Correlation of Faecal Egg Counts with Clinical Parameters and Agreement between Different Raters Assessing FAMACHA©, BCS and Dag Score in Austrian Dairy Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Questionnaire and Farm Selection
2.3. Farms and Animals
2.4. On-Farm Assessment of Clinical Parameters
2.5. On-Farm FAMACHA© Score Assessment
2.6. On-Farm BCS Assessment
2.7. On-Farm Dag Score Assessment
2.8. Examination of Faecal Samples
2.8.1. Mini-FLOTAC
2.8.2. Larval Cultures
2.8.3. Larval Differentiation
2.8.4. Sedimentation (Benedek)
2.8.5. Baermann–Wetzel Technique
2.9. Statistical Analysis
3. Results
3.1. Participating Farmers and Their Management Practices
3.2. FAMACHA© Scores
3.3. Body Condition Scoring
3.4. Fleece Soiling
3.5. Quantitative Egg Excretion
3.6. Haemonchus Contortus
3.7. Sedimentation
3.8. Baermann–Wetzel Technique
3.9. Intra-Class Correlation Coefficient and Inter-Rater Agreement
3.10. Correlation between Clinical Parameters and EpG Values
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coop, R.L.; Holmes, P.H. Nutrition and parasite interaction. Int. J. Parasitol. 1996, 26, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Valderrábano, J.; Delfa, R.; Uriarte, J. Effect of level of feed intake on the development of gastrointestinal parasitism in growing lambs. Vet. Parasitol. 2002, 104, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasit. Vectors 2015, 8, 557. [Google Scholar] [CrossRef]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Băcescu, B.; Mickiewicz, M.; et al. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef] [PubMed]
- Barger, I.A. The role of epidemiological knowledge and grazing management for helminth control in small ruminants. Int. J. Parasitol. 1999, 29, 41–47. [Google Scholar] [CrossRef]
- Van Wyk, J.A. Refugia—Overlooked as perhaps the most potent factor concerning the development of anthelmintic resistance. Onderstepoort J. Vet. Res. 2001, 68, 55–67. [Google Scholar] [PubMed]
- Rose Vineer, H.; Morgan, E.R.; Hertzberg, H.; Bartley, D.J.; Bosco, A.; Charlier, J.; Chartier, C.; Claerebout, E.; de Waal, T.; Hendrickx, G.; et al. Importance croissante de la résistance aux anthelminthiques chez les ruminants européens: Création et méta-analyse d’une base de données ouverte. Parasite 2020, 27, 69. [Google Scholar] [CrossRef]
- Kaplan, R.M. Biology, Epidemiology, Diagnosis, and Management of Anthelmintic Resistance in Gastrointestinal Nematodes of Livestock. Vet. Clin. North Am. Food Anim. Pract. 2020, 36, 17–30. [Google Scholar] [CrossRef]
- Hinney, B.; Wiedermann, S.; Kaiser, W.; Krücken, J.; Joachim, A. Eprinomectin and Moxidectin Resistance of Trichostrongyloids on a Goat Farm in Austria. Pathogens 2022, 11, 498. [Google Scholar] [CrossRef]
- Untersweg, F.; Ferner, V.; Wiedermann, S.; Göller, M.; Hörl-Rannegger, M.; Kaiser, W.; Joachim, A.; Rinaldi, L.; Krücken, J.; Hinney, B. Résistance multispécifique des trichostrongylidés des ovins en Autriche. Parasite 2021, 28, 50. [Google Scholar] [CrossRef]
- Feichtenschlager, C.; Hinney, B.; Klose, S.; Tichy, A.; Tix, A.; Strobl, L.; Krametter-Frötscher, R. Vorkommen von Helminthen beim kleinen Wiederkäuer in der Steiermark mit besonderer Berücksichtigung der Wirksamkeit von Benzimidazolen und Makrozyklischen Laktonen. Wien. Tierärztl. Monatsschr. 2014, 101, 251–262. [Google Scholar]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; van Wyk, J.A. Diagnosis, Treatment and Management of Haemonchus contortus in Small Ruminants. Adv. Parasitol. 2016, 93, 181–238. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.; Bartley, D.J.; Sotiraki, S.; Martinez-Valladares, M.; Claerebout, E.; von Samson-Himmelstjerna, G.; Thamsborg, S.M.; Hoste, H.; Morgan, E.R.; Rinaldi, L. Anthelmintic resistance in ruminants: Challenges and solutions. Adv. Parasitol. 2022, 115, 171–227. [Google Scholar] [CrossRef] [PubMed]
- Bath, G.F.; van Wyk, J.A. The Five Point Check© for targeted selective treatment of internal parasites in small ruminants. Small Rumin. Res. 2009, 86, 6–13. [Google Scholar] [CrossRef]
