Seasonal Variation in the Thermoregulation Pattern of an Insular Agamid Lizard
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study System
2.2. Operative (Te) and Body (Tb) Temperatures
2.3. Preferred Temperatures (Tpref)
2.4. Effectiveness of Thermoregulation
2.5. Statistical Analyses
3. Results
3.1. Thermal Measurements (Te, Tb, Tpref)
3.2. Effectiveness of Thermoregulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooper, B.S. The evolution of thermal physiology in endotherms. Front. Biosci. 2010, 2, 861–881. [Google Scholar] [CrossRef]
- Angilletta, M.J.; Niewiarowski, P.H.; Navas, C.A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 2002, 27, 249–268. [Google Scholar] [CrossRef]
- Bicego, K.C.; Barros, R.C.H.; Branco, L.G.S. Physiology of temperature regulation: Comparative aspects. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2007, 147, 616–639. [Google Scholar] [CrossRef]
- Hertz, P.E.; Huey, R.B.; Stevenson, R.D. Evaluating temperature regulation by field-active ectotherms: The fallacy of the inappropriate question. Am. Nat. 1993, 142, 796–818. [Google Scholar] [CrossRef] [PubMed]
- Angilletta, M.J. Thermal Adaptation: A Theoretical and Empirical Synthesis; Oxford biology; Oxford University Press: Oxford, UK; New York, NY, USA, 2009; ISBN 978-0-19-857087-5. [Google Scholar]
- Huey, R.B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia. Physiology (C); Gans, C., Pough, F.H., Eds.; Academic Press: Cambridge, MA, USA, 1982; pp. 25–91. [Google Scholar]
- James, M.C.; Mrosovsky, N. Body temperatures of leatherback turtles (Dermochelys coriacea) in temperate waters off Nova Scotia, Canada. Can. J. Zool. 2004, 82, 1302–1306. [Google Scholar] [CrossRef]
- Tattersall, G.J.; Leite, C.A.C.; Sanders, C.E.; Cadena, V.; Andrade, D.V.; Abe, A.S.; Milsom, W.K. Seasonal reproductive endothermy in tegu lizards. Sci. Adv. 2016, 2, e1500951. [Google Scholar] [CrossRef]
- Angilletta, M.J. Evolution of thermal reaction norms for growth rate and body size in ectotherms: An Introduction to the Symposium. Integr. Comp. Biol. 2004, 44, 401–402. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.B.; Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 1976, 51, 363–384. [Google Scholar] [CrossRef]
- Sears, M.W.; Angilletta, M.J. Costs and benefits of thermoregulation revisited: Both the heterogeneity and spatial structure of temperature drive energetic costs. Am. Nat. 2015, 185, E94–E102. [Google Scholar] [CrossRef]
- Meiri, S.; Bauer, A.M.; Chirio, L.; Colli, G.R.; Das, I.; Doan, T.M.; Feldman, A.; Herrera, F.-C.; Novosolov, M.; Pafilis, P.; et al. Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Glob. Ecol. Biogeogr. 2013, 22, 834–845. [Google Scholar] [CrossRef]
- Basson, C.H.; Clusella-Trullas, S. The behavior-physiology nexus: Behavioral and physiological compensation are relied on to different extents between seasons. Physiol. Biochem. Zool. 2015, 88, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Jessop, T.S.; Purwandana, D.; Imansyah, M.J.; Ciofi, C.; Jackson Benu, Y.; Arieifandy, A. The influence of tropical seasonality on breeding phenology, growth, survival and movement of a large reptile (Varanus komodoensis). Biol. J. Linn. Soc. 2022, 136, 552–565. [Google Scholar] [CrossRef]
