Chemical, Physical, and Degradation Characteristics of Ryegrass Cultivars Grown in Autumn and Winter for Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Site and Experimental Design
2.2. Leaf Morphology and Shear Strength
2.3. In situ Incubations
2.4. Degradation Kinetics
2.5. Statistical Analyses
3. Results
3.1. Chemical Composition
3.2. Leaf Size, Cross-Sectional Area, Thickness, and Shear Strength
3.3. DM in situ Degradation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chapman, D.F.; Wims, C.M.; Ludemann, C.I.; Kuhn-Sherlock, B. The contribution of perennial ryegrass (Lolium perenne L.) breeding to whole pasture productivity under dairy cattle grazing in New Zealand. 1. Variation in yield, nutritive value and persistence-related traits. Grass Forage Sci. 2023, 78, 64–84. [Google Scholar] [CrossRef]
- Riaz, M.Q.; Südekum, K.H.; Clauss, M.; Jayanegara, A. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: A meta-analysis. Livest. Sci. 2014, 162, 76–85. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Burke, J.L.; Kolver, E.S. Principals of feeding value. In Pasture and Supplements for Grazing Animals; Rattray, P.V., Brookes, I.M., Nicol, A.M., Eds.; New Zealand Society of Animal Production, Occasional Publication No. 14: Wellington, New Zealand, 2007; pp. 35–59. [Google Scholar]
- Waghorn, G.C.; Clark, D.A. Feeding value of pastures for ruminants. N. Z. Vet. J. 2004, 52, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Roche, J. Transition management in grazing systems: Pragmatism before precision. Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 325–336. [Google Scholar] [CrossRef]
- Čupić, T.; Varnica, I.; Jukić, G.; Popović, S.; Tucak, M. The influence of climatic conditions on forage yield and quality of certain types of grass. In Quantitative Traits Breeding for Multifunctional Grasslands and Turf; Sokolović, D., Huyghe, C., Radović, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 381–386. [Google Scholar]
- Machado, C.F.; Morris, S.T.; Hodgson, J.; Fathalla, M. Seasonal changes of herbage quality within a New Zealand beef cattle finishing pasture. N. Z. J. Agric. Res. 2005, 48, 265–270. [Google Scholar] [CrossRef]
- Litherland, A.J.; Lambert, M.G. Factors affecting the quality of pastures and supplements produced on farms. In Pasture and Supplements for Grazing Animals; Rattray, P.V., Brookes, I.M., Nicol, A.M., Eds.; New Zealand Society of Animal Production, Occasional Publication No. 14: Wellington, New Zealand, 2007; pp. 81–96. [Google Scholar]
- Moller, S.N.; Parker, W.J.; Edwards, N.J. Within year variation in pasture quality has implications for dairy cow nutrition. Proc. N. Z. Grassl. Assoc. 1996, 57, 173–177. [Google Scholar] [CrossRef]
- Lambert, M.G.; Clark, D.A.; Litherland, A.J. Advances in pasture management for animal productivity and health. N. Z. Vet. J. 2004, 52, 311–319. [Google Scholar] [CrossRef]
