Estimating the Spatial Distribution and Future Conservation Requirements of the Spotted Seal in the North Pacific
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Spotted Seal Occurrence Data
2.2. Environmental Predictor Variables
2.3. Estimates of Niche Divergence
2.4. SDMs Establishment and Projection
2.5. Protection Gap Analysis
3. Results
3.1. Niche Divergence among the Three Populations
3.2. Current SDMs Projections
3.3. Habitat Suitability under Future Climate Scenarios
3.4. Spotted Seal Conservation Gap Analysis
4. Discussion
4.1. Consideration of Local Adaptation
4.2. Impacts of Climate Change on Spotted Seals
4.3. Model Predictive Accuracy
4.4. Management and Conservation of Spotted Seals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawson, T.P.; Jackson, S.T.; House, J.I. Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sorte, C.J.B.; Williams, S.L.; Carlton, J.T. Marine range shifts and species introductions: Comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 2010, 19, 303–316. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Sarmiento, J.L.; Dunne, J.; Frölicher, T.L.; Lam, V.W.Y.; Deng Palomares, M.L.; Watson, R.; Pauly, D. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 2012, 3, 254–258. [Google Scholar] [CrossRef]
- Hastings, R.A.; Rutterford, L.A.; Freer, J.J.; Collins, R.A.; Simpson, S.D.; Genner, M.J. Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Curr. Biol. 2020, 30, 1572–1579. [Google Scholar] [CrossRef]
- Fossheim, M.; Primicerio, R.; Johannesen, E.; Ingvaldsen, R.B.; Aschan, M.M.; Dolgov, A.V. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Chang. 2015, 5, 673–677. [Google Scholar] [CrossRef]
- Tian, J.; Lu, Z.; Sanganyado, E.; Gan, Z.; Wang, Z.; Kong, Z.; Wu, J.; Liu, W. Tissue distribution and trophic magnification of trace elements in typical marine mammals in Bohai and north Yellow Seas. Mar. Pollut. Bull. 2022, 184, 114135. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, M.; Foden, W.B.; Visconti, P. Assessing species vulnerability to climate change. Nat. Clim. Chang. 2015, 5, 215–224. [Google Scholar] [CrossRef]
- Smith, A.B.; Godsoe, W.; Rodriguez-Sanchez, F.; Wang, H.H.; Warren, D. Niche Estimation Above and Below the Species Level. Trends. Ecol. Evol. 2019, 34, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Lee-Yaw, J.A.; Kharouba, H.M.; Bontrager, M.; Mahony, C.; Csergo, A.M.; Noreen, A.M.; Li, Q.; Schuster, R.; Angert, A.L. A synthesis of transplant experiments and ecological niche models suggests that range limits are often niche limits. Ecol. Lett. 2016, 19, 710–722. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Cardoso, P. Decomposing the Causes for Niche Differentiation Between Species Using Hypervolumes. Front. Ecol. Evol. 2020, 8, 00243. [Google Scholar] [CrossRef]
- Peterson, M.L.; Doak, D.F.; Morris, W.F. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob. Chang. Biol. 2019, 25, 775–793. [Google Scholar]
- Zhao, X.; Li, X.; Zhang, Z.; Garber, P.A.; Yu, M.; Qiao, H.; Li, M. Differential response to climate change and human activities in three lineages of Sichuan snub-nosed monkeys (Rhinopithecus roxellana). Divers. Distrib. 2022, 28, 2416–2428. [Google Scholar] [CrossRef]
- Zhang, P.; Grenouillet, G.; Dong, X.; Zheng, Y.; Lek, S.; Chang, J. Capturing response differences of species distribution to climate and human pressures by incorporating local adaptation: Implications for the conservation of a critically endangered species. J. Environ. Manag. 2021, 284, 111998. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, L.; Fu, J.; Sun, B.; Liu, C. Predicting the habitat suitability for populations of Pacific cod under different climate change scenarios considering intraspecific genetic variation. Ecol. Indic. 2022, 142, 109248. [Google Scholar] [CrossRef]
- Hu, Z.M.; Zhang, Q.S.; Zhang, J.; Kass, J.M.; Mammola, S.; Fresia, P.; Draisma, S.G.A.; Assis, J.; Jueterbock, A.; Yokota, M.; et al. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol. Ecol. 2021, 30, 3840–3855. [Google Scholar] [CrossRef] [PubMed]
- Boveng, P.L. Phoca Largha. The IUCN Red List of Threatened Species 2016: e.T17023A45229806. 2016. Available online: https://www.iucnredlist.org/species/17023/45229806 (accessed on 6 September 2023).
