bench-Top Relaxin Assay for Pregnancy Diagnosis Using Urine from Domestic and Nondomestic Felids. J. Zoo Wildl. Med. 2008, 39, 170–179. [Google Scholar] [CrossRef]
- Klonisch, T.; Hombach-Klonisch, S.; Froehlich, C.; Kauffold, J.; Steger, K.; Huppertz, B.; Fischer, B. Nucleic Acid Sequence of Feline Preprorelaxin and Its Localization within the Feline Placenta1. Biol. Reprod. 1999, 60, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.C.; Vargas, A.; Jewgenow, K. The Molecular Detection of Relaxin and Its Receptor RXFP1 in Reproductive Tissue of Felis catus and Lynx Pardinus during Pregnancy. Reproduction 2012, 143, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Pinilla, L.; Aguilar, E.; Dieguez, C.; Millar, R.P.; Tena-Sempere, M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol. Rev. 2012, 92, 1235–1316. [Google Scholar] [CrossRef] [PubMed]
- Amelkina, O.; Tanyapanyachon, P.; Chatdarong, K. Kisspeptin in the Domestic Cat: Expression and Protein Distribution in the Hypothalamus. Thai J. Vet. Med. Suppl. 2017, 47, 133–134. [Google Scholar]
- Amelkina, O.; Tanyapanyachon, P.; Thongphakdee, A.; Chatdarong, K. Identification of Feline Kiss1 and Distribution of Immunoreactive Kisspeptin in the Hypothalamus of the Domestic Cat. J. Reprod. Dev. 2019, 65, 335–343. [Google Scholar] [CrossRef]
- Tanyapanyachon, P.; Amelkina, O.; Chatdarong, K. The Expression of Kisspeptin and Its Receptor in the Domestic Cat Ovary and Uterus in Different Stages of the Ovarian Cycle. Theriogenology 2018, 117, 40–48. [Google Scholar] [CrossRef]
- Loncová, B.; Fabová, Z.; Sirotkin, A.V. Role of Kisspeptin-10 and Betacellulin in Control of Feline Ovarian Cell Functions. Reprod. Biol. 2023, 23, 100762. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, M.; Lash, B.; Martino, M.M.; Julier, Z. Growth Factor Engineering Strategies for Regenerative Medicine Applications. Front. Bioeng. Biotechnol. 2020, 7, 469. [Google Scholar] [CrossRef]
- Carpenter, G.; Cohen, S. Epidermal Growth Factor. J. Biol. Chem. 1990, 14, 7709–7712. [Google Scholar] [CrossRef]
- Roith, D. Le Insulin-like Growth Factors. Semin. Med. Beth Isr. Deaconess Med. Cent. 1997, 336, 633–640. [Google Scholar]
- Ornitz, D.M.; Itoh, N. Fibroblast Growth Factors. Genome Biol. 2001, 2, reviews3005.1. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. Transforming Growth Factor–ß in Tissue Fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar] [CrossRef] [PubMed]
- Tammela, T.; Enholm, B.; Alitalo, K.; Paavonen, K. The Biology of Vascular Endothelial Growth Factors. Cardiovasc. Res. 2005, 65, 550–563. [Google Scholar] [CrossRef]
- Nagase, H.; Visse, R.; Murphy, G. Structure and Function of Matrix Metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef]
- Boomsma, R.A.; Mavrogianis, P.A.; Fazleabas, A.T.; Jaffe, R.C.; Verhage, H.G. Detection of Insulin-Like Growth Factor Binding Protein-1 in Cat Implantation Sites1. Biol. Reprod. 1994, 51, 392–399. [Google Scholar] [CrossRef]
- Boomsma, R.A.; Mavrogianis, P.A.; Verhage, H.G. Immunocytochemical Localization of Transforming Growth Factor α, Epidermal Growth Factor and Epidermal Growth Factor Receptor in the Cat Endometrium and Placenta. Histochem. J. 1997, 29, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Demir, R.; Yaba, A.; Huppertz, B. Vasculogenesis and Angiogenesis in the Endometrium during Menstrual Cycle and Implantation. Acta Histochem. 2010, 112, 203–214. [Google Scholar] [CrossRef]