- Rugoho, I.; Cheng, L.; Aizimu, W.; Bryant, R.H.; Edwards, G.R. Effects of post-grazing herbage height and concentrate feeding on milk production and major milk fatty acids of dairy cows in mid-lactation. Grass Forage Sci. 2017, 72, 211–219. [Google Scholar] [CrossRef]
- Jordon, M.W.; Willis, K.J.; Bürkner, P.-C.; Petrokofsky, G. Rotational grazing and multispecies herbal leys increase productivity in temperate pastoral systems—A meta-analysis. Agric. Ecosyst. Environ. 2022, 337, 108075. [Google Scholar] [CrossRef]
- DairyBase. DairyNZ Economic Survey 2021–2022; DairyBase: Hamilton, New Zealand, 2023; pp. 1–78. [Google Scholar]
- Chaves, A.V.; Waghorn, G.C.; Brookes, I.M.; Woodfield, D.R. Effect of maturation and initial harvest dates on the nutritive characteristics of ryegrass (Lolium perenne L.). Anim. Feed Sci. Technol. 2006, 127, 293–318. [Google Scholar] [CrossRef]
- Sun, X.Z.; Waghorn, G.C.; Clark, H. Cultivar and age of regrowth effects on physical, chemical and in sacco degradation kinetics of vegetative perennial ryegrass (Lolium perenne L.). Anim. Feed Sci. Technol. 2010, 155, 172–185. [Google Scholar] [CrossRef]
- Matthews, P.N.P.; Harrington, K.C.; Hampton, J.G. Management of grazing systems. In New Zealand Pasture and Crop Science; White, J., Hodgson, J., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 153–174. [Google Scholar]
- Looney, C.; Wingler, A.; Egan, M. The impact of herbage mass on perennial ryegrass swards in autumn on autumn and over winter production and characteristics. Agronomy 2021, 11, 1140. [Google Scholar] [CrossRef]
- Jung, G.A.; Van Wijk, A.J.P.; Hunt, W.F.; Watson, C.E. Ryegrasses. In Cool-Season Forage Grasses; Moser, L.E., Buxton, D.R., Casler, M.D., Eds.; The American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc.: Madison, WI, USA, 1996; pp. 605–641. [Google Scholar]
- Lee, J.M.; Matthew, C.; Thom, E.R.; Chapman, D.F. Perennial ryegrass breeding in New Zealand: A dairy industry perspective. Crop Pasture Sci. 2012, 63, 107–127. [Google Scholar] [CrossRef]
- Charlton, J.F.L.; Stewart, A.V. Pasture species and cultivars used in New Zealand—A list. Proc. N. Z. Grassl. Assoc. 1999, 61, 147–166. [Google Scholar] [CrossRef]
- Goliński, P.; Golińska, B.; Golińska, B.T.; Goliński, P.K. Factors determining the sward utilisation of winter pasture in cattle feeding. Pol. J. Vet. Sci. 2008, 11, 257–262. [Google Scholar] [PubMed]
- Corson, D.C.; Waghorn, G.C.; Ulyatt, M.J.; Lee, J. NIRS: Forage analysis and livestock feeding. Proc. N. Z. Grassl. Assoc. 1999, 61, 127–132. [Google Scholar] [CrossRef]
- Easton, H.S. Variability of leaf shear strength in perennial ryegrass. N. Z. J. Agric. Res. 1989, 32, 1–6. [Google Scholar] [CrossRef]
- Zhang, J.M.; Hongo, A.; Akimoto, M. Physical strength and its relation to leaf anatomical characteristics of nine forage grasses. Aust. J. Bot. 2004, 52, 799–804. [Google Scholar] [CrossRef]