- Ortega, Z.; Mencía, A.; Giroux, A.; Pérez-Mellado, V. Broad seasonal changes in thermoregulation of Podarcis lilfordi (Squamata, Lacertidae) at Binicodrell islet (Menorca, Spain). Herpetozoa 2019, 32, 57–63. [Google Scholar] [CrossRef]
- Ortega, Z.; Pérez-Mellado, V. Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard. Acta Oecologica 2016, 77, 201–206. [Google Scholar] [CrossRef]
- Vicente Liz, A.; Santos, V.; Ribeiro, T.; Guimarães, M.; Verrastro, L. Are lizards sensitive to anomalous seasonal temperatures? Long-term thermobiological variability in a subtropical species. PLoS ONE 2019, 14, e0226399. [Google Scholar] [CrossRef]
- Diaz, J.A.; Cabezas-Diaz, S. Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 2004, 18, 867–875. [Google Scholar] [CrossRef]
- Díaz, J.A.; Iraeta, P.; Monasterio, C. Seasonality provokes a shift of thermal preferences in a temperate lizard, but altitude does not. J. Therm. Biol. 2006, 31, 237–242. [Google Scholar] [CrossRef]
- Ortega, Z.; Martín-Vallejo, F.J. Main factors affecting lacertid lizard thermal ecology. Integr. Zool. 2019, 14, 293–305. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967; ISBN 0-691-08836-5. [Google Scholar]
- Whittaker, R.J.; Fernández-Palacios, J.M. Island Biogeography: Ecology, Evolution, and Conservation; Oxford University Press: Oxford, UK, 2007; ISBN 0-19-856611-5. [Google Scholar]
- Sagonas, K.; Valakos, E.D.; Pafilis, P. The impact of insularity on the thermoregulation of a Mediterranean lizard. J. Therm. Biol. 2013, 38, 480–486. [Google Scholar] [CrossRef]
- Grbac, I.; Bauwens, D. Constraints on Temperature Regulation in Two Sympatric Podarcis Lizards during Autumn. Copeia 2001, 2001, 178–186. [Google Scholar] [CrossRef]
- Sfenthourakis, S.; Triantis, K.A. Habitat diversity, ecological requirements of species and the Small Island Effect. Divers. Distrib. 2009, 15, 131–140. [Google Scholar] [CrossRef]
- Ortega, Z.; Pérez-Mellado, V.; Garrido, M.; Guerra, C.; Villa-García, A.; Alonso-Fernández, T. Seasonal changes in thermal biology of Podarcis lilfordi (Squamata, Lacertidae) consistently depend on habitat traits. J. Therm. Biol. 2014, 39, 32–39. [Google Scholar] [CrossRef]
- Pafilis, P.; Herrel, A.; Kapsalas, G.; Vasilopoulou-Kampitsi, M.; Fabre, A.-C.; Foufopoulos, J.; Donihue, C.M. Habitat shapes the thermoregulation of Mediterranean lizards introduced to replicate experimental islets. J. Therm. Biol. 2019, 84, 368–374. [Google Scholar] [CrossRef]
- Pafilis, P.; Lymberakis, P.; Sagonas, K.; Valakos, E. The particularities of a remote islet shape the thermoregulatory profile of an endemic Mediterranean lizard. J. Therm. Biol. 2016, 61, 55–60. [Google Scholar] [CrossRef]
- Pafilis, P.; Maragou, P.; Sagonas, K.; Valakos, E. Partitioning thermal habitat on a vertical rock, a herculean task. J. Therm. Biol. 2017, 70, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Sannolo, M.; Civantos, E.; Martín, J.; Carretero, M.A. Variation in field body temperature and total evaporative water loss along an environmental gradient in a diurnal ectotherm. J. Zool. 2020, 310, 221–231. [Google Scholar] [CrossRef]
- Ergül Kalayci, T.; Özdemir, N.; Gül, Ç.; Tosunoğlu, M. Variation in Body Size and Age Structure of Stellagama stellio (L., 1758) (Reptilia: Agamidae) from Turkey. Acta Zool. Bulg. 2014, 66, 65–72. [Google Scholar]