- Kenyon, F.; Jackson, F. Targeted flock/herd and individual ruminant treatment approaches. Vet. Parasitol. 2012, 186, 10–17. [Google Scholar] [CrossRef]
- Besier, R.B. Refugia-based strategies for sustainable worm control: Factors affecting the acceptability to sheep and goat owners. Vet. Parasitol. 2012, 186, 2–9. [Google Scholar] [CrossRef]
- Torres-Acosta, J.F.J.; Hoste, H. Alternative or improved methods to limit gastro-intestinal parasitism in grazing sheep and goats. Small Rumin. Res. 2008, 77, 159–173. [Google Scholar] [CrossRef]
- Maqbool, I.; Wani, Z.A.; Shahardar, R.A.; Allaie, I.M.; Shah, M.M. Integrated parasite management with special reference to gastro-intestinal nematodes. J. Parasit. Dis. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Greer, A.W.; van Wyk, J.A.; Hamie, J.C.; Byaruhanga, C.; Kenyon, F. Refugia-Based Strategies for Parasite Control in Livestock. Vet. Clin. North Am. Food Anim. Pract. 2020, 36, 31–43. [Google Scholar] [CrossRef]
- Tamponi, C.; Dessì, G.; Varcasia, A.; Knoll, S.; Meloni, L.; Scala, A. Preliminary Assessment of Body Condition Score as a Possible Marker for the Targeted Selective Treatment of Dairy Sheep Against Gastrointestinal Nematodes. Acta Parasitol. 2021, 67, 362–368. [Google Scholar] [CrossRef]
- Di Loria, A.; Veneziano, V.; Piantedosi, D.; Rinaldi, L.; Cortese, L.; Mezzino, L.; Cringoli, G.; Ciaramella, P. Evaluation of the FAMACHA system for detecting the severity of anaemia in sheep from southern Italy. Vet. Parasitol. 2009, 161, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Broughan, J.M.; Wall, R. Faecal soiling and gastrointestinal helminth infection in lambs. Int. J. Parasitol. 2007, 37, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.; Morgan, E.R.; Rinaldi, L.; van Dijk, J.; Demeler, J.; Höglund, J.; Hertzberg, H.; van Ranst, B.; Hendrickx, G.; Vercruysse, J.; et al. Practices to optimise gastrointestinal nematode control on sheep, goat and cattle farms in Europe using targeted (selective) treatments. Vet. Rec. 2014, 175, 250–255. [Google Scholar] [CrossRef]
- Besier, R.B.; Kahn, L.P.; Sargison, N.D.; van Wyk, J.A. The Pathophysiology, Ecology and Epidemiology of Haemonchus contortus Infection in Small Ruminants. Adv. Parasitol. 2016, 93, 95–143. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, J.A.; Bath, G.F. The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Vet. Res. 2002, 33, 509–529. [Google Scholar] [CrossRef]
- Vatta, A.F.; Letty, B.A.; van der Linde, M.J.; van Wijk, E.F.; Hansen, J.W.; Krecek, R.C. Testing for clinical anaemia caused by Haemonchus spp. in goats farmed under resource-poor conditions in South Africa using an eye colour chart developed for sheep. Vet. Parasitol. 2001, 99, 1–14. [Google Scholar] [CrossRef]
- Mohammed, N.; Taye, M.; Asha, A.; Sheferaw, D. Epizootological study of small ruminant gastrointestinal strongyles in Gamo-Gofa Zone, Southern Ethiopia. J. Parasit. Dis. 2016, 40, 469–474. [Google Scholar] [CrossRef]
- Larsen, J.W.; Anderson, N.; Vizard, A.L.; Anderson, G.A.; Hoste, H. Diarrhoea in merino ewes during winter: Association with trichostrongylid larvae. Aust. Vet. J. 1994, 71, 365–372. [Google Scholar] [CrossRef]
- Cornelius, M.P.; Jacobson, C.; Besier, R.B. Body condition score as a selection tool for targeted selective treatment-based nematode control strategies in Merino ewes. Vet. Parasitol. 2014, 206, 173–181. [Google Scholar] [CrossRef]
- Russel, A.J.F.; Doney, J.M.; Gunn, R.G. Subjective assessment of body fat in live sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M.; Denwood, M.J.; Nielsen, M.K.; Thamsborg, S.M.; Torgerson, P.R.; Gilleard, J.S.; Dobson, R.J.; Vercruysse, J.; Levecke, B. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) guideline for diagnosing anthelmintic resistance using the faecal egg count reduction test in ruminants, horses and swine. Vet. Parasitol. 2023, 318, 109936. [Google Scholar] [CrossRef] [PubMed]
- Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft. Grüner Bericht 2022. Available online: https://gruenerbericht.at/cm4/jdownload/send/2-gr-bericht-terreich/2398-gb2022 (accessed on 5 October 2023).
