Molecular Characteristics and Polymorphisms of Buffalo (Bubalus bubalis) ABCG2 Gene and Its Role in Milk Fat Synthesis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation, Identification, and Bioinformatics Analysis of Buffalo ABCG2 Gene
2.3. Tissue Differential Expression Analysis
2.4. Genotyping of ABCG2 Polymorphisms
2.5. Construction of pEGFP-C1-ABCG2 Overexpression Plasmid
2.6. Design and Cloning of ABCG2-Targeting shRNAs
2.7. Cell Culture
2.8. Overexpression and Knockdown of Buffalo ABCG2 Gene
2.9. Cellular TAG Content Analysis
2.10. Data Analysis
3. Results
3.1. Cloning and Identification of Buffalo ABCG2
3.2. Characteristics and Structures of the ABCG2 Protein
3.3. Analysis of the Expression Profile of Buffalo ABCG2
3.4. Population Variation Analysis
3.5. Sequence Differences in ABCG2
3.6. Overexpression of Buffalo ABCG2 Promotes Milk Fat Synthesis
3.7. Knockdown of Buffalo ABCG2 Inhibits Milk Fat Synthesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Otero, J.A.; Miguel, V.; González-Lobato, L.; García-Villalba, R.; Espín, J.C.; Prieto, J.G.; Merino, G.; Álvarez, A.I. Effect of bovine ABCG2 polymorphism Y581S SNP on secretion into milk of enterolactone, riboflavin and uric acid. Animal 2016, 10, 238–247. [Google Scholar] [CrossRef]
- Ni, Z.; Bikadi, Z.; Rosenberg, M.F.; Mao, Q. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr. Drug Metab. 2010, 11, 603–617. [Google Scholar] [CrossRef]
- Doyle, L.A.; Ross, D.D. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003, 22, 7340–7358. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Seroussi, E.; Larkin, D.M.; Loor, J.J.; Everts-van Der Wind, A.; Lee, J.; Drackley, J.K.; Band, M.R.; Hernandez, A.G.; Shani, M.; et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005, 15, 936–944. [Google Scholar] [CrossRef]
- Asadollahpour Nanaei, H.; Ansari Mahyari, S.; Edriss, M. Effect of LEPR, ABCG2 and SCD1 Gene Polymorphisms on Reproductive Traits in the Iranian Holstein Cattle. Reprod. Domest. Anim. 2014, 49, 769–774. [Google Scholar] [CrossRef]
- Merino, G.; Real, R.; Baro, M.F.; Gonzalez-Lobato, L.; Prieto, J.G.; Alvarez, A.I.; Marques, M.M. Natural allelic variants of bovine ATP-binding cassette transporter ABCG2: Increased activity of the Ser581 variant and development of tools for the discovery of new ABCG2 inhibitors. Drug Metab. Dispos. 2009, 37, 5–9. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 2008, 9, 366. [Google Scholar] [CrossRef]
- Lopdell, T.J.; Tiplady, K.; Struchalin, M.; Johnson, T.J.J.; Keehan, M.; Sherlock, R.; Couldrey, C.; Davis, S.R.; Snell, R.G.; Spelman, R.J.; et al. DNA and RNA-sequence based GWAS highlights membrane-transport genes as key modulators of milk lactose content. BMC Genomics 2017, 18, 968. [Google Scholar] [CrossRef]
- Pausch, H.; Emmerling, R.; Gredler-Grandl, B.; Fries, R.; Daetwyler, H.D.; Goddard, M.E. Meta-analysis of sequence-based association studies across three cattle breeds reveals 25 QTL for fat and protein percentages in milk at nucleotide resolution. BMC Genomics 2017, 18, 853. [Google Scholar] [CrossRef]
- Sanchez, M.; Govignon-Gion, A.; Croiseau, P.; Fritz, S.; Hozé, C.; Miranda, G.; Martin, P.; Barbat-Leterrier, A.; Letaïef, R.; Rocha, D.; et al. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genet. Sel. Evol. 2017, 49, 68. [Google Scholar] [CrossRef]