- Godkin, J.D.; Doré, J.J.E. Transforming Growth Factor β and the Endometrium. Rev. Reprod. 1998, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ağaoğlu, A.R.; Korkmaz Ağaoğlu, Ö.; Kurar, E.; Guzeloglu, A.; Kayis, S.A.; Atli, M.O.; Schäfer-Somi, S.; Aslan, S. Expression of Platelet Activating Factors and Its Receptor in Cat Uterus during Early Pregnancy. Ank. Univ. Vet. Fak. Derg. 2013, 60, 47–52. [Google Scholar] [CrossRef]
- Muhammad, T.; Li, M.; Wang, J.; Huang, T.; Zhao, S.; Zhao, H.; Liu, H.; Chen, Z.J. Roles of Insulin-like Growth Factor II in Regulating Female Reproductive Physiology. Sci. China Life Sci. 2020, 63, 849–865. [Google Scholar] [CrossRef]
- Ryan, J.P.; Spinks, N.R.; O’Neill, C.; Wales, R.G. Implantation Potential and Fetal Viability of Mouse Embryos Cultured in Media Supplemented with Platelet-Activating Factor. Reproduction 1990, 89, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, A.I.; Breuel, K.F. Implantation: Effect of Platelet Activating Factor on Embryonic Development and Implantation in the Mouse. Hum. Reprod. 1996, 11, 2746–2749. [Google Scholar] [CrossRef]
- Weston, G.; Rogers, P.A.W. Endometrial Angiogenesis. Baillieres. Clin. Obstet. Gynaecol. 2000, 14, 919–936. [Google Scholar] [CrossRef]
- Smith, S.K. Angiogenesis and Reproduction. Br. J. Obstet. Gynaecol. 2001, 108, 777–783. [Google Scholar] [CrossRef]
- Douglas, N.; Nakhuda, G.; Sauer; Zimmermann, R. Angiogenesis and Ovarian Function. J. Fertil. Reprod. 2005, 13, 7–15. [Google Scholar]
- Reynolds, L.P.; Redmer, D.A. Angiogenesis in the Placenta. Biol. Reprod. 2001, 64, 1033–1040. [Google Scholar] [CrossRef]
- Umapathy, A.; Chamley, L.W.; James, J.L. Reconciling the Distinct Roles of Angiogenic/Anti-Angiogenic Factors in the Placenta and Maternal Circulation of Normal and Pathological Pregnancies. Angiogenesis 2020, 23, 105–117. [Google Scholar] [CrossRef]
- Fan, X.; Muruganandan, S.; Shallie, P.D.; Dhal, S.; Petitt, M.; Nayak, N.R. VEGF Maintains Maternal Vascular Space Homeostasis in the Mouse Placenta through Modulation of Trophoblast Giant Cell Functions. Biomolecules 2021, 11, 1062. [Google Scholar] [CrossRef] [PubMed]
- Ayres, H.; Mingoti, G.Z. Angiogênese, Vascularização e Uso Do Ultrassom Doppler Colorido Na Avaliação de Estruturas Ovarianas. Rev. Bras. Reprod. Anim. 2012, 36, 174–180. [Google Scholar]
- Webb, R.; Garnsworthy, P.C.; Gong, J.G.; Armstrong, D.G. Control of Follicular Growth: Local Interactions and Nutritional Influences. J. Anim. Sci. 2004, 82, E63–E74. [Google Scholar]
- Frota, I.M.A.; Leitão, C.C.F.; Costa, J.J.N.; Brito, I.R.; Van Den Hurk, R.; Silva, J.R.V. Stability of Housekeeping Genes and Expression of Locally Produced Growth Factors and Hormone Receptors in Goat Preantral Follicles. Zygote 2011, 19, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Padilha-Nakaghi, L.; Pires-Butler, E.; Apparicio, M.; Silva, N.; Motheo, T.; Vicente, W.; Luvoni, G. Viability and Growth of Feline Preantral Follicles in Vitro Cultured with Insulin Growth Factor and Epidermal Growth Factor Supplemented Medium. Reprod. Domest. Anim. 2017, 52, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.A.; Padilha, L.; Savi, P.A.; Apparicio, M.F.; Mostachio, G.Q.; Motheo, T.F.; Pires-Buttler, E.A.; Vicente, W.R.R.; Luvoni, G.C. In Vitro Survival of Follicles Collected from Domestic Cats’ Ovaries at Different Stages of Oestrous Cycle and Cultured with IGF-1. Reprod. Domest. Anim. 2012, 47, 109–112. [Google Scholar] [CrossRef]
- Jewgenow, K. Impact of Peptide Growth Factors on the Culture of Small Preantral Follicles of Domestic Cats. Theriogenology 1996, 45, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalez, L.; Kozhevnikova, V.; Brusentsev, E.; Jänsch, S.; Amstislavsky, S.; Jewgenow, K. IGF-I Medium Supplementation Improves Singly Cultured Cat Oocyte Maturation and Embryo Development In Vitro. Animals 2021, 11, 1909. [Google Scholar] [CrossRef]
