Comparison and Phylogenetic Analysis of Mitochondrial Genomes of Talpidae Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction, PCR Amplification and Sequencing
2.3. Comparative Analysis of Mitochondrial Genomes of Talpidae Animals
2.4. Phylogenetic Analysis of Talpidae Animals
3. Results
3.1. Mitochondrial Genome Composition of S. moschatus
3.2. Comparative Analysis of the Talpidae Mitochondrial Genomes
3.2.1. Mitochondrial Genome Composition
3.2.2. Protein-Coding Genes
3.2.3. RNA Genes
3.2.4. Analysis of the Control Region of the Mitochondrial Genome
3.3. Phylogenetic Analysis of Talpidae
3.3.1. Genetic Distance
3.3.2. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whidden, H.P. Comparative myology of moles and the phylogeny of the Talpidae (Mammalia, Lipotyphla). Am. Mus. Novit. 2000, 3294, 1–53. [Google Scholar] [CrossRef]
- He, K.; Shinohara, A.; Helgen, K.M.; Springer, M.S.; Jiang, X.L.; Campbell, K.C. Talpid mole phylogeny unites shrew moles and illuminates overlooked cryptic species diversity. Mol. Biol. Evol. 2016, 34, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Catania, K.C. Epidermal sensory organs of moles, shrew-moles, and desmans: A study of the family Talpidae with comments on the function and evolution of Eimer’s organ. Brain Behav. Evol. 2000, 56, 146–174. [Google Scholar] [CrossRef]
- Wada, N.; Matsuo, T.; Kashimura, A.; Higurashi, Y. Underground locomotion in moles: Kinematic and electromyographic studies of locomotion in the Japanese mole (Mogera wogura). J. Comp. Physiol. B 2021, 191, 411–425. [Google Scholar] [CrossRef]
- Kawada, S.I.; Son, T.N.; Can, D.N. A new species of mole of the genus Euroscaptor (Soricomorpha, Talpidae) from northern Vietnam. J. Mammal. 2012, 93, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Villagra, M.R.; Menke, P.R. The mole’s thumb—Evolution of the hand skeleton in talpids (Mammalia). Zoology 2005, 108, 3–12. [Google Scholar] [CrossRef]
- Rose, J.A.; Sandefur, M.; Huskey, S.; Demler, J.L.; Butcher, M.T. Muscle architecture and out-force potential of the thoracic limb in the Eastern mole (Scalopus aquaticus). J. Morphol. 2013, 274, 1277–1287. [Google Scholar] [CrossRef]
- Catania, K.C. Cortical organization in moles: Evidence of new areas and a specialized S2. Somatosens Mot. Res. 2000, 17, 335–347. [Google Scholar] [CrossRef]
- Carmona, F.D.; Motokawa, M.; Tokita, M.; Tsuchiya, K.; Sánchez-Villagra, M. The evolution of female mole ovotestes evidences high plasticity of mammalian gonad development. J. Exp. Zool. B Mol. Dev. Evol. 2010, 310B, 259–266. [Google Scholar] [CrossRef]
- Mouchaty, S.K.; Anette, G.; Axel, J.; Ulfur, A. The phylogenetic position of the Talpidae within eutheria based on analysis of complete mitochondrial sequences. Mol. Biol. Evol. 2000, 17, 60–67. [Google Scholar] [CrossRef]
- Sánchez-Villagra, M.R.; Horovitz, I.; Motokawa, M. A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationships. Cladistics 2006, 22, 59–88. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, A.; Campbell, K.L.; Suzuki, H. Molecular phylogenetic relationships of moles, shrew moles, and desmans from the new and old worlds. Mol. Phylogenet Evol. 2003, 27, 247–258. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Aleix-Mata, G.; Lamelas, L.; Arroyo, M.; Marchal, J.; Sánchez, A. Karyotype analysis of the new Talpa species Talpa aquitania (Talpidae; Insectivora) from northern Spain. Cytogenet Genome Res. 2019, 159, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Xu, Z.; Zhang, H.; Liu, Y.; Liao, R.; Yang, G.; Sun, R.L.; Shi, J.; Ban, Q.; Li, C.L.; et al. Description of a new species of the genus Uropsilus (Eulipotyphla: Talpidae: Uropsilinae) from the Dabie Mountains, Anhui, Eastern China. Zool. Res. 2021, 42, 294–299. [Google Scholar] [CrossRef]