- Ulyatt, M.J.; Dellow, D.W.; John, A.; Reid, C.S.W.; Waghorn, G.C. The contribution of chewing during eating and rumination to the clearance of digesta from the ruminoreticulum. In Control of Digestion and Metabolism in Ruminants; Milligan, L.P., Grovum, W.L., Dobson, A., Eds.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986; pp. 498–515. [Google Scholar]
- Sun, X.Z.; Waghorn, G.C. Improving in sacco incubation technique to evaluate fresh forage for selecting fast-degrading perennial ryegrass (Lolium perenne L.). Grass Forage Sci. 2012, 67, 437–445. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- López, S.; France, J.; Dhanoa, M.S.; Mould, F.; Dijkstra, J. Comparison of mathematical models to describe disappearance curves obtained using the polyester bag technique for incubating feeds in the rumen. J. Anim. Sci. 1999, 77, 1875–1888. [Google Scholar] [CrossRef]
- Van Vuuren, A.M.; Van der Koelen, C.J.; Vroons-De Bruin, J. Ryegrass versus corn starch or beet pulp fiber diet effects on digestion and intestinal amino acids in dairy cows. J. Dairy Sci. 1993, 76, 2692–2700. [Google Scholar] [CrossRef]
- SAS Institute Inc. Base SAS® 9.4 Procedures Guide: Statistical Procedures, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Holmes, C.W.; Brookes, I.M.; Garrick, D.J.; Mackenzie, D.D.S.; Parkinson, T.J.; Wilson, G.F. Milk Production from Pasture; Massey University: Palmerston North, New Zealand, 2002. [Google Scholar]
- Clark, D.A.; Woodward, S.L. Supplementation of dairy cows, beef cattle and sheep grazing pasture. In Pasture and Supplements for Grazing Animals; Rattray, P.V., Brookes, I.M., Nicol, A.M., Eds.; New Zealand Society of Animal Production, Occasional Publication No. 14.: Wellington, New Zealand, 2007; pp. 117–131. [Google Scholar]
- Kolver, E.S. Nutritional limitations to increased production on pasture-based systems. Proc. Nutr. Soc. 2003, 62, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.R.; Burke, C.R.; Meier, S.; Walker, C.G. Nutrition reproduction interaction in pasture-based systems: Is nutrition a factor in reproductive failure? Anim. Prod. Sci. 2011, 51, 1045–1066. [Google Scholar] [CrossRef]
- Beever, D.E.; Terry, R.A.; Cammell, S.B.; Wallace, A.S. The digestion of spring and autumn harvested perennial ryegrass by sheep. J. Agric. Sci. 1978, 90, 463–470. [Google Scholar] [CrossRef]
- Macrae, J.C.; Smith, J.S.; Dewey, P.J.S.; Brewer, A.C.; Brown, D.S.; Walker, A. The efficiency of utilization of metabolizable energy and apparent absorption of amino acids in sheep given spring-and autumn-harvested dried grass. Br. J. Nutr. 1985, 54, 197–209. [Google Scholar] [CrossRef]
- Drackley, J.K.; Dann, H.M. New concepts in nutritional management of dry cows. Adv. Dairy Technol. 2005, 17, 11–23. [Google Scholar]
- Beever, D.E. The impact of controlled nutrition during the dry period on dairy cow health, fertility and performance. Anim. Reprod. Sci. 2006, 96, 212–226. [Google Scholar] [CrossRef]