- Iung, L.H.S.; Petrini, J.; Ramírez-Díaz, J.; Salvian, M.; Rovadoscki, G.A.; Pilonetto, F.; Dauria, B.D.; Machado, P.F.; Coutinho, L.L.; Wiggans, G.R.; et al. Genome-wide association study for milk production traits in a Brazilian Holstein population. J. Dairy Sci. 2019, 102, 5305–5314. [Google Scholar] [CrossRef]
- Wei, J.; Geale, P.F.; Sheehy, P.A.; Williamson, P. Impact of ABCG2 on bovine mammary epithelial cell proliferation. Anim. Biotechnol. 2012, 23, 221–224. [Google Scholar] [CrossRef]
- Michelizzi, V.N.; Dodson, M.V.; Pan, Z.; Amaral, M.E.; Michal, J.J.; McLean, D.J.; Womack, J.E.; Jiang, Z. Water buffalo genome science comes of age. Int. J. Biol. Sci. 2010, 17, 333–349. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, Z.; Qiu, L.; Zhang, Y.; Miao, Y. Polymorphisms of the kappa casein (CSN3) gene and inference of its variants in water buffalo (Bubalus bubalis). Arch. Anim. Breed. 2019, 62, 585–596. [Google Scholar] [CrossRef]
- Shao, B.; Sun, H.; Ahmad, M.J.; Ghanem, N.; Abdel-Shafy, H.; Du, C.; Deng, T.; Mansoor, S.; Zhou, Y.; Yang, Y.; et al. Genetic Features of Reproductive Traits in Bovine and Buffalo: Lessons from Bovine to Buffalo. Front. Genet. 2021, 12, 617128. [Google Scholar] [CrossRef]
- Zhou, F.; Ouyang, Y.; Miao, Y. Peroxisome proliferator-activated receptor gamma regulates genes involved in milk fat synthesis in mammary epithelial cells of water buffalo. Anim. Sci. J. 2021, 92, e13537. [Google Scholar] [CrossRef]
- Kang, Y.; Hengbo, S.; Jun, L.; Jun, L.; Wangsheng, Z.; Huibin, T.; Huaiping, S. PPARG modulated lipid accumulation in dairy GMEC via regulation of ADRP gene. J. Cell. Biochem. 2015, 116, 192–201. [Google Scholar] [CrossRef]
- Szatmari, I.; Vámosi, G.; Brazda, P.; Balint, B.L.; Benko, S.; Széles, L.; Jeney, V.; Ozvegy-Laczka, C.; Szántó, A.; Barta, E.; et al. Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J. Biol. Chem. 2006, 281, 23812–23823. [Google Scholar] [CrossRef]
- Farr, V.C.; Stelwagen, K.; Cate, L.R.; Molenaar, A.J.; McFadden, T.B.; Davis, S.R. An improved method for the routine biopsy of bovine mammary tissue. J. Dairy Sci. 1996, 79, 543–549. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yeh, F.C.; Boyle, T.B.J. Population genetic analysis of co-dominant and dominant marker and quantitative traits. Belg. J. Bot. 1997, 129, 157–163. [Google Scholar]
- Stephens, M.; Smith, N.J.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001, 68, 978–989. [Google Scholar] [CrossRef]
- Lindner, S.; Halwachs, S.; Wassermann, L.; Honscha, W. Expression and subcellular localization of efflux transporter ABCG2/BCRP in important tissue barriers of lactating dairy cows, sheep and goats. J. Vet. Pharmacol. Ther. 2013, 36, 562–570. [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, Y.; Li, A.; Li, Y.; Zhao, H.; Wang, S.; Otecko, N.O.; Zhang, D.; Wang, J.; Liu, Y.; et al. Genome wide analyses uncover allele-specific RNA editing in human and mouse. Nucleic Acids Res. 2018, 46, 8888–8897. [Google Scholar] [CrossRef]
