Fecal Metagenomics Study Reveals That a Low-Fiber Diet Drives the Migration of Wild Asian Elephants in Xishuangbanna, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection, DNA Extraction, and Sequencing
2.2. Processing and Assembly of Raw Data
2.3. Gene Prediction and Abundance Analysis
2.4. Species and Functional Annotation
2.5. Statistical Analyses
3. Results
3.1. Diet Markedly Affects Asian Elephant Fecal Microbial Communities
3.2. Enriched Microbial Taxa in Asian Elephant Feces Are Compatible with Their Diet
3.3. Enriched CAZymes Are Compatible with Asian Elephant Diet
3.4. Enriched KEGG Metabolic Pathways Are Correlated with the Dietary Nutritional Composition of Asian Elephants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustafa, M.A.M.; Chel, H.M.; Thu, M.J.; Bawm, S.; Htun, L.L.; Win, M.M.; Oo, Z.M.; Ohsawa, N.; Lahdenperä, M.; Mohamed, W.M.A.; et al. Anthropogenic interferences lead to gut microbiome dysbiosis in Asian elephants and may alter adaptation processes to surrounding environments. Sci. Rep. 2021, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Cabral, D.M.S.J.; Seneweera, S.; de Mel, R.K.; Dangolla, A.; Weerakoon, D.K.; Maraseni, T.; Allen, B.L. Current and Future Approaches to Mitigate Conflict between Humans and Asian Elephants: The Potential Use of Aversive Geofencing Devices. Animals 2022, 12, 2965. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Wang, P.Z.; Zhao, X.; Zhang, W.X.; Li, J.; Xu, C.; Xie, P. What triggered the Asian elephant’s northward migration across southwestern Yunnan? Innovation 2021, 2, 100142. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.C.; Li, Z.L.; Bao, M.W.; Chen, M.Y. The statistics and analysis of foraging plants species eaten by Asian elephant (Elephas maximus) in China. Acta Theriol. Sin. 2019, 39, 514–530. [Google Scholar]
- Wu, D.Q.; Wwi, J.H.; Fan, H. Impacts of land use changes on the habitat of Asian elephants in the Nangun River Basin. Acta Ecol. Sin. 2021, 41, 6476–6485. [Google Scholar]
- Sun, Y.K.; Chen, Y.; Diaz-Sacco, J.J.; Shi, K. Assessing population structure and body condition to inform conservation strategies for a small isolated Asian elephant (Elephas maximus) population in southwest China. PLoS ONE 2021, 16, e0248210. [Google Scholar] [CrossRef] [PubMed]
- Ruth, E.L.; Daniel, A.P.; Jeffrey, I.G. Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell 2006, 124, 837–848. [Google Scholar]
- Fraher, M.H.; O’Toole, P.W.; Quigley, E.M.M. Techniques used to characterize the gut microbiota: A guide for the clinician. Nature reviews. Gastroenterol. Hepatol. 2012, 9, 312–322. [Google Scholar]
- Lobionda, S.; Sittipo, P.; Kwon, H.Y.; Lee, Y.K. The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms 2019, 7, 271. [Google Scholar] [CrossRef]
- Vital, M.; Gao, J.R.; Rizzo, M.; Harrison, T.; Tiedje, J.M. Diet is a major factor governing the fecal butyrate-producing community structure across Mammalia, Aves and Reptilia. ISME J. 2015, 9, 832–843. [Google Scholar] [CrossRef]
- Zhou, Q.L.; Deng, J.L.; Pan, X.; Meng, D.N.; Zhu, Y.J.; Bai, Y.Z.; Shi, C.; Duan, Y.; Wang, T.H.; Li, X.L.; et al. Gut microbiome mediates the protective effects of exercise after myocardial infarction. Microbiome 2022, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- West, A.G.; Waite, D.W.; Deines, P.; Bourne, D.G.; Digby, A.; McKenzie, V.J.; Taylor, M.W. The microbiome in threatened species conservation. Biol. Conserv. 2019, 229, 85–98. [Google Scholar] [CrossRef]
- Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.K.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; et al. The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology 2011, 141, 599–609. [Google Scholar] [CrossRef] [PubMed]
- House, P.K.; Vyas, A.; Sapolsky, R. Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats. PLoS ONE 2011, 6, e23277. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Raybould, H.E. Gut chemosensing: Interactions between gut endocrine cells and visceral afferents. Auton. Neurosci.-Basic Clin. 2010, 153, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Alcock, J.; Maley, C.C.; Aktipis, C.A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 2014, 36, 940–949. [Google Scholar] [CrossRef] [PubMed]
- De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, I.; Ruiz, L.; Gueimonde, M.; Margolles, A.; Sanchez, B. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol. Lett. 2013, 340, 1–10. [Google Scholar] [CrossRef]
- Zhang, C.B.; Lian, Z.H.; Xu, B.; Shen, Q.Z.; Bao, M.W.; Huang, Z.X.; Jiang, H.C.; Li, W.J. Gut microbiome variation along a lifestyle gradient reveals threats faced by Asian elephants. Genom. Proteom. Bioinform. 2023, 21, 150–163. [Google Scholar] [CrossRef]
- Zhang, C.B.; Chen, J.M.; Wu, Q.; Xu, B.; Huang, Z.X. The gut microbiota of young Asian elephants with different milk-containing diets. Animals 2023, 13, 916. [Google Scholar] [CrossRef]
- Zhang, C.B.; Xu, B.; Lu, T.; Huang, Z.X. Metagenomic analysis of the fecal microbiomes of wild Asian elephants reveals microflora and enzymes that mainly digest hemicellulose. J. Microbiol. Biotechnol. 2019, 29, 1255–1265. [Google Scholar] [CrossRef]
- Li, D.H.; Liu, C.M.; Luo, R.B.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, H.; Park, J.; Takagi, T. MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006, 34, 5623–5630. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.M.; Niu, B.F.; Zhu, Z.W.; Wu, S.T.; Li, W.Z. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Q.; Li, Y.R.; Kristiansen, K.; Wang, J. SOAP: Short oligonucleotide alignment program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Reparaz, J.; Mielcarz, D.W.; Wang, Y.; Begum-Haque, S.; Dasgupta, S.; Kasper, D.L.; Kasper, L.H. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010, 3, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Palevich, N.; Kelly, W.J.; Leahy, S.C.; Denman, S.; Altermann, E.; Rakonjac, J.; Attwood, G.T. Comparative genomics of rumen Butyrivibrio spp. uncovers a continuum of polysaccharide-degrading capabilities. Appl. Environ. Microbiol. 2019, 86, e01993-19. [Google Scholar] [CrossRef]
- Stanton, T.B.; Canale-Parola, E. Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch. Microbiol. 1980, 127, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Kudo, H.; Cheng, K.J.; Costerton, J.W. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 1987, 33, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.J.; Li, R.Q.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Leschine, S.B. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 1995, 49, 399–426. [Google Scholar] [CrossRef] [PubMed]
- Ze, X.L.; Duncan, S.H.; Louis, P.; Flint, H.J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012, 6, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Josenhans, C.; Suerbaum, S. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 2002, 291, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Freter, R.; O’Brien, P.; Macsai, M.S. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: In vivo studies. Infect. Immun. 1981, 34, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Krukonis, E.S.; DiRita, V.J. From motility to virulence: Sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol. 2003, 6, 186–190. [Google Scholar] [CrossRef]
