Diversity and Distribution of Mites (ACARI) Revealed by Contamination Survey in Public Genomic Databases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Retrieval
2.2. Pipeline of Mite Contamination Survey
2.3. Taxonomic Analysis of Mite Contaminated Contigs
2.4. Phylogenetic Analysis of Contaminated Contigs
3. Results
3.1. Mite DNA Barcodes in BOLD Database
3.2. Mite Contaminations in Genbank nt Database
3.3. Distribution of Mite Contaminations in Genbank WGS/TSA
3.4. Phylogenetic Analysis of the Mite Contaminants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krantz, G.W.; Walter, D.E. A Manual of Acarology, 3rd ed.; Texas Tech University Press: Lubbock, TX, USA, 2009. [Google Scholar]
- Stork, N.E. How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? Annu. Rev. Entomol. 2018, 63, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Q. Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness; Magnolia Press: Auckland, New Zealand, 2011. [Google Scholar]
- Hammad, H.; Chieppa, M.; Perros, F.; Willart, M.A.; Germain, R.N.; Lambrecht, B.N. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 2009, 15, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Gan, H.; Zak, D.R.; Hunter, M.D. Scale dependency of dispersal limitation, environmental filtering and biotic interactions determine the diversity and composition of oribatid mite communities. Pedobiologia 2019, 74, 43–53. [Google Scholar] [CrossRef]
- Xue, X.-F.; Dong, Y.; Deng, W.; Hong, X.-Y.; Shao, R. The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Mol. Phylogenetics Evol. 2017, 109, 271–282. [Google Scholar] [CrossRef]
- Klimov, P.B.; Oconnor, B.M.; Chetverikov, P.E.; Bolton, S.J.; Pepato, A.R.; Mortazavi, A.L.; Tolstikov, A.V.; Bauchan, G.R.; Ochoa, R. Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. Mol. Phylogenetics Evol. 2018, 119, 105–117. [Google Scholar] [CrossRef]
- Xue, X.F.; Yao, L.F.; Yin, Y.; Liu, Q.; Li, N.; Hoffmann, A.A.; Sun, J.T.; Hong, X.Y. Macroevolutionary analyses point to a key role of hosts in diversification of the highly speciose eriophyoid mite superfamily. Mol. Phylogenetics Evol. 2023, 179, 107676. [Google Scholar] [CrossRef]
- Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 2012, 40, D136–D143. [Google Scholar] [CrossRef]
- Lozano-Fernandez, J.; Tanner, A.R.; Giacomelli, M.; Carton, R.; Vinther, J.; Edgecombe, G.D.; Pisani, D. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat. Commun. 2019, 10, 2295. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Chen, X.; Wang, J.-P.; Zhang, Z.-Q.; Wei, H.; Yu, H.-Y.; Zheng, H.-K.; Chen, Y.; Zhang, L.-S.; Lin, J.-Z.; et al. Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genom. 2019, 20, 954. [Google Scholar] [CrossRef]
- Pepato, A.R.; Costa, S.G.d.S.; Harvey, M.S.; Klimov, P.B. One-way ticket to the blue: A large-scale, dated phylogeny revealed asymmetric land-to-water transitions in acariform mites (Acari: Acariformes). Mol. Phylogenetics Evol. 2022, 177, 107626. [Google Scholar] [CrossRef]
- Xie, J.; Tan, B.; Zhang, Y. A Large-Scale Study into Protist-Animal Interactions Based on Public Genomic Data Using DNA Barcodes. Animals 2023, 13, 2243. [Google Scholar] [CrossRef]
- Orosz, F. Presence of p25alpha-Domain in Seed Plants (Spermatophyta): Microbial/Animal Contaminations and/or Orthologs. Life 2023, 13, 1664. [Google Scholar] [CrossRef]
- Twort, V.G.; Blande, D.; Duplouy, A. One’s trash is someone else’s treasure: Sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts. BMC Microbiol. 2022, 22, 209. [Google Scholar] [CrossRef]