- Valakos, E.D.; Pafilis, P.; Sotiropoulos, K.; Lymberakis, P.; Maragou, P.; Foufopoulos, J. The Amphibians and Reptiles of Greece (Frankfurt Contributions to Natural History); Ed. Chimaira: Frankfurt am Main, Germany, 2008. [Google Scholar]
- Kumaş, M.; Ayaz, D. Age determination and long bone histology in Stellagama stellio (LINNAEUS, 1758) (Squamata: Sauria: Agamidae) populations in Turkey. Vertebr. Zool. 2014, 64, 113–126. [Google Scholar] [CrossRef]
- Pafilis, P.; Maragou, P. (Eds.) Atlas of Amphibian and Reptiles of Greece; Broken Hill Publishers Ltd.: Nicosia, Cyprus, 2020. [Google Scholar]
- Düşen, S.; Öz, M. A Study on the Feeding Biology of Laudakia (=Agama) stellio (L. 1758) (Lacertilia: Agamidae) Populations in the Antalya Region. Turk. J. Zool. 2001, 25, 177–181. [Google Scholar]
- Karameta, E.; Papadopoulos, V.V.; Pafilis, P. First record of ophiophagy in the roughtail rock agama (Stellagama stellio): One of the most rare feeding behaviors among European lizards. Herpetol. Notes 2015, 8, 111–113. [Google Scholar]
- Lo Cascio, P.; Corti, C.; Luiselli, L. Seasonal variations of the diet of Laudakia stellio (Agamidae) from Nisyros island, Dodecanese (Greece). Herpetol. J. 2001, 11, 33–35. [Google Scholar]
- Karameta, E.; Lymberakis, P.; Grillitsch, H.; Ilgaz, Ç.; Avci, A.; Kumlutaş, Y.; Candan, K.; Wagner, P.; Sfenthourakis, S.; Pafilis, P.; et al. The story of a rock-star: Multilocus phylogeny and species delimitation in the starred or roughtail rock agama, Laudakia stellio (Reptilia: Agamidae). Zool. J. Linn. Soc. 2022, 195, 195–219. [Google Scholar] [CrossRef]
- Koch, C. Sammeltage auf der Insel Korfu, Oktober-November 1929. Bl. Aquar. Terrar. Kde. 1932, 43, 200–203. [Google Scholar]
- Razzetti, E.; Bader, T.; Bilek, K.; Delfino, M.; Rita, A.; Di Cerbo, A.R.; Duda, M.; Hill, J.; Rathbauer, F.; Riegler, C.; et al. A contribution to the knowledge of the herpetofauna of the Greek island of Corfu. In Societas Herpetologica Italica: Atti del V Convegno Nazionale, Calci (Pisa), 29 Settembre–3 Ottobre 2004; Florence University Press: Firenze, Italy, 2006; pp. 207–216. [Google Scholar]
- Kapsalas, G.; Probonas, N.; Dimalexis, A.; Pafilis, P. First record of Stellagama stellio (Squamata: Agamidae) from Karpathos Island, Greece. Russ. J. Herpetol. 2020, 47, 299–302. [Google Scholar] [CrossRef]
- Spaneli, V.; Lymberakis, P. First record of Stellagama stellio (Linnaeus, 1758) from Crete, Greece. Herpetol. Notes 2014, 7, 367–369. [Google Scholar]
- Foufopoulos, J.; Pafilis, P. Biodiversity on Greek Paths of Culture in the Lesser Cyclades; ELLET, Society for the Environment and Cultural Heritage: Athens, Greece, 2021. [Google Scholar]
- Theocharatos, G. The Climate of Cyclades. Ph.D. Thesis, Athens University, Athens, Greece, 1978. (In Greek). [Google Scholar]
- Giannikopoulou, A.S. Drought characterisation in Cyclades complex, Greece. Eur. Water. 2014, 47, 31–43. [Google Scholar]
- Bakken, G.S. Measurement and application of operative and standard operative temperatures in Ecology. Am. Zool. 1992, 32, 194–216. [Google Scholar] [CrossRef]
- Lutterschmidt, W.I.; Reinert, H.K. Modeling body temperature and thermal inertia of large-bodied reptiles: Support for water-filled biophysical models in radiotelemetric studies. J. Therm. Biol. 2012, 37, 282–285. [Google Scholar] [CrossRef]