- Lin, C.S.; Sun, Y.L.; Liu, C.Y.; Yang, P.C.; Chang, L.C.; Cheng, I.C.; Mao, S.J.; Huang, M.C. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene 1999, 236, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Gering, E.J.; Opazo, J.C.; Storz, J.F. Molecular evolution of cytochrome b in high- and low-altitude deer mice (genus Peromyscus). Heredity 2009, 102, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May-Collado, L.; Agnarsson, I. Cytochrome b and Bayesian inference of whale phylogeny. Mol. Phylogenet. Evol. 2006, 38, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.; Lamelas, L.; Aleix-Mata, G.; Arroyo, M.; Marchal, J.A.; Palomeque, T.; Lorite, P.; Sánchez, A. Complete mitochondrial genome of the Iberian Mole Talpa occidentalis (Talpidae, Insectivora) and comparison with Talpa europaea. Genetica 2018, 4–5, 415–423. [Google Scholar] [CrossRef]
- Xie, F.; Chen, D.; Qin, B.; Fu, C.; Chen, S. The complete mitochondrial genome of white-tailed mole (Parascaptor leucura). Mitochondrial DNA B Resour. 2021, 6, 1112–1113. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef] [PubMed]
- Sbisà, E.; Tanzariello, F.; Reyes, A.; Pesole, G.; Saccone, C. Mammalian mitochondrial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications. Gene 1997, 205, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Suleski, M.; Craig, J.M.; Kasprowicz, A.E.; Sanderford, M.; Li, M.; Stecher, G.; Hedges, S.B. TimeTree 5: An expanded resource for species divergence times. Mol. Biol. Evol. 2022, 39, msac174. [Google Scholar] [CrossRef]
- Ali, F.; Ahmad, I.; Ali, M.I.; Riaz, M.H.; Khan, N.; Ullah, O.; Hassan, F.; Suhail, S.M.; Khan, R.; Khan, M.T.; et al. Mitochondrial phylogenetic and diversity analysis in Azi-Kheli buffalo. Trop. Anim. Health Prod. 2021, 53, 512. [Google Scholar] [CrossRef]
- Schwartz, J.H. Evolution, systematics, and the unnatural history of mitochondrial DNA. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2021, 32, 126–151. [Google Scholar] [CrossRef]
- Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1014, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.Y.; Lee, S.G.; Kim, E.B. Polymorphic sites in complete genome sequences of Asian badger, Meles leucurus amurensis (Mustelidae, Melinae) mitochondria. Mitochondrial DNA B Resour. 2016, 1, 264–265. [Google Scholar] [CrossRef]
- Ursing, B.M.; Arnason, U. The complete mitochondrial DNA sequence of the pig (Sus scrofa). J. Mol. Evol. 1998, 47, 302–306. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, X.; Hu, Y.; Tu, F. Description of the mitogenome of Gansu mole (Scapanulus oweni). Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016, 27, 2083–2084. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, S.E.; Jeong, H.W.; Ji, H.H. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol. Phylogenet. Evol. 1998, 10, 210–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Wu, X.; Jiang, Z. The complete mitochondrial genome structure of snow leopard Panthera uncia. Mol. Biol. Rep. 2009, 36, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Janke, A.; Erpenbeck, D.; Nilsson, M.; Arnason, U. The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): Implications for amniote phylogeny. Proc. Biol. Sci. 2001, 268, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Sumida, M.; Kanamori, Y.; Kaneda, H.; Kato, Y.; Nishioka, M.; Hasegawa, M.; Yonekawa, H. Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata. Genes Genet. Syst. 2001, 76, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Fei, M.; Xiao, B.; Zheng, J.; Yuan, X.; Tang, M.; Wang, L.; Yu, Y.; Li, Q. The complete mitochondrial genomes sequences of Asio flammeus and Asio otus and comparative analysis. Sci. China C Life Sci. 2004, 47, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Mannen, H.; Kojima, T.; Oyama, K.; Mukai, F.; Tsuji, S. Effect of mitochondrial DNA variation on carcass traits of Japanese Black cattle. J. Anim. Sci. 1998, 76, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Zardoya, R.; Villalta, M.; López-Pérez, M.J.; Garrido-Pertierra, A.; Montoya, J.; Bautista, J.M. Nucleotide sequence of the sheep mitochondrial DNA D-loop and its flanking tRNA genes. Curr. Genet. 1995, 28, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Jemt, E.; Persson, O.; Shi, Y.; Mehmedovic, M.; Uhler, J.P.; L’opez, M.D.; Freyer, C.; Gustafsson, C.M.; Samuelsson, T.; Falkenberg, M. Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res. 2015, 43, 9262–9275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, F.; Fan, Z.; Chen, S.; Yin, Y.; Li, P.; Zhang, X.; Liu, S.; Yue, B. The complete mitochondrial genome sequence of the Gracile shrew mole, Uropsilus gracilis (Soricomorpha: Talpidae). Mitochondrial DNA 2012, 23, 382–384. [Google Scholar] [CrossRef]
- Wan, T.; He, K.; Jiang, X. Multilocus phylogeny and cryptic diversity in Asian shrew-like moles (Uropsilus, Talpidae): Implications for taxonomy and conservation. BMC Evol. Biol. 2013, 13, 1–13. [Google Scholar] [CrossRef]
- He, K.; Shinohara, A.; Jiang, X.; Campbell, K.L. Multilocus phylogeny of Talpine moles (Talpini, Talpidae, Eulipotyphla) and its implications for systematics. Mol. Phylogenet. Evol. 2014, 70, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.J. Evolution of the middle ear apparatus in talpid moles. J. Morphol. 2006, 267, 678–695. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, A.; Kawada, S.I.; Son, N.T.; Dang, N.C.; Koshimoto, C. Molecular phylogenetic relationships and intra-species diversities of three Euroscaptor spp. (Talpidae: Lipotyphla: Mammalia) from Vietnam. Raffles Bull. Zool. 2015, 63, 366–375. [Google Scholar]
- Hofreiter, M.; Stewart, J. Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr. Biol. 2009, 19, R584–R594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 27, 5517. [Google Scholar] [CrossRef]
- Canales-Aguirre, C.B.; Ritchie, P.A.; Hernandez, S.; Herrera-Yanez, V.; Ferrada Fuentes, S.; Oyarzun, F.X.; Hernández, C.E.; Galleguillos, R.; Arratia, G. Phylogenetic relationships, origin and historical biogeography of the genus Sprattus (Clupeiformes: Clupeidae). PeerJ 2021, 9, e11737. [Google Scholar] [CrossRef]
- Cramwinckel, M.J.; Huber, M.; Kocken, I.J.; Agnini, C.; Bijl, P.K.; Bohaty, S.M.; Frieling, J.; Goldner, A.; Hilgen, F.J.; Kip, E.L.; et al. Synchronous tropical and polar temperature evolution in the Eocene. Nature 2018, 559, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Oliver, P.M.; Hugall, A.F. Phylogenetic evidence for mid-Cenozoic turnover of a diverse continental biota. Nat. Ecol. Evol. 2017, 1, 1896–1902. [Google Scholar] [CrossRef]
- McIntyre, I.W.; Campbell, K.L.; MacArthur, R.A. Body oxygen stores, aerobic dive limits and diving behaviour of the star-nosed mole (Condylura cristata) and comparisons with non-aquatic talpids. J. Exp. Biol. 2002, 205, 45–54. [Google Scholar] [CrossRef]
- O’Brien, C.L.; Huber, M.; Thomas, E.; Pagani, M.; Super, J.R.; Elder, L.E.; Hull, P.M. The enigma of Oligocene climate and global surface temperature evolution. Proc. Natl. Acad. Sci. USA 2020, 117, 25302–25309. [Google Scholar] [CrossRef]