- Kolver, E.S.; Muller, L.D. Performance and nutrient intake of high producing Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 1998, 81, 1403–1411. [Google Scholar] [CrossRef]
- Henry, D.A.; Simpson, R.J.; Macmillan, R.H. Seasonal changes and the effect of temperature and leaf moisture content on intrinsic shear strength of leaves of pasture grasses. Aust. J. Agric. Res. 2000, 51, 823–831. [Google Scholar] [CrossRef]
- Mackinnon, B.W.; Barry, T.N.; Easton, H.S.; Sedcole, J.R. The effect of reduced leaf shear strength on the nutritive value of perennial ryegrass. J. Agric. Sci. 1988, 111, 469–474. [Google Scholar] [CrossRef]
- Bryant, R.H.; Nicol, A.M.; Wilson, F.E.; Sedcole, J.R. Between-cultivar variability in breaking force of components of perennial ryegrass (Lolium perenne). Grass Forage Sci. 2008, 63, 350–359. [Google Scholar] [CrossRef]
- Minnee, E.M.K.; Waghorn, G.C.; Gregorini, P.; Bryant, R.H.; Chapman, D.F. Characteristics of boli formed by dairy cows upon ingestion of fresh ryegrass, lucerne or chicory. Animal 2019, 13, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Type | Scientific Name | Ploidy | Characteristics |
---|---|---|---|---|
Samson | Perennial | Lolium perenne L. | 2 | High yielding, good summer growth and quality, low aftermath heading |
Impact | L. perenne L. | 2 | Late flowering, out-of-season growth, creeping stem | |
Coronet | L. perenne L. | 2 | turf ryegrass | |
Supreme | Hybrid | L. perenne × Lolium multiflorum | 2 | Long rotation, fine–medium leaves |
Manawa | L. perenne × L. multiflorum | 2 | Erect growth, large wide-leafed tillers, persists for 6–8 years, good winter production | |
Greenstone | L. perenne × (L. perenne × L. multiflorum) | 4 | Vigorously tillered, large tillers, and erect growth | |
Warrior | Italian | L. multiflorum L. | 2 | Extended spring/summer production, high winter growth, densely tillered, fine-leaved |
Tama | L. multiflorum L. | 4 | Very high winter and early production | |
Moata | L. multiflorum L. | 4 | Persists up to 2 years |
Harvest Season | Type | Cultivar | NDF † | ADF † | CP † | SSS † | Lipid | Ash | ME † (MJ/kg DM) |
---|---|---|---|---|---|---|---|---|---|
Autumn ‡ | Perennial | Samson | 507 | 259 | 211 | 124 | 34 | 79 | 11.9 |
Impact | 521 | 274 | 223 | 94 | 29 | 75 | 11.2 | ||
Coronet | 576 | 302 | 204 | 86 | 32 | 65 | 9.9 | ||
Mean | 535 a * | 278 a | 213 c | 101 b | 32 b | 73 c | 11.0 c | ||
Hybrid | Supreme | 492 | 246 | 251 | 117 | 34 | 88 | 12.1 | |
Manawa | 484 | 285 | 261 | 100 | 31 | 69 | 11.3 | ||
Greenstone | 468 | 232 | 253 | 128 | 38 | 89 | 12.6 | ||
Mean | 481 b | 254 b | 255 a | 115 ab | 34 b | 82 b | 12.0 b | ||
Italian | Warrior | 490 | 259 | 232 | 127 | 34 | 80 | 11.8 | |
Tama | 423 | 222 | 290 | 108 | 38 | 90 | 13.0 | ||
Moata | 415 | 236 | 287 | 160 | 39 | 105 | 13.3 | ||
Mean | 443 c | 239 b | 270 a | 132 a | 37 a | 92 a | 12.7 a | ||