- Stangl, M.; Formayer, H.; Hiebl, J.; Orlik, A.; Hinger, D.; Bauer, C.; Wilfinger, P.; Wolf, A. CCCA: Klimastatusbericht Österreich 2022. Available online: https://ccca.ac.at/fileadmin/00_DokumenteHauptmenue/02_Klimawissen/Klimastatusbericht/KSB_2022/KBS_2022_BF/Klimastatusbericht_OE_2022_BF.pdf (accessed on 5 October 2023).
- Hiebl, J.; Ganekind, M.; Orlik, A. Österreichisches Klimabulletin Jahr. 2022. Available online: https://www.zamg.ac.at/cms/de/dokumente/klima/dok_news/2022/copy_of_Klimabulletin_2022.pdf (accessed on 5 October 2023).
- Zajac, A.; Petersson, K.; Burdett, H. Why and How to Do FAMACHA© Scoring. Available online: https://web.uri.edu/wp-content/uploads/sites/241/FAMACHA-Scoring_Final2.pdf (accessed on 3 January 2022).
- Kenyon, P.R.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. New Zealand J. Agric. Res. 2014, 57, 38–64. [Google Scholar] [CrossRef]
- Cringoli, G.; Rinaldi, L.; Maurelli, M.P.; Utzinger, J. FLOTAC: New multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nat. Protoc. 2010, 5, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Cringoli, G.; Maurelli, M.P.; Levecke, B.; Bosco, A.; Vercruysse, J.; Utzinger, J.; Rinaldi, L. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat. Protoc. 2017, 12, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Knoll, S.; Dessì, G.; Tamponi, C.; Meloni, L.; Cavallo, L.; Mehmood, N.; Jacquiet, P.; Scala, A.; Cappai, M.G.; Varcasia, A. Practical guide for microscopic identification of infectious gastrointestinal nematode larvae in sheep from Sardinia, Italy, backed by molecular analysis. Parasit. Vectors 2021, 14, 505. [Google Scholar] [CrossRef]
- Van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 539. [Google Scholar] [CrossRef]
- Taylor, M.A. Parasitological examinations in sheep health management. Small Rumin. Res. 2010, 92, 120–125. [Google Scholar] [CrossRef]
- Thrusfield, M.; Christley, R.; Brown, H.; Diggle, P.J.; French, N.; Howe, K.; Kelly, L.; O’Connor, A.; Sargeant, J.; Wood, H. Veterinary Epidemiology, 4th ed.; John Wiley & Sons, Ltd: Chichester, UK, 2018; pp. 450–452. [Google Scholar]
- Statistik Austria. Allgemeine Viehzählung, Dezember 2022 (SB 1.2). Available online: https://www.statistik.at/services/tools/services/publikationen/detail/1483 (accessed on 25 March 2023).