- Alim, M.A.; Xie, Y.; Fan, Y.; Wu, X.; Sun, D.; Zhang, Y.; Zhang, S.; Zhang, Y.; Zhang, Q.; Liu, L. Genetic effects of ABCG2 polymorphism on milk production traits in the Chinese Holstein cattle. J. Appl. Anim. Res. 2013, 41, 333–338. [Google Scholar] [CrossRef]
- Moyes, K.M.; Drackley, J.K.; Morin, D.E.; Bionaz, M.; Rodriguez-Zas, S.L.; Everts, R.E.; Lewin, H.A.; Loor, J.J. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genom. 2009, 10, 542. [Google Scholar] [CrossRef]
- Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 2004, 86, 839–848. [Google Scholar] [CrossRef]
- Mani, O.; Sorensen, M.T.; Sejrsen, K.; Bruckmaier, R.M.; Albrecht, C. Differential expression and localization of lipid transporters in the bovine mammary gland during the pregnancy-lactation cycle. J. Dairy Sci. 2009, 92, 3744–3756. [Google Scholar] [CrossRef]
- Osorio, J.S.; Lohakare, J.; Bionaz, M. Biosynthesis of milk fat, protein, and lactose: Roles of transcriptional and posttranscriptional regulation. Physiol. Genomics 2016, 48, 231–256. [Google Scholar] [CrossRef]
Population | SNP | Genotype Frequency | Allele Frequency | p-Value 1 | |||
---|---|---|---|---|---|---|---|
Genotype | Number | Frequency | Allele | Frequency | |||
River buffalo | c.393 C>T | CC | 50 | 0.962 | C | 0.9808 | 0.9207 |
CT | 2 | 0.038 | T | 0.0192 | |||
TT | 0 | 0.000 | |||||
c.471 T>C | TT | 49 | 0.942 | T | 0.9712 | 0.8618 | |
TC | 3 | 0.058 | C | 0.0288 | |||
CC | 0 | 0.000 | |||||
c.720 C>T | CC | 43 | 0.827 | C | 0.8942 | 0.0262 | |
CT | 7 | 0.135 | T | 0.1058 | |||
TT | 2 | 0.038 | |||||
c.861 G>A | GG | 47 | 0.904 | G | 0.9519 | 0.7458 | |
GA | 5 | 0.096 | A | 0.0481 | |||
AA | 0 | 0.000 | |||||
c.1290 C>T | CC | 51 | 0.981 | C | 0.9808 | 0.0000 | |
CT | 0 | 0.000 | T | 0.0192 | |||
TT | 1 | 0.019 | |||||
Swamp buffalo | c.393 C>T | CC | 50 | 1.000 | C | 1.0000 | – |
CT | 0 | 0.000 | T | 0.0000 | |||
TT | 0 | 0.000 | |||||
c.471 T>C | TT | 50 | 1.000 | T | 1.0000 | – | |
TC | 0 | 0.000 | C | 0.0000 | |||
CC | 0 | 0.000 | |||||
c.720 C>T | CC | 50 | 1.000 | C | 1.0000 | – | |
CT | 0 | 0.000 | T | 0.0000 | |||
TT | 0 | 0.000 | |||||
c.861 G>A | GG | 50 | 1.000 | G | 1.0000 | – | |
GA | 0 | 0.000 | A | 0.0000 | |||
AA | 0 | 0.000 | |||||
c.1290 C>T | CC | 50 | 1.000 | C | 1.0000 | – | |
CT | 0 | 0.000 | T | 0.0000 | |||
TT | 0 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Fan, X.; Xu, X.; Li, Z.; Qiu, L.; Miao, Y. Molecular Characteristics and Polymorphisms of Buffalo (Bubalus bubalis) ABCG2 Gene and Its Role in Milk Fat Synthesis. Animals 2023, 13, 3156. https://doi.org/10.3390/ani13193156
Zhou F, Fan X, Xu X, Li Z, Qiu L, Miao Y. Molecular Characteristics and Polymorphisms of Buffalo (Bubalus bubalis) ABCG2 Gene and Its Role in Milk Fat Synthesis. Animals. 2023; 13(19):3156. https://doi.org/10.3390/ani13193156
Chicago/Turabian StyleZhou, Fangting, Xinyang Fan, Xiaoqi Xu, Zhuoran Li, Lihua Qiu, and Yongwang Miao. 2023. "Molecular Characteristics and Polymorphisms of Buffalo (Bubalus bubalis) ABCG2 Gene and Its Role in Milk Fat Synthesis" Animals 13, no. 19: 3156. https://doi.org/10.3390/ani13193156
APA StyleZhou, F., Fan, X., Xu, X., Li, Z., Qiu, L., & Miao, Y. (2023). Molecular Characteristics and Polymorphisms of Buffalo (Bubalus bubalis) ABCG2 Gene and Its Role in Milk Fat Synthesis. Animals, 13(19), 3156. https://doi.org/10.3390/ani13193156