- Müller, M.C.; Monte, A.P.O.; Lins, T.L.B.G.; Macedo, T.J.S.; Barros, V.R.P.; Ferreira, V.C.; Baraúna, D.; Santos, C.R.O.; Silva, A.R.; Matos, M.H.T. Fibroblast Growth Factor-2 Promotes in Vitro Activation of Cat Primordial Follicles. Zygote 2022, 30, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Jewgenow, K.; Göritz, F. The Recovery of Preantral Follicles from Ovaries of Domestic Cats and Their Characterisation before and after Culture. Anim. Reprod. Sci. 1995, 39, 285–297. [Google Scholar] [CrossRef]
- Yildirim, K.; Vural, M.R.; Küplülü, Ş.; Özcan, Z.; Polat, I.M. The Effects of EGF and IGF-1 on FSH-Mediated in Vitro Maturation of Domestic Cat Oocytes Derived from Follicular and Luteal Stages. Reprod. Biol. 2014, 14, 122–127. [Google Scholar] [CrossRef]
- Polat, B.; Baki Acar, D.; Macun, H.C.; Kormaz, Ö.; Çolak, A.; Bastan, A.; Aktaç, A. Folliküler ve Luteal Dönemdeki Kedi Ovaryumlarından Alınan Oositlerin In Vitro Maturasyonunda Epidermal Büyüme Faktörünün Etkisi. Kafkas Univ. Vet. Fak. Derg. 2009, 15, 623–627. [Google Scholar] [CrossRef]
- Kitiyanant, Y.; Saikhun, J.; Pavasuthipaisit, K. Somatic Cell Nuclear Transfer in Domestic Cat Oocytes Treated with IGF-I for in Vitro Maturation. Theriogenology 2003, 59, 1775–1786. [Google Scholar] [CrossRef]
- Fujihara, M.; Comizzoli, P.; Keefer, C.L.; Wildt, D.E.; Songsasen, N. Epidermal Growth Factor (EGF) Sustains in Vitro Primordial Follicle Viability by Enhancing Stromal Cell Proliferation via Mapk and PI3K Pathways in the Prepubertal, but Not Adult, Cat Ovary. Biol. Reprod. 2014, 90, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, S.; Jewgenow, K.; Johnston, P.R.; Mbedi, S.; Braun, B.C. Signalling Pathways and Mechanistic Cues Highlighted by Transcriptomic Analysis of Primordial, Primary, and Secondary Ovarian Follicles in Domestic Cat. Sci. Rep. 2021, 11, 2683. [Google Scholar] [CrossRef] [PubMed]
- Goede, V.; Schmidt, T.; Kimmina, S.; Kozian, D.; Augustin, H.G. Analysis of Blood Vessel Maturation Processes during Cyclic Ovarian Angiogenesis. Lab. Investig. 1998, 78, 1385–1394. [Google Scholar]
- Fraser, H.M.; Lunn, S.F. Angiogenesis and Its Control in the Female Reproductive System. Br. Med. Bull. 2000, 56, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Wulff, C.; Dickson, S.E.; Duncan, W.C.; Fraser, H.M. Angiogenesis in the Human Corpus Luteum: Simulated Early Pregnancy by HCG Treatment Is Associated with Both Angiogenesis and Vessel Stabilization. Hum. Reprod. 2001, 16, 2515–2524. [Google Scholar] [CrossRef] [PubMed]
- Göritz, F.; Jewgenow, K.; Meyer, H.H.D. Epidermal Growth Factor and Epidermal Growth Factor Receptor in the Ovary of the Domestic Cat (Felis catus). J. Reprod. Fertil. 1996, 106, 117–124. [Google Scholar] [CrossRef]
- Fingleton, B. Matrix Metalloproteinases as Regulators of Inflammatory Processes. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 2036–2042. [Google Scholar] [CrossRef]
- Chumbley, L.B.; Boudreaux, C.E.; Coats, K.S. Aberrant Placental Immune Parameters in the Feline Immunodeficiency Virus (FIV)-Infected Cat Suggest Virus-Induced Changes in T Cell Function. Virol. J. 2013, 10, 238. [Google Scholar] [CrossRef]
- Siemieniuch, M.J.; Ogrodowska, K.; Ohgawara, H.; Skarzynski, D.; Okuda, K. Tumor Necrosis Factor-Alpha as a Possible Auto-/Paracrine Factor Affecting Estrous Cycle in the Cat Uterus. Pol. J. Vet. Sci. 2010, 13, 605–613. [Google Scholar] [CrossRef]
- Jursza-Piotrowska, E.; Socha, P.; Skarzynski, D.J.; Siemieniuch, M.J. Prostaglandin Release by Cultured Endometrial Tissues after Challenge with Lipopolysaccharide and Tumor Necrosis Factor α, in Relation to the Estrous Cycle, Treatment with Medroxyprogesterone Acetate, and Pyometra. Theriogenology 2016, 85, 1177–1185. [Google Scholar] [CrossRef]