- Karameta, E.; Sfenthourakis, S.; Pafilis, P. Are all islands the same? A comparative thermoregulatory approach in four insular populations. Amphibia-Reptililia 2022, 44, 59–69. [Google Scholar] [CrossRef]
- Diaz, J.A. Ecological correlates of the thermal quality of an ectotherm’s habitat: A comparison between two temperate lizard populations. Funct. Ecol. 1997, 11, 79–89. [Google Scholar] [CrossRef]
- Dzialowski, E.M. Use of operative temperature and standard operative temperature models in thermal biology. J. Therm. Biol. 2005, 30, 317–334. [Google Scholar] [CrossRef]
- Gidiþ, M.; Baþkale, E. Age structure and life expectancy in a Stellagama stellio (LINNAEUS, 1758) population from Kutahya, Turkey. Russ. J. Herpetol. 2021, 28, 327–332. [Google Scholar] [CrossRef]
- Veríssimo, C.V.; Carretero, M.A. Preferred temperatures of Podarcis vaucheri from Morocco: Intraspecific variation and interspecific comparisons. Amphibia-Reptilia 2009, 30, 17–23. [Google Scholar] [CrossRef]
- Osojnik, N.; Žagar, A.; Carretero, M.A.; García-Muñoz, E.; Vrezec, A. Ecophysiological dissimilarities of two sympatric lizards. Herpetologica 2013, 69, 445–454. [Google Scholar] [CrossRef]
- Taylor, E.N.; Diele-Viegas, L.M.; Gangloff, E.J.; Hall, J.M.; Halpern, B.; Massey, M.D.; Rödder, D.; Rollinson, N.; Spears, S.; Sun, B.; et al. The thermal ecology and physiology of reptiles and amphibians: A user’s guide. J. Exp. Zool. Part Ecol. Integr. Physiol. 2021, 335, 13–44. [Google Scholar] [CrossRef]
- Carretero, M.A.; Roig, J.M.; Llorente, G.A. Variation in preferred body temperatures in an oviparous population of Lacerta (Zootoca) vivipara. Herpetol. J. 2005, 15, 51–55. [Google Scholar]
- Van Damme, R.; Bauwens, D.; Verheyen, R.F. Selected body temperatures in the lizard Lacerta vivipara: Variation within and between populations. J. Therm. Biol. 1986, 11, 219–222. [Google Scholar] [CrossRef]
- Cabanac, M.; Gosselin, F. Emotional fever in the lizard Callopistes maculatus (Teiidae). Anim. Behav. 1993, 46, 200–202. [Google Scholar] [CrossRef]
- Carneiro, D.; García-Muñoz, E.; Kaliontzopoulou, A.; Llorente, G.A.; Carretero, M.A. Comparing ecophysiological traits in two Podarcis wall lizards with overlapping ranges. Salamandra 2015, 51, 335–344. [Google Scholar]
- Stellatelli, O.A.; Villalba, A.; Block, C.; Vega, L.E.; Dajil, J.E.; Cruz, F.B. Seasonal shifts in the thermal biology of the lizard Liolaemus tandiliensis (Squamata, Liolaemidae). J. Therm. Biol. 2018, 73, 61–70. [Google Scholar] [CrossRef]
- Ortega, Z.; Mencía, A.; Pérez-Mellado, V. Wind constraints on the thermoregulation of high mountain lizards. Int. J. Biometeorol. 2017, 61, 565–573. [Google Scholar] [CrossRef]
- Fierro-Estrada, N.; Méndez-de la Cruz, F.R.; Tellez-Valdes, O. Living in the mountains: Thermal ecology and freezing tolerance of the lizard Abronia taeniata (Squamata: Anguidae). J. Therm. Biol. 2023, 117, 103679. [Google Scholar] [CrossRef] [PubMed]
- Losos, J.B.; Ricklefs, R.E. Adaptation and diversification on islands. Nature 2009, 457, 830–836. [Google Scholar] [CrossRef]
- Adolph, S.C.; Porter, W.P. Temperature, activity, and lizard life histories. Am. Nat. 1993, 142, 273–295. [Google Scholar] [CrossRef]
- Cowles, R.B.; Bogert, C.M. A preliminary study of the thermal requirements of desert reptiles. Bull. AMNH 1944, 83, 295–296. [Google Scholar]