T(U) | C | A | G | AT | CG | |
---|---|---|---|---|---|---|
Scaptochirus moschatus | 26.9 | 25.3 | 33.8 | 14.0 | 60.7 | 39.3 |
Scaptochirus moschatus isolate M11099 | 26.8 | 25.4 | 33.7 | 14.1 | 60.5 | 39.5 |
Scapanulus oweni | 28.7 | 23.9 | 34.0 | 12.5 | 62.7 | 37.4 |
Parascaptor leucura | 26.4 | 25.7 | 33.5 | 14.0 | 59.9 | 40.0 |
Mogera robusta | 29.1 | 22.8 | 35.2 | 12.8 | 64.3 | 37.1 |
Mogera wogura | 28.4 | 23.6 | 35.0 | 13.0 | 63.4 | 36.6 |
Talpa europaea | 27.0 | 24.6 | 34.1 | 14.3 | 61.1 | 38.9 |
Talpa aquitania | 26.8 | 24.8 | 34.2 | 14.2 | 61.0 | 39.0 |
Talpa occidentalis | 26.6 | 24.9 | 34.1 | 14.4 | 60.7 | 39.3 |
Condylura cristata | 28.6 | 23.0 | 35.6 | 12.8 | 64.2 | 35.8 |
Urotrichus talpoides | 28.3 | 24.1 | 34.3 | 13.4 | 62.6 | 37.5 |
Uropsilus andersoni | 30.1 | 22.9 | 33.2 | 13.8 | 63.3 | 36.7 |
Uropsilus gracilis | 30.3 | 22.7 | 33.3 | 13.6 | 63.6 | 36.3 |
Uropsilus soricipes | 30.5 | 22.4 | 33.9 | 13.2 | 64.4 | 35.6 |
The First Site | The Second Site | The Third Site | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | C | A | G | T | C | A | G | T | C | A | G | |
S. moschatus | 28.5 | 25.2 | 33.6 | 12.7 | 24.7 | 25.0 | 35.8 | 14.5 | 27.5 | 25.5 | 32.1 | 14.9 |
S. moschatus isolate M11099 | 28.3 | 25.5 | 33.4 | 12.8 | 24.4 | 25.3 | 35.6 | 14.7 | 27.7 | 25.5 | 32.1 | 14.8 |
S. oweni | 30.3 | 23.6 | 34.1 | 12.1 | 27.1 | 23.8 | 35.1 | 14.0 | 28.6 | 24.2 | 32.7 | 14.5 |
P. leucura | 28.0 | 25.8 | 33.2 | 13.0 | 23.8 | 25.8 | 35.3 | 15.0 | 27.5 | 25.5 | 32.1 | 15.0 |
M. robusta | 31.0 | 22.7 | 34.6 | 11.7 | 27.3 | 22.1 | 37.5 | 13.0 | 29.0 | 23.8 | 33.5 | 13.8 |
M. wogura | 30.2 | 23.5 | 34.4 | 11.9 | 26.4 | 23.0 | 37.3 | 13.2 | 28.6 | 24.2 | 33.2 | 14.0 |
T. europaea | 28.6 | 24.6 | 33.9 | 12.9 | 24.8 | 24.2 | 36.0 | 15.0 | 27.5 | 25.0 | 32.4 | 15.0 |
T. aquitania | 28.2 | 25.1 | 34.0 | 12.8 | 24.7 | 24.5 | 36.2 | 14.7 | 27.6 | 24.8 | 32.5 | 15.1 |
T. occidentalis | 28.4 | 24.8 | 33.7 | 13.1 | 24.3 | 24.8 | 36.1 | 14.9 | 27.2 | 25.2 | 32.5 | 15.1 |
C. cristata | 30.4 | 23.1 | 35.3 | 11.2 | 26.9 | 22.3 | 37.5 | 13.3 | 28.5 | 23.6 | 34.0 | 13.8 |
U. talpoides | 30.2 | 23.6 | 34.2 | 12.0 | 26.4 | 23.9 | 35.8 | 13.9 | 28.3 | 24.6 | 32.9 | 14.2 |
U. andersoni | 31.8 | 23.1 | 32.8 | 12.4 | 28.4 | 22.5 | 34.6 | 14.6 | 30.0 | 23.3 | 32.2 | 14.5 |
U. gracilis | 32.1 | 23.0 | 32.4 | 12.5 | 28.9 | 22.1 | 35.2 | 13.9 | 30.0 | 23.0 | 32.5 | 14.5 |
U. soricipes | 32.3 | 22.4 | 33.2 | 12.0 | 29.0 | 21.9 | 35.6 | 13.4 | 30.2 | 22.7 | 32.8 | 14.2 |
ND1 | ND2 | COX1 | COX2 | ATP8 | ATP6 | COX3 | ND3 | ND4L | ND4 | ND5 | ND6 | Cyt b | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initiation codons | |||||||||||||
Termination codons | |||||||||||||
S. moschatus | ATG TA - | ATA T- - | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATA TAA | ATG TAA | ATG AGA |
S.moschatus Isolate M11099 | ATG TA - | ATA T- - | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATT TAA | TTA CAT | ATG AGA |
S. oweni | ATG TA - | ATT T- - | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | GTG T- - | ATA TAA | ATG TAA | ATG AGA |
P. leucura | ATG TA - | ATA T- - | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATT TAA | ATA TAA | ATG AGA |
M. robusta | ATG TA - | ATA T- - | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATT TAA | ATG TAA | ATG AGA |
M. wogura | ATG TAA | ATA TAG | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATT TAA | ATG TAA | ATG AGA |
T. europaea | ATG TAA | ATA TAG | ATG T- - | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATT TAA | ATG TAA | ATG T- - |