- Weems, C.W.; Weems, Y.S.; Randel, R.D. Prostaglandins and Reproduction in Female Farm Animals. Vet. J. 2006, 171, 206–228. [Google Scholar] [CrossRef] [PubMed]
- Jursza-Piotrowska, E.; Siemieniuch, M.J. Identifying Diagnostic Endocrine Markers and Changes in Endometrial Gene Expressions during Pyometra in Cats. Reprod. Biol. 2016, 16, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Siemieniuch, M.J.; Jursza, E.; Kowalewski, M.P.; Majewska, M.; Skarzynski, D.J. Prostaglandin Endoperoxide Synthase 2 (PTGS2) and Prostaglandins F2α and E2 Synthases (PGFS and PGES) Expression and Prostaglandin F2α and E2 Secretion Following Oestrogen and/or Progesterone Stimulation of the Feline Endometrium. Reprod. Domest. Anim. 2013, 48, 72–78. [Google Scholar] [CrossRef]
- Siemieniuch, M.J.; Bowolaksono, A.; Skarzynski, D.J.; Okuda, K. Ovarian Steroids Regulate Prostaglandin Secretion in the Feline Endometrium. Anim. Reprod. Sci. 2010, 120, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.G.; Walker, M.; Lean, J. Function of Hormonally-Induced Corpora Lutea in the Domestic Cat. Theriogenology 1988, 29, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Hagman, R.; Karlstam, E.; Persson, S.; Kindahl, H. Plasma PGF2α Metabolite Levels in Cats with Uterine Disease. Theriogenology 2009, 72, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Hagman, R.; Kindahl, H.; Fransson, B.A.; Bergström, A.; Holst, B.S.; Lagerstedt, A.S. Differentiation between Pyometra and Cystic Endometrial Hyperplasia/Mucometra in Bitches by Prostaglandin F2α Metabolite Analysis. Theriogenology 2006, 66, 198–206. [Google Scholar] [CrossRef]
- Jursza, E.; Kowalewski, M.P.; Boos, A.; Skarzynski, D.J.; Socha, P.; Siemieniuch, M.J. The Role of Toll-like Receptors 2 and 4 in the Pathogenesis of Feline Pyometra. Theriogenology 2015, 83, 596–603. [Google Scholar] [CrossRef]
- Paulson, E.E.; Comizzoli, P. Endometrial Receptivity and Embryo Implantation in Carnivores—Commonalities and Differences with Other Mammalian Species. Biol. Reprod. 2021, 104, 771–783. [Google Scholar] [CrossRef]
- Dudley, J.S.; Murphy, C.R.; Thompson, M.B.; Carter, T.; McAllan, B.M. Uterine Epithelial Cells Undergo a Plasma Membrane Transformation During Early Pregnancy in the Domestic Cat (Felis catus). Anat. Rec. 2018, 301, 1497–1505. [Google Scholar] [CrossRef]
- Mahdian, S.; Pirjani, R.; Favaedi, R.; Movahedi, M.; Moini, A.; Shahhoseini, M. Platelet-Activating Factor and Antiphospholipid Antibodies in Recurrent Implantation Failure. J. Reprod. Immunol. 2021, 143, 103251. [Google Scholar] [CrossRef]
- Lockett, N.N.; Scott, V.L.; Boudreaux, C.E.; Clay, B.T.; Pruett, S.B.; Ryan, P.L.; Coats, K.S. Expression of Regulatory T Cell (Treg) Activation Markers in Endometrial Tissues from Early and Late Pregnancy in the Feline Immunodeficiency Virus (FIV)-Infected Cat. Placenta 2010, 31, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Boudreaux, C.E.; Chumbley, L.B.; Scott, V.L.; Wise, D.A.; Coats, K.S. Imbalance of Placental Regulatory T Cell and Th17 Cell Population Dynamics in the FIV-Infected Pregnant Cat. Virol. J. 2012, 9, 88. [Google Scholar] [CrossRef]
- Siemieniuch, M.J.; Jursza, E.; Szóstek, A.Z.; Zschockelt, L.; Boos, A.; Kowalewski, M.P. Placental Origin of Prostaglandin F 2 α in the Domestic Cat. Mediat. Inflamm. 2014, 2014, 364787. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Li, X.; Zheng, T.; Liang, X.; Li, J.; Huang, J.; Pan, Z.; Zheng, Y. The Effect of the Immune System on Ovarian Function and Features of Ovarian Germline Stem Cells. Springerplus 2016, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pate, J.L. Involvement of Immune Cells in Regulation of Ovarian Function. J. Reprod. Fertil. Suppl. 1995, 49, 365–377. [Google Scholar] [CrossRef]