- Borner, J.; Burmester, T. Parasite infection of public databases: A data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies. BMC Genom. 2017, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.J.; Merida, A.M.; Carneiro, M. Unleashing the Potential of Public Genomic Resources to Find Parasite Genetic Data. Trends Parasitol. 2017, 33, 750–753. [Google Scholar] [CrossRef] [PubMed]
- Min, X.J.; Hickey, D.A. DNA Barcodes Provide a Quick Preview of Mitochondrial Genome Composition. PLoS ONE 2007, 2, e325. [Google Scholar] [CrossRef]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2009, 37, D26–D31. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Young, M.R.; deWaard, J.R.; Hebert, P.D.N. DNA barcodes enable higher taxonomic assignments in the Acari. Sci. Rep. 2021, 11, 15922. [Google Scholar] [CrossRef]
- Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011, 12, 385. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Johannesen, J.; Lubin, Y.; Smith, D.R.; Bilde, T.; Schneider, J.M. The age and evolution of sociality in Stegodyphus spiders: A molecular phylogenetic perspective. Proc. R. Soc. B Biol. Sci. 2007, 274, 231–237. [Google Scholar] [CrossRef]
- Choi, E.H.; Park, S.J.; Jang, K.H.; Hwang, W. Complete mitochondrial genome of a chinese scorpion Mesobuthus martensii (Chelicerata, scorpiones, buthidae). DNA Seq. 2007, 18, 459–471. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, Y.; Song, A.; Xiang, Y.; Chen, D.; Wei, L. Comparative analysis of mite genomes reveals positive selection for diet adaptation. Commun. Biol. 2021, 4, 668. [Google Scholar] [CrossRef] [PubMed]
- Young, M.R.; Proctor, H.C.; deWaard, J.R.; Hebert, P.D.N. DNA barcodes expose unexpected diversity in Canadian mites. Mol. Ecol. 2019, 28, 5347–5359. [Google Scholar] [CrossRef]
- deWaard, J.R.; Ratnasingham, S.; Zakharov, E.V.; Borisenko, A.V.; Steinke, D.; Telfer, A.C.; Perez, K.H.J.; Sones, J.E.; Young, M.R.; Levesque-Beaudin, V.; et al. A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Sci. Data 2019, 6, 308. [Google Scholar] [CrossRef]
- Yin, Y.; Yao, L.-F.; Hu, Y.; Shao, Z.-K.; Hong, X.-Y.; Hebert, P.D.N.; Xue, X.-F. DNA barcoding uncovers cryptic diversity in minute herbivorous mites (Acari, Eriophyoidea). Mol. Ecol. Resour. 2022, 22, 1986–1998. [Google Scholar] [CrossRef]
- Pérez-Sayas, C.; Pina, T.; Sabater-Muñoz, B.; Gómez-Martínez, M.A.; Jaques, J.A.; Hurtado-Ruiz, M.A. DNA Barcoding and Phylogeny of Acari Species Based on ITS and COI Markers. J. Zool. Syst. Evol. Res. 2022, 2022, 5317995. [Google Scholar] [CrossRef]
- Steinegger, M.; Salzberg, S.L. Terminating contamination: Large-scale search identifies more than 2,000,000 contaminated entries in GenBank. Genome Biol. 2020, 21, 115. [Google Scholar] [CrossRef] [PubMed]
- Demite, P.R.; McMurtry, J.A.; De Moraes, G.J. Phytoseiidae Database: A website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa 2014, 3795, 571–577. [Google Scholar] [CrossRef]
- Makol, J.; Felska, M. New records of spiders (Araneae) as hosts of terrestrial Parasitengona mites (Acari: Actinotrichida: Prostigmata). J. Arachnol. 2011, 39, 352–354. [Google Scholar] [CrossRef]
- Gabrys, G.; Felska, M.; Klosinska, A.; Starega, W.; Makol, J. Harvestmen (Opiliones) as hosts of Parasitengona (Acari: Actinotrichida, Prostigmata) larvae. J. Arachnol. 2011, 39, 349–351. [Google Scholar] [CrossRef]