- Schoiswohl, J.; Salvenmoser, G.; Silbernagl, A.S.; Tichy, A.; Krametter-Frotscher, R. Occurrence of endoparasites in sheep flocks in an alpine region in relation to management factors and their impact on clinical parameters. Wien. Tierärztl. Monatsschr. 2021, 108, 289–297. [Google Scholar]
- Schoiswohl, J.; Joachim, A.; Hinney, B.; Tichy, A.; Bauer, K.; Stanitznig, A.; Krametter-Frotscher, R. Influence of communal alpine pasturing in Styria, Austria, on the development of gastrointestinal strongylid infections over the grazing season in sheep–a pilot study. Berl. Münch. Tierärztl. Wochenschr. 2017, 130, 494–500. [Google Scholar] [CrossRef]
- Rose, H.; Caminade, C.; Bolajoko, M.B.; Phelan, P.; van Dijk, J.; Baylis, M.; Williams, D.; Morgan, E.R. Climate-driven changes to the spatio-temporal distribution of the parasitic nematode, Haemonchus contortus, in sheep in Europe. Glob. Chang. Biol. 2016, 22, 1271–1285. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, J.; David, G.P.; Baird, G.; Morgan, E.R. Back to the future: Developing hypotheses on the effects of climate change on ovine parasitic gastroenteritis from historical data. Vet. Parasitol. 2008, 158, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.M. Gastrointestinal nematodes of small ruminants: Life cycle, anthelmintics, and diagnosis. Vet. Clin. North Am. Food Anim. Pract. 2006, 22, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.C. Mechanisms of survival of nematode parasites with emphasis on hypobiosis. Vet. Parasitol. 1982, 11, 25–48. [Google Scholar] [CrossRef]
- Sabatini, G.A.; de Almeida Borges, F.; Claerebout, E.; Gianechini, L.S.; Höglund, J.; Kaplan, R.M.; Lopes, W.D.Z.; Mitchell, S.; Rinaldi, L.; von Samson-Himmelstjerna, G.; et al. Practical guide to the diagnostics of ruminant gastrointestinal nematodes, liver fluke and lungworm infection: Interpretation and usability of results. Parasit. Vectors 2023, 16, 58. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Burke, J.M.; Terrill, T.H.; Miller, J.E.; Getz, W.R.; Mobini, S.; Valencia, E.; Williams, M.J.; Williamson, L.H.; Larsen, M.; et al. Validation of the FAMACHA eye color chart for detecting clinical anemia in sheep and goats on farms in the southern United States. Vet. Parasitol. 2004, 123, 105–120. [Google Scholar] [CrossRef]
- Roeber, F.; Larsen, J.W.A.; Anderson, N.; Campbell, A.J.D.; Anderson, G.A.; Gasser, R.B.; Jex, A.R. A molecular diagnostic tool to replace larval culture in conventional faecal egg count reduction testing in sheep. PLoS ONE 2012, 7, e37327. [Google Scholar] [CrossRef]
- Williams, A.R.; Palmer, D.G. Interactions between gastrointestinal nematode parasites and diarrhoea in sheep: Pathogenesis and control. Vet. J. 2012, 192, 279–285. [Google Scholar] [CrossRef]
- Calvete, C.; González, J.M.; Ferrer, L.M.; Ramos, J.J.; Lacasta, D.; Delgado, I.; Uriarte, J. Assessment of targeted selective treatment criteria to control subclinical gastrointestinal nematode infections on sheep farms. Vet. Parasitol. 2020, 277, 109018. [Google Scholar] [CrossRef]
