Assessing the Trophic Impact of Bleaching: The Model Pair Berghia stephanieae/Exaiptasia diaphana
Abstract
:Simple Summary
Abstract
1. Introduction
2. Impacts of Bleaching on Trophic Interactions in Coral Reef Ecosystems
3. Berghia stephanieae and Exaiptasia diaphana—a Model Pair to Study the Trophic Impacts of Bleaching and Potential Transgenerational Effects
4. Present and Future Uses for the Model Pair Berghia stephanieae and Exaiptasia diaphana
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooley, S.; Schoeman, D.; Bopp, L.; Boyd, P.; Donner, S.; Ghebrehiwet, D.Y.; Ito, S.-I.; Kiessling, W.; Martinetto, P.; Ojea, E.; et al. Oceans and coastal ecosystems and their services. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 379–550. [Google Scholar] [CrossRef]
- Gattuso, J.-P.; Magnan, A.K.; Billé, R.; Cheung, W.W.L.; Howes, E.L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S.R.; Eakin, C.M.; et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, aac4722. [Google Scholar] [CrossRef]
- Genner, M.J.; Freer, J.J.; Rutterford, L.A. Future of the Sea: Biological Responses to Ocean Warming; Foresight Future of the sea project; Government Office for Science: London, UK, 2017; p. 30. [Google Scholar]
- Smith, K.E.; Burrows, M.T.; Hobday, A.J.; Gupta, A.S.; Moore, P.J.; Thomsen, M.; Wernberg, T.; Smale, D.A. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 2021, 374, eabj3593. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 2019, 9, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Donner, S.D.; Skirving, W.J.; Little, C.M.; Oppenheimer, M.; Hoegh-Guldberg, O. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Chang. Biol. 2005, 11, 2251–2265. [Google Scholar] [CrossRef]
- van Woesik, R.; Kratochwill, C. A global coral-bleaching database, 1980–2020. Sci. Data 2022, 9, 1–7. [Google Scholar] [CrossRef]
- van Hooidonk, R.; Maynard, J.A.; Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Chang. 2013, 3, 508–511. [Google Scholar] [CrossRef]
- Coker, D.J.; Pratchett, M.S.; Munday, P.L. Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behav. Ecol. 2009, 20, 1204–1210. [Google Scholar] [CrossRef]
- Sandin, S.A.; Smith, J.E.; DeMartini, E.E.; Dinsdale, E.; Donner, S.D.; Friedlander, A.M.; Konotchick, T.; Malay, M.C.; Maragos, J.E.; Obura, D.; et al. Baselines and degradation of coral reefs in the northern Line Islands. PLOS ONE 2008, 3, e1548. [Google Scholar] [CrossRef] [Green Version]
- Cole, A.; Pratchett, M.; Jones, G. Effects of coral bleaching on the feeding response of two species of coral-feeding fish. J. Exp. Mar. Biol. Ecol. 2009, 373, 11–15. [Google Scholar] [CrossRef]
- Bachok, Z.; Mfilinge, P.; Tsuchiya, M. Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs 2006, 25, 545–554. [Google Scholar] [CrossRef]
- Leal, M.C.; Nunes, C.; Alexandre, D.; da Silva, T.L.; Reis, A.; Dinis, M.T.; Calado, R. Parental diets determine the embryonic fatty acid profile of the tropical nudibranch Aeolidiella stephanieae: The effect of eating bleached anemones. Mar. Biol. 2012, 159, 1745–1751. [Google Scholar] [CrossRef]
- Todd, C.D.; Lambert, W.J.; Davies, J. Some perspectives on the biology and ecology of nudibranch molluscs: Generalisations and variations on the theme that prove the rule. Boll. Malacol. 2001, 37, 105–120. [Google Scholar]
- Calado, R.; Leal, M.C. Trophic ecology of benthic marine invertebrates with bi-phasic life cycles. Adv. Mar. Biol. 2015, 71, 1–70. [Google Scholar] [PubMed]
- Monteiro, E.A.; Güth, A.Z.; Banha, T.N.S.; Sumida, P.Y.G.; Mies, M. Evidence against mutualism in an aeolid nudibranch associated with Symbiodiniaceae dinoflagellates. Symbiosis 2019, 79, 183–189. [Google Scholar] [CrossRef]
- Silva, R.; Cartaxana, P.; Calado, R. Prevalence and photobiology of photosynthetic dinoflagellate endosymbionts in the nudibranch Berghia stephanieae. Animals 2021, 11, 2200. [Google Scholar] [CrossRef] [PubMed]