- Karmakar, K. Steneotarsonemus spinki Smiley (Acari: Tarsonemidae)—A yield reducing mite of rice crops in West Bengal, India. Int. J. Acarol. 2008, 34, 95–99. [Google Scholar] [CrossRef]
- Khaustov, A.A.; Petrov, A.V.; Kolesnikov, V.B. A new genus and two new species of Tarsonemidae (Acari: Heterostigmata) associated with bark beetles (Coleoptera: Curculionidae: Scolytinae) from Peru. Zootaxa 2021, 4966, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Palopoli, M.F.; Minot, S.; Pei, D.; Satterly, A.; Endrizzi, J. Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: Novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genom. 2014, 15, 1124. [Google Scholar] [CrossRef]
- Halliday, R.B.; Collins, R.O. Histiostoma papillata sp. n. (Acari: Histiostomatidae), a mite attacking fish in Australia. Aust. J. Entomol. 2002, 41, 155–158. [Google Scholar] [CrossRef]
- Dabert, M.; Proctor, H.; Dabert, J. Higher-level molecular phylogeny of the water mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae). Mol. Phylogenetics Evol. 2016, 101, 75–90. [Google Scholar] [CrossRef]
- Pepato, A.R.; Klimov, P.B. Origin and higher-level diversification of acariform mites–evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment. BMC Evol. Biol. 2015, 15, 178. [Google Scholar] [CrossRef]
- Li, W.-N.; Shao, R.; Zhang, Q.; Deng, W.; Xue, X.-F. Mitochondrial genome reorganization characterizes various lineages of mesostigmatid mites (Acari: Parasitiformes). Zool. Scr. 2019, 48, 679–689. [Google Scholar] [CrossRef]
- Norton, R.A. Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Exp. Appl. Acarol. 1998, 22, 559–594. [Google Scholar] [CrossRef]
- Li, W.-N.; Xue, X.-F. Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zool. J. Linn. Soc. 2019, 187, 585–598. [Google Scholar] [CrossRef]
- Dabert, M.; Witalinski, W.; Kazmierski, A.; Olszanowski, Z.; Dabert, J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenetics Evol. 2010, 56, 222–241. [Google Scholar] [CrossRef] [PubMed]
- Farahi, S.; Shishehbor, P.; Nemati, A.; Perotti, M.A. Mesostigmata diversity by manure type: A reference study and new datasets from southwestern Iran. Exp. Appl. Acarol. 2022, 86, 517–534. [Google Scholar] [CrossRef]
- Li, H.-S.; Hoffmann, A.A.; Guo, J.-F.; Zuo, Y.; Xue, X.-F.; Pang, H.; Hong, X.-Y. Identification of two lineages of host-associated eriophyoid mites predisposed to different levels of host diversification. Mol. Phylogenetics Evol. 2016, 105, 235–240. [Google Scholar] [CrossRef]
- Chetverikov, P.E.; Fedorov, D.S.; Letukhova, V.Y.; Romanovich, A.E. Description of Cecidophyes fibigiae n. sp., new combinations, records, and DNA barcodes of eriophyid mites (Eriophyoidea, Eriophyidae) from Karadag Nature Reserve (Crimea). Syst. Appl. Acarol. 2021, 26, 818–828. [Google Scholar] [CrossRef]
- Bartsch, I. Lohmannella (Acari, Halacaridae) from a cold-water coral reef off Norway, description of two new and a list of North Atlantic species. Zootaxa 2020, 4722, 277–286. [Google Scholar] [CrossRef]
- Sanchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Vasquez, A.A.; Kabalan, B.A.; Ram, J.L.; Miller, C.J. The Biodiversity of Water Mites That Prey on and Parasitize Mosquitoes. Diversity 2020, 12, 226. [Google Scholar] [CrossRef]
- Edwards, D.D.; Vidrine, M.F.; Ernsting, B.R. Phylogenetic relationships among Unionicola (Acari: Unionicolidae) mussel-mites of North America based on mitochondrial cytochrome oxidase I sequences. Zootaxa 2010, 2537, 47–57. [Google Scholar] [CrossRef]