- Torres-Acosta, J.F.J.; Pérez-Cruz, M.; Canul-Ku, H.L.; Soto-Barrientos, N.; Cámara-Sarmiento, R.; Aguilar-Caballero, A.J.; Lozano-Argáes, I.; Le-Bigot, C.; Hoste, H. Building a combined targeted selective treatment scheme against gastrointestinal nematodes in tropical goats. Small Rumin. Res. 2014, 121, 27–35. [Google Scholar] [CrossRef]
Answer Choices | Responses (%) |
---|---|
Trichostrongylids | 13 (56.5%) |
Tapeworm | 13 (56.5%) |
Liver fluke | 9 (39.1%) |
Coccidia | 9 (39.1%) |
Lungworms | 4 (17.4%) |
Negative for endoparasites | 0 (0.0%) |
Unknown, no faecal sample examinations | 5 (22.7%) |
Figure | N Sheep | FAMACHA© | BCS | Dag Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Quartiles | Quartiles | Quartiles | ||||||||
25 | 50 | 75 | 25 | 50 | 75 | 25 | 50 | 75 | ||
1 | 29 | 2.0 | 2.0 | 3.0 | 2.5 | 3.0 | 3.5 | 0.0 | 0.0 | 1.0 |
2 | 22 | 2.0 | 2.0 | 3.0 | 1.0 | 1.5 | 2.0 | 0.0 | 1.0 | 1.0 |
3 | 87 | 2.0 | 3.0 | 4.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.0 | 4.0 |
4 | 126 | 1.0 | 2.0 | 2.0 | 2.0 | 2.5 | 3.5 | 1.0 | 1.0 | 2.0 |
5 | 95 | 1.0 | 2.0 | 2.0 | 1.5 | 2.0 | 3.0 | 1.0 | 1.0 | 2.0 |
6 | 161 | 1.5 | 2.0 | 3.0 | 1.5 | 2.0 | 2.5 | 0.0 | 1.0 | 1.0 |
7 | 55 | 1.0 | 2.0 | 2.0 | 1.5 | 2.0 | 2.0 | 1.0 | 3.0 | 3.0 |
8 | 22 | 1.0 | 2.0 | 2.0 | 1.0 | 2.0 | 2.0 | 1.0 | 3.0 | 4.0 |
9 | 17 | 1.0 | 2.0 | 3.0 | 1.0 | 1.5 | 2.5 | 0.0 | 0.0 | 1.0 |
10 | 118 | 1.0 | 2.0 | 2.0 | 2.0 | 2.25 | 3.0 | 1.0 | 1.0 | 3.0 |
11 | 119 | 1.0 | 1.0 | 2.0 | 1.0 | 1.5 | 1.5 | 2.0 | 3.0 | 3.0 |
12 | 128 | 2.0 | 2.0 | 3.0 | 2.0 | 2.5 | 3.0 | 1.0 | 2.0 | 3.0 |
13 | 69 | 1.0 | 2.0 | 3.0 | 2.0 | 2.0 | 3.0 | 1.0 | 2.0 | 3.0 |
14 | 19 | 2.0 | 3.0 | 3.0 | 1.0 | 2.0 | 2.5 | 1.0 | 3.0 | 3.0 |
15 | 42 | 2.0 | 2.0 | 3.0 | 1.5 | 1.5 | 2.0 | 1.0 | 2.0 | 3.0 |
16 | 86 | 1.0 | 2.0 | 3.0 | 2.5 | 3.0 | 3.5 | 0.0 | 1.0 | 1.0 |
Farm ID | N Sheep | Cumulative Egg Shedding Ʃ Farm | >90% Percentile | >75% Percentile | ||
---|---|---|---|---|---|---|
N Sheep | Ʃ Eggs (%) | N Sheep | Ʃ Eggs (%) | |||
1 | 29 | 5365 | 2 | 1670 (31.1) | 7 | 3855 (71.9) |
2 | 22 | 4110 | 2 | 1905 (46.4) | 5 | 3040 (74.0) |
3 | 87 | 98,670 | 8 | 42,540 (43.1) | 21 | 71,545 (72.5) |
4 | 126 | 27,135 | 12 | 15,980 (58.9) | 29 | 22,730 (83.8) |
5 | 95 | 158,245 | 9 | 64,685 (40.9) | 23 | 106,435 (67.3) |
6 | 161 | 212,195 | 16 | 109,455 (51.6) | 39 | 159,990 (75.4) |
7 | 55 | 23,855 | 5 | 8210 (34.4) | 13 | 16,350 (68.5) |
8 | 22 | 5590 | 2 | 2150 (38.5) | 5 | 3495 (62.5) |
9 | 17 | 24,990 | 1 | 4615 (18.5) | 4 | 11,815 (47.3) |
10 | 118 | 54,475 | 11 | 22,860 (42.0) | 29 | 38,485 (70.6) |
11 | 119 | 74,790 | 11 | 39,475 (52.8) | 29 | 60,680 (81.1) |
12 | 128 | 136,430 | 12 | 52,045 (38.1) | 32 | 97,080 (71.2) |
13 | 69 | 71,475 | 6 | 24,155 (33.8) | 17 | 49,450 (69.2) |
14 | 19 | 5980 | 1 | 2085 (34.9) | 4 | 3870 (64.7) |
15 | 42 | 14,810 | 3 | 5680 (38.4) | 10 | 10,570 (71.4) |
16 | 86 | 34,160 | 8 | 13,685 (40.1) | 21 | 24,495 (71.7) |
Farm ID | N Samples | N Pools | % H. contortus |
---|---|---|---|
1 | 29 | 6 | 24.9 |
2 | 18 | 6 | 65.7 |
3 | 87 | 6 | 61.6 |
4 | 31 | 3 | 50.6 |
5 | 94 | 6 | 48.5 |
6 | 159 | 10 | 70.8 |
7 | 48 | 6 | 66.1 |
8 | 20 | 3 | 48.7 |
9 | 17 | 3 | 63.1 |
10 | 93 | 9 | 67.9 |
11 | 77 | 7 | 65.9 |