SEM † (Type) | 19.1 | 13.4 | 11.3 | 12.0 | 1.4 | 6.4 | 0.49 | ||
Winter ‡ | Perennial | Samson | 416 | 227 | 202 | 140 | 37 | 96 | 12.5 |
Impact | 399 | 210 | 233 | 125 | 42 | 105 | 12.6 | ||
Coronet | 390 | 230 | 239 | 122 | 43 | 107 | 12.0 | ||
Mean | 402 a | 222 | 225 a | 129 b | 41 c | 103 a | 12.4 b | ||
Hybrid | Supreme | 401 | 223 | 218 | 131 | 40 | 99 | 12.4 | |
Manawa | 389 | 216 | 228 | 150 | 44 | 99 | 12.4 | ||
Greenstone | 381 | 213 | 213 | 147 | 41 | 97 | 12.8 | ||
Mean | 390 b | 217 | 220 a | 143 b | 42 a | 98 b | 12.5 b | ||
Italian | Warrior | 399 | 229 | 192 | 159 | 39 | 94 | 12.6 | |
Tama | 375 | 212 | 180 | 202 | 37 | 84 | 13.3 | ||
Moata | 383 | 219 | 170 | 224 | 40 | 85 | 13.2 | ||
Mean | 386 b | 220 | 181 b | 195 a | 39 b | 88 c | 13.0 a | ||
SEM (Type) | 7.1 | 4.9 | 7.8 | 12.0 | 1.4 | 2.8 | 0.21 |
Type | Cultivar | Leaf Length (cm) | Leaf Width (mm) | Leaf Thickness (mm) | Cross-Sectional Area (mm2) | Shear Force (kg/10 Leaves) | Shear Strength (kg/mm2) |
---|---|---|---|---|---|---|---|
Number of analyses per cultivar | 3 | 9 | 9 | 9 | 3 | 1 | |
Perennial | Samson | 13.3 | 2.41 | 0.222 | 0.535 | 5.7 | 1.07 |
Impact | 19.3 | 2.43 | 0.217 | 0.526 | 5.4 | 1.03 | |
Coronet | 10.7 | 1.9 | 0.205 | 0.389 | 3.3 | 0.85 | |
Mean | 14.4 c * | 2.25 c | 0.215 c | 0.483 b | 4.8 a | 0.98 a | |
Hybrid | Supreme | 20.7 | 2.82 | 0.246 | 0.693 | 4.7 | 0.68 |
Manawa | 12.7 | 2.55 | 0.208 | 0.529 | 3.1 | 0.59 | |
Greenstone | 19.3 | 2.9 | 0.264 | 0.766 | 4.8 | 0.63 | |
Mean | 17.6 b | 2.76 b | 0.239 b | 0.663 b | 4.2 b | 0.63 b | |
Italian | Warrior | 18.7 | 3.1 | 0.217 | 0.671 | 3.8 | 0.57 |
Tama | 30.3 | 8.01 | 0.354 | 2.836 | 4.3 | 0.15 | |
Moata | 23.3 | 5.84 | 0.307 | 1.794 | 3.5 | 0.2 | |
Mean | 24.1 a | 5.65 a | 0.293 a | 1.767 a | 3.9 b | 0.31 c | |
SEM † (Type) | 1.41 | 0.297 | 0.0113 | 0.1379 | 0.35 | 0.085 | |
SEM (Cultivar) | 2.83 | 0.827 | 0.0255 | 0.3642 | 0.57 |
Type | Cultivar | Leaf Length (cm) | Leaf Width (mm) | Leaf Thickness (mm) | Cross-Sectional Area (mm2) | Shear Force (kg/10 leaves) | Shear Strength (kg/mm2) |
---|---|---|---|---|---|---|---|
Number of analyses per cultivar | 3 | 9 | 9 | 9 | 3 | 1 | |
Perennial | Samson | 15.0 | 3.55 | 0.278 | 0.987 | 5.3 | 0.54 |
Impact | 15.5 | 3.15 | 0.239 | 0.752 | 5.6 | 0.74 | |
Coronet | 11.2 | 2.80 | 0.237 | 0.662 | 4.9 | 0.74 | |
Mean | 13.9 b * | 3.17 b | 0.251 b | 0.800 b | 5.3 a | 0.67 a | |
Hybrid | Supreme | 13.0 | 3.41 | 0.246 | 0.841 | 5.2 | 0.62 |
Manawa | 13.1 | 3.30 | 0.217 | 0.714 | 4.5 | 0.63 | |
Greenstone | 13.7 | 3.23 | 0.260 | 0.840 | 4.3 | 0.51 | |
Mean | 13.3 b | 3.31 b | 0.241 b | 0.798 b | 4.7 b | 0.59 a | |
Italian | Warrior | 16.3 | 3.60 | 0.246 | 0.886 | 4.0 | 0.45 |
Tama | 25.7 | 7.65 | 0.341 | 2.608 | 5.5 | 0.21 | |
Moata | 21.5 | 6.26 | 0.340 | 2.125 | 5.5 | 0.26 | |
Mean | 21.2 a | 5.84 a | 0.309 a | 1.873 a | 5.0 ab | 0.31 b | |
SEM † (Type) | 0.49 | 0.219 | 0.0120 | 0.0035 | 0.21 | 0.061 | |