- Martinez, C.A.; Alvarez-Rodriguez, M.; Casado-Bedmar, M.; Rodriguez-Martinez, H. In Vitro Maturation of Cumulus–Oocyte Complexes and In Vitro Sperm Capacitation Significantly Increase the Expression and Enhance the Location of the CXCL12 and CXCR4 Anchoring Attractant Complex in Pigs. Animals 2021, 11, 153. [Google Scholar] [CrossRef]
- Amelkina, O.; Zschockelt, L.; Painer, J.; Serra, R.; Villaespesa, F.; Braun, B.C.; Jewgenow, K. Apoptosis-Related Factors in the Luteal Phase of the Domestic Cat and Their Involvement in the Persistence of Corpora Lutea in Lynx. PLoS ONE 2015, 10, e0143414. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Oxidative Stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 287–299. [Google Scholar] [CrossRef]
- Szczubial, M.; Kankofer, M.; Bochniarz, M.; Dabrowski, R. Effects of Ovariohysterectomy on Oxidative Stress Markers in Female Dogs. Reprod. Domest. Anim. 2015, 50, 393–399. [Google Scholar] [CrossRef]
- Kumari, A.; Tiwary, R.; Kumar, R.; Kanti Guha, S. Oxidative Stress and Antioxidant Activity in Female Dogs Undergoing Laparoscopic and Open Elective Ovariectomy. Indian J. Anim. Sci. 2022, 92, 825–829. [Google Scholar] [CrossRef]
- Sakundech, K.; Chompoosan, C.; Tuchpramuk, P.; Boonsorn, T.; Aengwanich, W. The Influence of Duration on Pain Stress, Oxidative Stress, and Total Antioxidant Power Status in Female Dogs Undergoing Ovariohysterectomy. Vet. World 2020, 13, 160. [Google Scholar] [CrossRef] [PubMed]
- Torabi Asl, M.; Parastoo Yasini, S.; Hamed Shirazi Beheshtiha, S.; Author, C.; Professor, A. Evaluation of Antioxidant Enzymes and Lipid Peroxidation before and after Ovariohysterectomy in Queen. Iran. Vet. J. 2022, 18, 71–76. [Google Scholar] [CrossRef]
- Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S.K. Oxidative DNA Damage Induced by ROS-Modulating Agents with the Ability to Target DNA: A Comparison of the Biological Characteristics of Citrus Pectin and Apple Pectin. Sci. Rep. 2018, 8, 13902. [Google Scholar] [CrossRef]
- Braun, B.C.; Halaski, N.; Painer, J.; Krause, E.; Jewgenow, K. The Antioxidative Enzyme SOD2 Is Important for Physiological Persistence of Corpora Lutea in Lynxes. Sci. Rep. 2020, 10, 3681. [Google Scholar] [CrossRef] [PubMed]
- Cocchia, N.; Corteggio, A.; Altamura, G.; Tafuri, S.; Rea, S.; Rosapane, I.; Sica, A.; Landolfi, F.; Ciani, F. The Effects of Superoxide Dismutase Addition to the Transport Medium on Cumulus-Oocyte Complex Apoptosis and IVF Outcome in Cats (Felis catus). Reprod. Biol. 2015, 15, 56–64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.C.; Silva, J.F. Molecular Factors Involved in the Reproductive Morphophysiology of Female Domestic Cat (Felis catus). Animals 2023, 13, 3153. https://doi.org/10.3390/ani13193153
Santos LC, Silva JF. Molecular Factors Involved in the Reproductive Morphophysiology of Female Domestic Cat (Felis catus). Animals. 2023; 13(19):3153. https://doi.org/10.3390/ani13193153
Chicago/Turabian StyleSantos, Luciano Cardoso, and Juneo Freitas Silva. 2023. "Molecular Factors Involved in the Reproductive Morphophysiology of Female Domestic Cat (Felis catus)" Animals 13, no. 19: 3153. https://doi.org/10.3390/ani13193153
APA StyleSantos, L. C., & Silva, J. F. (2023). Molecular Factors Involved in the Reproductive Morphophysiology of Female Domestic Cat (Felis catus). Animals, 13(19), 3153. https://doi.org/10.3390/ani13193153