- Ishwaran, N. Elephant and woody-plant relationships in Gal Oya, Sri Lanka. Biol. Conserv. 1983, 26, 255–270. [Google Scholar] [CrossRef]
- Lin, L.; Guo, X.M.; Luo, A.D.; Zhang, L. The impact of elephant browsing on five plant species at Wild Elephant Valley, Xishuangbannan, Yunnan of China. Acta Theriol. Sin. 2016, 36, 129–137. [Google Scholar]
- Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; Gonzalez, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011, 332, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Ste-Marie, M.T.; Lee, E.M.; Brown, W.R. Radioimmunologic measurements of naturally occurring antibodies. III. antibodies reactive with Escherichia coli or Bacteroides fragilis in breast fluids and sera of mothers and newborn infants. Pediatr. Res. 1974, 8, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.M.; He, Q.C.; Wang, L.X.; Yang, Z.B.; Li, Z.Y.; Li, Z.Y. Effects of Asian elephant food source base on the mitigation of human-elephant conflict in Xishuangbanna of Yunnan Province, Southwest China. Chin. J. Ecol. 2012, 31, 3133–3137. [Google Scholar]
- Pokharel, S.S.; Singh, B.; Seshagiri, P.B.; Sukumar, R. Lower levels of glucocorticoids in crop-raiders: Diet quality as a potential ‘pacifier’ against stress in free-ranging Asian elephants in a human-production habitat. Anim. Conserv. 2019, 22, 177–188. [Google Scholar] [CrossRef]
- Shaffer, L.J.; Khadka, K.K.; Van Den Hoek, J.; Naithani, K.J. Human-Elephant Conflict: A review of current management strategies and future directions. Front. Ecol. Evol. 2019, 6, 235. [Google Scholar] [CrossRef]
- Sampson, C.; McEvoy, J.; Oo, Z.M.; Chit, A.M.; Chan, A.N.; Tonkyn, D.; Soe, P.; Songer, M.; Williams, A.C.; Reisinger, K.; et al. New elephant crisis in Asia-Early warning signs from Myanmar. PLoS ONE 2018, 13, e194113. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Chen, X.; Zhang, S.S.; Zhu, J.W.; Tang, B.X.; Wang, A.K.; Dong, L.L.; Zhang, Z.W.; Yu, C.X.; Sun, Y.L.; et al. The genome sequence archive family: Toward explosive data growth and diverse data types. Genom. Proteom. Bioinform. 2021, 19, 578–583. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chen, J.; Zhang, C.; Zhang, S.; Shen, Q.; Wang, B.; Bao, M.; Xu, B.; Wu, Q.; Han, N.; et al. Fecal Metagenomics Study Reveals That a Low-Fiber Diet Drives the Migration of Wild Asian Elephants in Xishuangbanna, China. Animals 2023, 13, 3193. https://doi.org/10.3390/ani13203193
Li X, Chen J, Zhang C, Zhang S, Shen Q, Wang B, Bao M, Xu B, Wu Q, Han N, et al. Fecal Metagenomics Study Reveals That a Low-Fiber Diet Drives the Migration of Wild Asian Elephants in Xishuangbanna, China. Animals. 2023; 13(20):3193. https://doi.org/10.3390/ani13203193
Chicago/Turabian StyleLi, Xia, Junmin Chen, Chengbo Zhang, Shuyin Zhang, Qingzhong Shen, Bin Wang, Mingwei Bao, Bo Xu, Qian Wu, Nanyu Han, and et al. 2023. "Fecal Metagenomics Study Reveals That a Low-Fiber Diet Drives the Migration of Wild Asian Elephants in Xishuangbanna, China" Animals 13, no. 20: 3193. https://doi.org/10.3390/ani13203193
APA StyleLi, X., Chen, J., Zhang, C., Zhang, S., Shen, Q., Wang, B., Bao, M., Xu, B., Wu, Q., Han, N., & Huang, Z. (2023). Fecal Metagenomics Study Reveals That a Low-Fiber Diet Drives the Migration of Wild Asian Elephants in Xishuangbanna, China. Animals, 13(20), 3193. https://doi.org/10.3390/ani13203193