SEM (Cultivar) | 1.77 | 0.700 | 0.0212 | 0.3026 | 0.35 |
Type | Cultivar | Soluble Fraction (%) | Insoluble Degradable Fraction (%) | Fractional Disappearance Rate (/h) | Lag Time (h) | Indigestible Fraction (%) | Effective Degradability (%) |
---|---|---|---|---|---|---|---|
Perennial | Samson | 48.1 | 42.6 | 0.207 | 4.8 | 9.2 | 81.2 |
Impact | 45.9 | 44.8 | 0.134 | 3.4 | 9.2 | 76.9 | |
Coronet | 28.1 | 48.9 | 0.095 | 3.3 | 23.0 | 58.0 | |
Mean | 40.7 b * | 45.4 a | 0.145 c | 3.8 b | 13.8 a | 72.0 c | |
Hybrid | Supreme | 53.1 | 40.7 | 0.186 | 4.7 | 6.2 | 83.9 |
Manawa | 35.2 | 49.5 | 0.180 | 5.1 | 15.2 | 72.4 | |
Greenstone | 51.9 | 43.0 | 0.200 | 4.7 | 5.1 | 85.0 | |
Mean | 46.7 a | 44.4 a | 0.189 b | 4.8 a | 8.8 b | 80.4 b | |
Italian | Warrior | 55.6 | 38.3 | 0.198 | 5.0 | 6.1 | 85.0 |
Tama | 68.4 | 29.0 | 0.214 | 3.7 | 2.6 | 91.1 | |
Moata | 68.6 | 29.8 | 0.250 | 3.2 | 1.6 | 92.6 | |
Mean | 64.2 a | 32.4 b | 0.221 a | 4.0 b | 3.4 c | 89.6 a | |
SEM † (Type) | 5.52 | 2.55 | 0.0212 | 0.42 | 3.32 | 4.95 |
Type | Cultivar | Soluble fraction (%) | Insoluble Degradable Fraction (%) | Fractional Disappearance rate (/h) | Lag Time (h) | Indigestible Fraction (%) | Effective Degradability (%) |
---|---|---|---|---|---|---|---|
Perennial | Samson | 45.9 | 50.7 | 0.152 | 2.9 | 3.4 | 82.2 |
Impact | 49.0 | 48.0 | 0.157 | 2.8 | 2.9 | 83.8 | |
Coronet | 48.7 | 46.1 | 0.157 | 3.0 | 5.2 | 82.0 | |
Mean | 47.9 b * | 48.3 a | 0.155 b | 2.9 | 3.8 a | 82.7 b | |
Hybrid | Supreme | 49.2 | 47.5 | 0.166 | 3.1 | 3.3 | 84.1 |
Manawa | 48.2 | 48.1 | 0.150 | 2.9 | 3.6 | 82.6 | |
Greenstone | 51.9 | 44.5 | 0.170 | 2.8 | 3.6 | 84.8 | |
Mean | 49.8 b | 46.7 a | 0.162 ab | 2.9 | 3.5 ab | 83.8 b | |
Italian | Warrior | 53.0 | 43.1 | 0.166 | 3.3 | 3.9 | 84.6 |
Tama | 60.0 | 38.0 | 0.144 | 2.6 | 2.1 | 86.8 | |
Moata | 59.2 | 37.9 | 0.204 | 2.7 | 2.9 | 88.5 | |
Mean | 57.4 a | 39.7 b | 0.171 a | 2.9 | 3.0 b | 86.6 a | |
SEM † (Type) | 1.56 | 1.41 | 0.0106 | 0.14 | 0.49 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Chen, A.; Li, J. Chemical, Physical, and Degradation Characteristics of Ryegrass Cultivars Grown in Autumn and Winter for Dairy Cows. Animals 2023, 13, 3158. https://doi.org/10.3390/ani13203158
Sun X, Chen A, Li J. Chemical, Physical, and Degradation Characteristics of Ryegrass Cultivars Grown in Autumn and Winter for Dairy Cows. Animals. 2023; 13(20):3158. https://doi.org/10.3390/ani13203158
Chicago/Turabian StyleSun, Xuezhao, Ao Chen, and Jianping Li. 2023. "Chemical, Physical, and Degradation Characteristics of Ryegrass Cultivars Grown in Autumn and Winter for Dairy Cows" Animals 13, no. 20: 3158. https://doi.org/10.3390/ani13203158
APA StyleSun, X., Chen, A., & Li, J. (2023). Chemical, Physical, and Degradation Characteristics of Ryegrass Cultivars Grown in Autumn and Winter for Dairy Cows. Animals, 13(20), 3158. https://doi.org/10.3390/ani13203158