T. aquitania | ATG TAA | ATA T- - | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATT TAA | ATG TAA | ATG AGA |
T. occidentalis | ATG TAA | ATA T- - | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATT TAA | ATG T- - | ATT TAA | ATG TAA | ATG AGA |
C. cristata | ATG T- - | ATA T- - | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATT TAA | ATG TAA | ATT AGA |
U. talpoides | ATG TAG | ATG TAG | ATG TAA | ATG TAA | ATG TAA | ATG TAA | ATG T- - | ATT T- - | ATG TAA | ATG T- - | ATT TAA | ATG TAA | ATG AGA |
U. andersoni | ATG T- - | ATT T- - | ATG TAG | ATG TAA | ATG TAA | ATG TAA | ATG TA - | ATA T- - | ATG TAA | ATG T- - | ATT TAA | ATG TAA | ATG AGA |
U. gracilis | ATG T- - | ATA T- - | ATG TAG | ATG TAA | ATG TAA | ATG TAA | ATG TA - | ATA T- - | ATG TAA | GTG TAA | ATT TAA | ATG TAA | ATG AGA |
U. soricipes | ATG T- - | ATA T- - | ATG TAG | ATG TAA | ATG TAA | ATG TAA | ATG TA - | ATA T- - | ATG TAA | GTG T- - | ATT TAA | ATG TAA | ATG AGA |
Organism | Central Domain | ETAS-1 | ETAS-2 | CSB-1 | CSB-2 | CSB 3 |
---|---|---|---|---|---|---|
S. moschatus | 344–660 | 180–238 | 257–327 | 523–548 | 885–902 | 937–955 |
S. moschatus isolate M11099 | 344–660 | 180–238 | 257–327 | 523–548 | 885–902 | 1002–1040 |
S. oweni | 405–721 | 234–302 | 320–388 | 585–610 | 1067–1085 | |
P. leucura | 362–679 | 196–256 | 275–345 | 541–566 | 1046–1063 | 1096–1114 |
M. robusta | 366–688 | 194–254 | 273–349 | 550–575 | 1064–1081 | 1115–1133 |
M. wogura | 362–679 | 191–251 | 270–345 | 542–567 | 996–1013 | 1046–1064 |
T. europaea | 349–668 | 179–237 | 255–332 | 529–554 | 1072–1089 | 1121–1139 |
T. aquitania | 358–677 | 190–247 | 265–341 | 538–563 | 1013–1030 | 1062–1080 |
T. occidentalis | 353–673 | 186–243 | 261–336 | 534–559 | 1146–1163 | 1195–1213 |
C. cristata | 365–679 | 201–261 | 280–348 | 543–568 | 895–912 | 945–963 |
U. talpoides | 342–658 | 180–238 | 256–325 | 522–547 | 1080–1097 | 1127–1145 |
U. andersoni | 358–678 | 184–252 | 270–341 | 537–562 | 771–788 | 1043–1061 |
U. gracilis | 369–684 | 214–283 | 302–380 | 595–620 | ||
U. soricipes | 376–690 | 201–269 | 287–358 | 554–579 | 807–824 | 1073–1090 |
Period Size | Copy Number | Repeat Unit | |
---|---|---|---|
S. moschatus | 12 | 11 | ACGTATACGCGC |
S. moschatus isolate M11099 | 12 | 17 | ATACACGCACGT |
S. oweni | 12 | 22 | CGTATACACGCA |
P. leucura | 12 | 22 | GTACGCACACAT |
M. robusta | 8 | 36 | TACACGTA |
M. wogura | 8 | 27 | ACACGTAT |
T. europaea | 16 | 20 | CACAGGCGTATACACC |
T. aquitania | 10 | 23 | TACGCACACG(A) |
T. occidentalis | 10 | 39 | CACGTACGCA |
C. cristata | 8 | 12 | ATACACGT |
U. talpoides | 10 | 31 | CACACGTACG |
U. soricipes | 2 | 17 | AT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Sun, M.; Gao, Z.; Zhou, Y.; Wang, Q.; Chen, L. Comparison and Phylogenetic Analysis of Mitochondrial Genomes of Talpidae Animals. Animals 2023, 13, 186. https://doi.org/10.3390/ani13020186
Xu D, Sun M, Gao Z, Zhou Y, Wang Q, Chen L. Comparison and Phylogenetic Analysis of Mitochondrial Genomes of Talpidae Animals. Animals. 2023; 13(2):186. https://doi.org/10.3390/ani13020186
Chicago/Turabian StyleXu, Di, Mengyao Sun, Zenghao Gao, Yiping Zhou, Qingqian Wang, and Lei Chen. 2023. "Comparison and Phylogenetic Analysis of Mitochondrial Genomes of Talpidae Animals" Animals 13, no. 2: 186. https://doi.org/10.3390/ani13020186
APA StyleXu, D., Sun, M., Gao, Z., Zhou, Y., Wang, Q., & Chen, L. (2023). Comparison and Phylogenetic Analysis of Mitochondrial Genomes of Talpidae Animals. Animals, 13(2), 186. https://doi.org/10.3390/ani13020186