- Edwards, D.D.; Jackson, L.E.; Johnson, A.J.; Ernsting, B.R. Mitochondrial genome sequence of Unionicola parkeri (Acari: Trombidiformes: Unionicolidae): Molecular synapomorphies between closely-related Unionicola gill mites. Exp. Appl. Acarol. 2011, 54, 105–117. [Google Scholar] [CrossRef]
- Schaffer, S.; Koblmuller, S.; Krisper, G. Revisiting the Evolution of Arboreal Life in Oribatid Mites. Diversity 2020, 12, 255. [Google Scholar] [CrossRef]
- Salavatulin, V. Microhabitat distribution of arboreal oribatid mites (Oribatida), associated with the Siberian pine (Pinus sibirica) of Western Siberia. Exp. Appl. Acarol. 2019, 78, 469–483. [Google Scholar] [CrossRef]
- Zhu, D.; Bi, Q.-F.; Xiang, Q.; Chen, Q.-L.; Christie, P.; Ke, X.; Wu, L.-H.; Zhu, Y.-G. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environ. Pollut. 2018, 235, 150–154. [Google Scholar] [CrossRef]
- Klimov, P.B.; Oconnor, B.M. Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genom. 2009, 10, 598. [Google Scholar] [CrossRef]
- Bik, H.M.; Porazinska, D.L.; Creer, S.; Caporaso, J.G.; Knight, R.; Thomas, W.K. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 2012, 27, 233–243. [Google Scholar] [CrossRef]
- Arribas, P.; Andujar, C.; Moraza, M.L.; Linard, B.; Emerson, B.C.; Vogler, A.P. Mitochondrial metagenomics reveals the ancient origin and phylodiversity of soil mites and provides a phylogeny of the Acari. Mol. Biol. Evol. 2019, 37, 683–694. [Google Scholar] [CrossRef]
- Trebitz, A.S.; Hoffman, J.C.; Grant, G.W.; Billehus, T.M.; Pilgrim, E.M. Potential for DNA-based identification of Great Lakes fauna: Match and mismatch between taxa inventories and DNA barcode libraries. Sci. Rep. 2015, 5, 12162. [Google Scholar] [CrossRef]
Accession No 1 (WGS Prefix) | Matched Subject (Identity) | Len 2 | Description of Subject Sequence 3 |
---|---|---|---|
XM_022085578.1 (AUST01) | XM_022085578.1 (100) | 1731 | PREDICTED: Zootermopsis nevadensis COX1-like (LOC110840501), mRNA |
MN857505.1 (80.977) | 1719 | Tyrophagus putrescentiae voucher UMMZ BMOC 17-0108-002 mitochondrion, complete genome | |
XM_022085579.1 (AUST01) | XM_022085579.1 (100) | 1321 | PREDICTED: Zootermopsis nevadensis COX3-like (LOC110840502), mRNA |
MW784238.1 (77.51) | 1245 | Lardoglyphus konoi mitochondrion, complete genome | |
XM_022085580.1 (AUST01) | XM_022085580.1 (100) | 760 | PREDICTED: Zootermopsis nevadensis COX2-like (LOC110840503), mRNA |
NC_038058.1 (81.659) | 687 | Rhizoglyphus robini mitochondrion, complete genome | |
XR_002707260.1 (JHOM02) | XR_002707260.1 (100) | 1790 | PREDICTED: Onthophagus taurus Eukaryotic small subunit rRNA (LOC111421936) |
AY620939.1 (97.452) | 1766 | Macrocheles sp. AL5995 18S rRNA gene, partial sequence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Zhang, Y. Diversity and Distribution of Mites (ACARI) Revealed by Contamination Survey in Public Genomic Databases. Animals 2023, 13, 3172. https://doi.org/10.3390/ani13203172
Xie J, Zhang Y. Diversity and Distribution of Mites (ACARI) Revealed by Contamination Survey in Public Genomic Databases. Animals. 2023; 13(20):3172. https://doi.org/10.3390/ani13203172
Chicago/Turabian StyleXie, Jiazheng, and Yi Zhang. 2023. "Diversity and Distribution of Mites (ACARI) Revealed by Contamination Survey in Public Genomic Databases" Animals 13, no. 20: 3172. https://doi.org/10.3390/ani13203172
APA StyleXie, J., & Zhang, Y. (2023). Diversity and Distribution of Mites (ACARI) Revealed by Contamination Survey in Public Genomic Databases. Animals, 13(20), 3172. https://doi.org/10.3390/ani13203172