- Dungan, A.M.; Hartman, L.M.; Tortorelli, G.; Belderok, R.; Lamb, A.M.; Pisan, L.; McFadden, G.I.; Blackall, L.L.; van Oppen, M.J.H. Exaiptasia diaphana from the great barrier reef: A valuable resource for coral symbiosis research. Symbiosis 2020, 80, 195–206. [Google Scholar] [CrossRef]
- van Woesik, R.; Shlesinger, T.; Grottoli, A.G.; Toonen, R.J.; Thurber, R.V.; Warner, M.E.; Hulver, A.M.; Chapron, L.; McLachlan, R.H.; Albright, R.; et al. Coral-bleaching responses to climate change across biological scales. Glob. Chang. Biol. 2022, 28, 4229–4250. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 1999, 50, 839–866. [Google Scholar] [CrossRef] [Green Version]
- Alva-Basurto, J.C.; Arias-González, J.E. Modelling the effects of climate change on a Caribbean coral reef food web. Ecol. Model. 2014, 289, 1–14. [Google Scholar] [CrossRef]
- Nystrom, M.; Graham, N.; Lokrantz, J.; Norström, A. Capturing the cornerstones of coral reef resilience: Linking theory to practice. Coral Reefs 2008, 27, 795–809. [Google Scholar] [CrossRef]
- Douglas, A. Coral bleaching––how and why? Mar. Pollut. Bull. 2003, 46, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.D.; Cleeton, S.H.; Lyons, T.P.; Miller, J.R. Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. Bioscience 2012, 62, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Dominik, C.; Seppelt, R.; Horgan, F.G.; Settele, J.; Václavík, T. Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. J. Appl. Ecol. 2018, 55, 2461–2472. [Google Scholar] [CrossRef]
- Levinton, J. Stability and trophic structure in deposit-feeding and suspension-feeding communities. Am. Nat. 1972, 106, 472–486. [Google Scholar] [CrossRef]
- Ge, X.; Griswold, C.K.; Newman, J.A. Predator-prey interactions in a warming world: The critical role of cold tolerance. bioRxiv 2022. [Google Scholar] [CrossRef]
- Sadykova, D.; Scott, B.E.; De Dominicis, M.; Wakelin, S.L.; Wolf, J.; Sadykov, A. Ecological costs of climate change on marine predator–prey population distributions by 2050. Ecol. Evol. 2020, 10, 1069–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, B.J.M.; Domenici, P.; Watson, S.A.; Munday, P.L.; McCormick, M.I. Warming has a greater effect than elevated CO2 on predator–prey interactions in coral reef fish. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170784. [Google Scholar] [CrossRef] [Green Version]
- Laws, A.N. Climate change effects on predator–prey interactions. Curr.. Opin.. Insect. Sci. 2017, 23, 28–34. [Google Scholar] [CrossRef]
- Zander, C.D. Fish from the Mesolithial of the Red Sea. Bull. Fish Biol. 2017, 17, 1–11. [Google Scholar]
- Lönnstedt, O.M.; Frisch, A.J. Habitat bleaching disrupts threat responses and persistence in anemonefish. Mar. Ecol. Prog. Ser. 2014, 517, 265–270. [Google Scholar] [CrossRef]
- Slattery, M.; Paul, V. Indirect effects of bleaching on predator deterrence in the tropical Pacific soft coral Sinularia maxima. Mar. Ecol. Prog. Ser. 2008, 354, 169–179. [Google Scholar] [CrossRef]
- Saponari, L.; Montalbetti, E.; Galli, P.; Strona, G.; Seveso, D.; Dehnert, I.; Montano, S. Monitoring and assessing a 2-year outbreak of the corallivorous seastar Acanthaster planci in Ari Atoll, Republic of Maldives. Environ. Monit. Assess. 2018, 190, 344. [Google Scholar] [CrossRef] [PubMed]
- Dionísio, G.; Rosa, R.; Leal, M.C.; Cruz, S.; Brandão, C.; Calado, G.; Serôdio, J.; Calado, R. Beauties and beasts: A portrait of sea slugs aquaculture. Aquaculture 2013, 408-409, 1–14. [Google Scholar] [CrossRef]
- Carroll, D.J.; Kempf, S.C. Laboratory culture of the aeolid nudibranch Berghia verrucicornis (Mollusca, Opisthobranchia): Some aspects of its development and life history. Biol. Bull. 1990, 179, 243–253. [Google Scholar] [CrossRef]
- Banger, D. Breeding Berghia Nudibranches: The Best Kept Secret; Self-published; CreateSpace: Scotts Valley, CA, USA; ISSN 978-1-4610-6567-8.