- Avery, R.A. Thermoregulation, metabolism and social behaviour in Lacertidae. In Morphology and Biology of Reptiles, A. d’A. Bellairs and C.B. Cox. Ed. Linn. Soc. Symp. Ser. (3); Academic Press: Cambridge, MA, USA, 1976; Volume 3, pp. 245–259. [Google Scholar]
- Van Damme, R.; Bauwens, D.; Verheyen, R.F. Evolutionary rigidity of thermal physiology: The case of the cool temperate lizard Lacerta vivipara. Oikos 1990, 57, 61. [Google Scholar] [CrossRef]
- Ortega, Z.; Mencía, A.; Pérez-Mellado, V. Adaptive seasonal shifts in the thermal preferences of the lizard Iberolacerta galani (Squamata, Lacertidae). J. Therm. Biol. 2016, 62, 1–6. [Google Scholar] [CrossRef]
- Hertz, P.E.; Nevo, E. Thermal biology of four Israeli Agamid lizards in early summer. Isr. J. Ecol. Evol. 1981, 30, 190–210. [Google Scholar]
- Saber, S.A. Preferred body temperature of free-ranging Starred Agama Laudakia stellio (Linnaeus, 1758)(Agamidae) from Egypt. Russ. J. Herpetol. 2012, 19, 171–176. [Google Scholar]
- Hertz, P.E. Temperature regulation in Puerto Rican Anolis lizards: A field test using null hypotheses. Ecology 1992, 73, 1405–1417. [Google Scholar] [CrossRef]
- Bauwens, D.; Hertz, P.E.; Castilla, A.M. Thermoregulation in a Lacertid lizard: The relative contributions of distinct behavioral mechanisms. Ecology 1996, 77, 1818–1830. [Google Scholar] [CrossRef]
- Sears, M.W.; Angilletta, M.J., Jr.; Schuler, M.S.; Borchert, J.; Dilliplane, K.F.; Stegman, M.; Rusch, T.W.; Mitchell, W.A. Configuration of the thermal landscape determines thermoregulatory performance of ectotherms. Proc. Natl. Acad. Sci. USA 2016, 113, 10595–10600. [Google Scholar] [CrossRef]
- Little, A.G.; Seebacher, F. Acclimation, acclimatization, and seasonal variation in amphibians and reptiles. In Amphibian and Reptile Adaptations to the Environment; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-315-37363-8. [Google Scholar]
- Andrews, R.M. Activity and thermal biology of the Sand-Swimming Skink Neoseps reynoldsi: Diel and seasonal patterns. Copeia 1994, 1994, 91–99. [Google Scholar] [CrossRef]
- Christian, K.A.; Bedford, G.S. Seasonal changes in thermoregulation by the Frillneck Lizard, Chlamydosaurus Kingii, in Tropical Australia. Ecology 1995, 76, 124–132. [Google Scholar] [CrossRef]
- Huey, R.B.; Pianka, E.R. Seasonal variation in thermoregulatory behavior and body temperature of diurnal Kalahari lizards. Ecology 1977, 58, 1066–1075. [Google Scholar] [CrossRef]
- Megía-Palma, R.; Arregui, L.; Pozo, I.; Žagar, A.; Serén, N.; Carretero, M.A.; Merino, S. Geographic patterns of stress in insular lizards reveal anthropogenic and climatic signatures. Sci. Total Environ. 2020, 749, 141655. [Google Scholar] [CrossRef]
- Nastos, P.T.; Zerefos, C.S. Spatial and temporal variability of consecutive dry and wet days in Greece. Atmos. Res. 2009, 94, 616–628. [Google Scholar] [CrossRef]
- Cooper, W.E., Jr.; Pérez-Mellado, V. Historical influence of predation pressure on escape by Podarcis lizards in the Balearic Islands. Biol. J. Linn. Soc. 2012, 107, 254–268. [Google Scholar] [CrossRef]
- Itescu, Y.; Schwarz, R.; Meiri, S.; Pafilis, P. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 2017, 86, 66–74. [Google Scholar] [CrossRef]
- Salazar, J.C.; del Rosario Castañeda, M.; Londoño, G.A.; Bodensteiner, B.L.; Muñoz, M.M. Physiological evolution during adaptive radiation: A test of the island effect in Anolis lizards. Evolution 2019, 73, 1241–1252. [Google Scholar] [CrossRef]