12 | 103 | 8 | 64.2 |
13 | 64 | 6 | 44.1 |
14 | 15 | 2 | 31.2 |
15 | 37 | 2 | 66.7 |
16 | 73 | 6 | 73.9 |
Farm ID | N Pools | N Pools Positive | ||
---|---|---|---|---|
D. dentriticum | F. hepatica | Protostrongylidae | ||
1 | 6 | 0 | 0 | 3 |
2 | 6 | 0 | 0 | 1 |
3 | 17 | 9 | 0 | 17 |
4 | 26 | 9 | 0 | 3 |
5 | 19 | 5 | 0 | 0 |
6 | 34 | 0 | 0 | 11 |
7 | 12 | 0 | 0 | 5 |
8 | 6 | 5 | 1 | 5 |
9 | 4 | 0 | 0 | 4 |
10 | 23 | 6 | 0 | 4 |
11 | 23 | 0 | 9 | 0 |
12 | 25 | 0 | 0 | 25 |
13 | 14 | 0 | 0 | 0 |
14 | 4 | 3 | 0 | 3 |
15 | 9 | 3 | 0 | 8 |
16 | 18 | 0 | 0 | 2 |
Clinical Parameter | Rater | N Sheep | Kappa | Lower 95%CI | Upper 95%CI |
---|---|---|---|---|---|
FAMACHA© | 1vet–2stud | 256 | 0.675 | 0.596 | 0.755 |
1vet–3stud | 232 | 0.667 | 0.579 | 0.756 | |
2stud–3stud | 469 | 0.808 | 0.766 | 0.851 | |
BCS | 1vet–2stud | 256 | 0.632 | 0.549 | 0.716 |
1vet–3stud | 233 | 0.669 | 0.600 | 0.738 | |
2stud–3stud | 194 | 0.570 | 0.479 | 0.660 | |
Dag score | 1vet–2stud | 209 | 0.718 | 0.637 | 0.799 |
1vet–3stud | 185 | 0.654 | 0.540 | 0.769 | |
2stud–3stud | 148 | 0.616 | 0.491 | 0.741 |
Egg Excretion | N Farms | N Samples | Parameter | r (95%CI) | p Value |
---|---|---|---|---|---|
Total EpG | 16 | 1195 | FAMACHA© | 0.196 (0.139; 0.251) | <0.001 |
BCS | −0.156 (−0.212; −0.098) | <0.001 | |||
Dag score | 0.041 (−0.018; 0.099) | 0.158 | |||
>50% H. contortus | 11 | 961 | FAMACHA© | 0.233 (0.171; 0.294) | <0.001 |
BCS | −0.149 (−0.212; −0.085) | <0.001 | |||
Dag score | 0.027 (−0.038; 0.092) | 0.407 | |||
≤50% H. contortus | 5 | 234 | FAMACHA© | 0.027 (−0.105; 0.158) | 0.682 |
BCS | −0.236 (−0.357; −0.107) | <0.001 | |||
Dag score | 0.133 (0.001; −0.261) | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajovitz, F.; Adduci, I.; Yan, S.; Wiedermann, S.; Tichy, A.; Joachim, A.; Wittek, T.; Hinney, B.; Lichtmannsperger, K. Correlation of Faecal Egg Counts with Clinical Parameters and Agreement between Different Raters Assessing FAMACHA©, BCS and Dag Score in Austrian Dairy Sheep. Animals 2023, 13, 3206. https://doi.org/10.3390/ani13203206
Sajovitz F, Adduci I, Yan S, Wiedermann S, Tichy A, Joachim A, Wittek T, Hinney B, Lichtmannsperger K. Correlation of Faecal Egg Counts with Clinical Parameters and Agreement between Different Raters Assessing FAMACHA©, BCS and Dag Score in Austrian Dairy Sheep. Animals. 2023; 13(20):3206. https://doi.org/10.3390/ani13203206
Chicago/Turabian StyleSajovitz, Floriana, Isabella Adduci, Shi Yan, Sandra Wiedermann, Alexander Tichy, Anja Joachim, Thomas Wittek, Barbara Hinney, and Katharina Lichtmannsperger. 2023. "Correlation of Faecal Egg Counts with Clinical Parameters and Agreement between Different Raters Assessing FAMACHA©, BCS and Dag Score in Austrian Dairy Sheep" Animals 13, no. 20: 3206. https://doi.org/10.3390/ani13203206
APA StyleSajovitz, F., Adduci, I., Yan, S., Wiedermann, S., Tichy, A., Joachim, A., Wittek, T., Hinney, B., & Lichtmannsperger, K. (2023). Correlation of Faecal Egg Counts with Clinical Parameters and Agreement between Different Raters Assessing FAMACHA©, BCS and Dag Score in Austrian Dairy Sheep. Animals, 13(20), 3206. https://doi.org/10.3390/ani13203206