- Taraporevala, N.F.; Lesoway, M.P.; A Goodheart, J.; Lyons, D.C. Precocious sperm exchange in the simultaneously hermaphroditic nudibranch, Berghia stephanieae. Integr. Org. Biol. 2022, 4. [Google Scholar] [CrossRef]
- Dionísio, G.; Faleiro, F.; Rosa, R. Snails, slugs and cephalopods. In Marine Ornamental Species Aquaculture; Calado, R., Olivotto, I., Oliver, M.P., Holt, J., Eds.; Wiley-Blackwell: Chichester, UK, 2017; pp. 536–554. ISBN 978-0-470-67390-4. [Google Scholar]
- Rola, M.; Frankenbach, S.; Bleidissel, S.; Sickinger, C.; Donath, A.; Frommlet, J.C.; Greve, C.; Serôdio, J.; Preisfeld, A.; Clavijo, J.M.; et al. Cladobranchia (Gastropoda, Nudibranchia) as a promising model to understand the molecular evolution of photosymbiosis in animals. Front. Mar. Sci. 2022, 8, 745644. [Google Scholar] [CrossRef]
- Goodheart, J.A.; Barone, V.; Lyons, D.C. Movement and storage of nematocysts across development in the nudibranch Berghia stephanieae (Valdés, 2005). Front. Zool. 2022, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.J.; Kempf, S.C. Changes occur in the central nervous system of the nudibranch Berghia verrucicornis (Mollusca, Opisthobranchia) during metamorphosis. Biol. Bull. 1994, 186, 202–212. [Google Scholar] [CrossRef]
- Clavijo, J.M.; Drews, F.; Pirritano, M.; Simon, M.; Salhab, A.; Donath, A.; Frankenbach, S.; Serôdio, J.; Bleidißel, S.; Preisfeld, A.; et al. The complete mitochondrial genome of the photosymbiotic sea slug Berghia stephanieae (Valdés, 2005) (Gastropoda, Nudibranchia). Mitochondrial DNA B Resour. 2021, 6, 2281–2284. [Google Scholar] [CrossRef]
- Lehnert, E.M.; Burriesci, M.S.; Pringle, J.R. Developing the anemone Aiptasia as a tractable model for cnidarian-dinoflagellate symbiosis: The transcriptome of aposymbiotic A. pallida. BMC Genom. 2012, 13, 271. [Google Scholar] [CrossRef] [Green Version]
- Baumgarten, S.; Simakov, O.; Esherick, L.Y.; Liew, Y.J.; Lehnert, E.M.; Michell, C.T.; Li, Y.; Hambleton, E.A.; Guse, A.; Oates, M.E.; et al. The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc. Natl. Acad. Sci. USA 2015, 112, 11893–11898. [Google Scholar] [CrossRef] [PubMed]
- Hartman, L.M.; van Oppen, M.J.H.; Blackall, L.L. Microbiota characterization of Exaiptasia diaphana from the Great Barrier Reef. Anim. Microbiome 2020, 2, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal, M.C.; Nunes, C.; Engrola, S.; Dinis, M.T.; Calado, R. Optimization of monoclonal production of the glass anemone Aiptasia pallida (Agassiz in Verrill, 1864). Aquaculture 2012, 354-355, 91–96. [Google Scholar] [CrossRef]
- Bell, A.M.; Hellmann, J.K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 97–118. [Google Scholar] [CrossRef]
- Donelson, J.M.; Salinas, S.; Munday, P.; Shama, L.N.S. Transgenerational plasticity and climate change experiments: Where do we go from here? Glob. Chang. Biol. 2017, 24, 13–34. [Google Scholar] [CrossRef] [Green Version]
- Ross, P.M.; Parker, L.; Byrne, M. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. 2016, 73, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Shama, L.N.S.; Strobel, A.; Mark, F.C.; Wegner, K.M. Transgenerational plasticity in marine sticklebacks: Maternal effects mediate impacts of a warming ocean. Funct. Ecol. 2014, 28, 1482–1493. [Google Scholar] [CrossRef] [Green Version]
- Loya, Y.; Sakai, K.; Yamazato, K.; Nakano, Y.; Sambali, H.; van Woesik, R. Coral bleaching: The winners and the losers. Ecol. Lett. 2001, 4, 122–131. [Google Scholar] [CrossRef]
- Brown, B.E. Coral bleaching: Causes and consequences. Coral Reefs 1997, 16, S129–S138. [Google Scholar] [CrossRef]
- Baird, A.H.; Bhagooli, R.; Ralph, P.J.; Takahashi, S. Coral bleaching: The role of the host. Trends Ecol. Evol. 2009, 24, 16–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.X.G.; Madeira, D.; Cartaxana, P.; Calado, R. Assessing the Trophic Impact of Bleaching: The Model Pair Berghia stephanieae/Exaiptasia diaphana. Animals 2023, 13, 291. https://doi.org/10.3390/ani13020291
Silva RXG, Madeira D, Cartaxana P, Calado R. Assessing the Trophic Impact of Bleaching: The Model Pair Berghia stephanieae/Exaiptasia diaphana. Animals. 2023; 13(2):291. https://doi.org/10.3390/ani13020291
Chicago/Turabian StyleSilva, Ruben X. G., Diana Madeira, Paulo Cartaxana, and Ricardo Calado. 2023. "Assessing the Trophic Impact of Bleaching: The Model Pair Berghia stephanieae/Exaiptasia diaphana" Animals 13, no. 2: 291. https://doi.org/10.3390/ani13020291
APA StyleSilva, R. X. G., Madeira, D., Cartaxana, P., & Calado, R. (2023). Assessing the Trophic Impact of Bleaching: The Model Pair Berghia stephanieae/Exaiptasia diaphana. Animals, 13(2), 291. https://doi.org/10.3390/ani13020291