- Sinervo, B.; Méndez-de-la-Cruz, F.; Miles, D.B.; Heulin, B.; Bastiaans, E.; Villagrán-Santa Cruz, M.; Lara-Resendiz, R.; Martínez-Méndez, N.; Calderón-Espinosa, M.L.; Meza-Lázaro, R.N.; et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 2010, 328, 894–899. [Google Scholar] [CrossRef]
- Le Galliard, J.F.; Massot, M.; Baron, J.-P.; Clobert, J. Ecological effects of climate change on European reptiles. Wildl. Conserv. Chang. Clim. 2012, 179, e203. [Google Scholar]
- Urban, M.C.; Richardson, J.L.; Freidenfelds, N.A. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol. Appl. 2014, 7, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Inman, R.D.; Esque, T.C.; Nussear, K.E. Dispersal limitations increase vulnerability under climate change for reptiles and amphibians in the southwestern United States. J. Wildl. Manag. 2023, 87, e22317. [Google Scholar] [CrossRef]
- Chen, C.; Holyoak, M.; Xu, J.; de Oliveira Caetano, G.H.; Wang, Y. Range restriction, climate variability and human-related risks imperil lizards world-wide. Glob. Ecol. Biogeogr. 2023, 32, 780–792. [Google Scholar] [CrossRef]
- Wikelski, M.; Cooke, S.J. Conservation physiology. Trends Ecol. Evol. 2006, 21, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Chown, S.L. Trait-based approaches to conservation physiology: Forecasting environmental change risks from the bottom up. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
Season | Te | de | Tb | db | Tpref | Tset | E | |
---|---|---|---|---|---|---|---|---|
Spring | Mean ± SD | 27.7 ± 3.9 | 7.3 ± 3.6 | 34.7 ± 1.3 | 0.6 ± 0.9 | 36.2 ± 1.2 | 0.92 | |
N | 1140 | 1140 | 22 | 22 | 13 | |||
Range | 19.3–47.5 | 0.0–15.6 | 31.8–37.0 | 0.0–3.1 | 33.5–37.7 | 34.9–37.7 | ||
Lower–Upper Q | 25.6–30.3 | 4.6–9.3 | 34.0–35.8 | 0–0.9 | 35.7–36.9 | |||
Summer | Mean ± SD | 30.4 ± 5.0 | 2.8 ± 3 | 34.3 ± 1.2 | 0.1 ± 0.3 | 33.2 ± 2.9 | 0.97 | |
N | 1490 | 1490 | 30 | 30 | 11 | |||
Range | 23.8–54.0 | 0.0–17.7 | 29.8–36.2 | 0.0–1.8 | 27.1–36.7 | 30.4–36.3 | ||
Lower–Upper Q | 26.0–31.7 | 0.2–5.0 | 33.9–35.8 | 0–0 | 32.5–35.6 | |||
Autumn | Mean ± SD | 24.4 ± 5.2 | 12.6 ± 5.1 | 34.8 ± 2.5 | 2.4 ± 2.4 | 38.1 ± 0.6 | 0.81 | |
N | 1881 | 1881 | 26 | 26 | 8 | |||
Range | 16.8–40.3 | 0.0–20.2 | 30.0–38.0 | 0.0–7.0 | 36.7–39.0 | 37.0–39.5 | ||
Lower–Upper Q | 19.9–28.7 | 8.3–17.1 | 33.0–37.0 | 0.0–4.0 | 37.6–38.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karameta, E.; Gavriilidi, I.; Sfenthourakis, S.; Pafilis, P. Seasonal Variation in the Thermoregulation Pattern of an Insular Agamid Lizard. Animals 2023, 13, 3195. https://doi.org/10.3390/ani13203195
Karameta E, Gavriilidi I, Sfenthourakis S, Pafilis P. Seasonal Variation in the Thermoregulation Pattern of an Insular Agamid Lizard. Animals. 2023; 13(20):3195. https://doi.org/10.3390/ani13203195
Chicago/Turabian StyleKarameta, Emmanouela, Ioanna Gavriilidi, Spyros Sfenthourakis, and Panayiotis Pafilis. 2023. "Seasonal Variation in the Thermoregulation Pattern of an Insular Agamid Lizard" Animals 13, no. 20: 3195. https://doi.org/10.3390/ani13203195
APA StyleKarameta, E., Gavriilidi, I., Sfenthourakis, S., & Pafilis, P. (2023). Seasonal Variation in the Thermoregulation Pattern of an Insular Agamid Lizard. Animals, 13(20), 3195. https://doi.org/10.3390/ani13203195