- Wang, F.; Yu, Y.; Wu, H.; Wu, W.; Wang, L.; An, L.; Cai, W. Microplastics in spotted seal cubs (Phoca largha): Digestion after ingestion? Sci. Total Environ. 2021, 785, 147426. [Google Scholar] [CrossRef]
- Shaughnessy, P.D.; Fay, F.H. A review of the taxonomy and nomenclature of North Pacific Harbour seals. J. Zool. 1977, 182, 385–419. [Google Scholar] [CrossRef]
- Boveng, P.L.; Bengtson, J.L.; Buckley, T.W.; Cameron, M.F.; Dahle, S.P.; Kelly, B.P.; Megrey, B.A.; Overland, J.E.; Williamson, N.J. Status Review of the Spotted Seal (Phoca largha); Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service: Silver Spring, MD, USA, 2009; 153p, NMFS-AFSC-200. [Google Scholar]
- Trukhin, A.M. Changes in the Breeding Range of Spotted Seals, Phoca largha (Pallas, 1811) (Carnivora, Pinnipedia), in the Western Sea of Japan: Causes and Effects. Russ. J. Mar. Biol. 2022, 48, 101–107. [Google Scholar] [CrossRef]
- Podlesnykh, A.V.; Katin, I.O. Genetic variation in the spotted seal (Phoca largha Pallas, 1811) from the Rimsky-Korsakov Archipelago (Peter the Great Bay, western sea of Japan) as inferred from mitochondrial DNA control region sequences. Zool. Anz. 2022, 301, 174–178. [Google Scholar] [CrossRef]
- Hamann, A.; Aitken, S.N. Conservation planning under climate change: Accounting for adaptive potential and migration capacity in species distribution models. Divers. Distrib. 2013, 19, 268–280. [Google Scholar] [CrossRef]
- The Global Biodiversity Information Facility (GBIF): An On-Line, Free and Open Access to Biodiversity Data. Available online: https://www.gbif.org/occurrence/download/0229487-220831081235567 (accessed on 21 December 2022).
- The Ocean Biogeographic Information System (OBIS): An On-Line, Worldwide Atlas for Accessing, Modeling and Mapping Marine Biological Data in a Multidimensional Geographic Context. Available online: https://datasets.obis.org/downloads/540d223c-5ef1-458e-b271-6f786e8d1d8b.zip (accessed on 4 December 2022).
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Basher, Z.; Bowden, D.; Costello, M.J. Global Marine Environment Datasets (GMED). World Wide Web Electronic Publication. Version 2.0 (Rev.02.2018). Available online: http://gmed.auckland.ac.nz (accessed on 15 April 2023).
- Assis, J.; Tyberghein, L.; Bosch, S.; Verbruggen, H.; Serrão, E.A.; De Clerck, O.; Tittensor, D. Bio-ORACLE v2.0: Extending Marine Data Layers for Bioclimatic Modelling. Available online: https://bio-oracle.org/ (accessed on 6 April 2023).
- Naimi, B.; Hamm, N.A.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Fournier, A.; Barbet-Massin, M.; Rome, Q.; Courchamp, F. Predicting species distribution combining multi-scale drivers. Glob. Ecol. Conserv. 2017, 12, 215–226. [Google Scholar] [CrossRef]
- Zhang, Z.; Kass, J.M.; Mammola, S. Lineage-level distribution models lead to more realistic climate change. Divers. Distrib. 2021, 27, 684–695. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Concluding Remarks. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Blonder, B.; Morrow, C.B.; Maitner, B.; Harris, D.J.; Lamanna, C.; Violle, C.; Enquist, B.J.; Kerkhoff, A.J. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evol. 2018, 9, 305–319. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C. BAT–Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 2015, 6, 232–236. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Engler, R.; Breiner, F.; Georges, M.D.; Thuiller, C.W. biomod2: Ensemble Platform for Species Dis-tribution Modeling. Available online: https://cran.r-project.org/web/packages/biomod2/index.html (accessed on 6 April 2023).
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G.; Pearson, R. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Zanardo, N.; Parra, G.J.; Passadore, C.; Möller, L.M. Ensemble modelling of southern Australian bottlenose dolphin Tursiops sp. distribution reveals important habitats and their potential ecological function. Mar. Ecol. Prog. Ser. 2017, 569, 253–266. [Google Scholar] [CrossRef]
- UNEP-WCMC and IUCN (2023), Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-Based Conservation Measures (WD-OECM). Available online: https://www.protectedplanet.net (accessed on 4 May 2023).
- Zhuang, H.; Shao, F.; Zhang, C.; Xia, W.; Wang, S.; Qu, F.; Wang, Z.; Lu, Z.; Zhao, L.; Zhang, Z. Spatial-temporal shifting patterns and in situ conservation of spotted seal (Phoca largha) populations in the Yellow Sea ecoregion. Integr. Zool. 2023. [CrossRef] [PubMed]
- Rice, D.W. A List of the Marine Mammals of the World; Department of Commerce, National Oceanic and Atmospheric Admin-istration, National Marine Fisheries Service: Silver Spring, MD, USA, 1977; 13p, NMFS-SSRF-711. [Google Scholar]
- Fedoseev, G. Use of Nonmetrical Characters of Skulls of Bering Sea Seals in a Study of the Phenotypic Structure of Their Populations; Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service: Silver Spring, MD, USA, 1984; pp. 49–54, NMFS 12. [Google Scholar]
- Razgour, O.; Forester, B.; Taggart, J.B.; Bekaert, M.; Juste, J.; Ibanez, C.; Puechmaille, S.J.; Novella-Fernandez, R.; Alberdi, A.; Manel, S. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl. Acad. Sci. USA 2019, 116, 10418–10423. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, D.H.; Max, T.L.; Allan, G.J.; Lau, M.K.; Shuster, S.M.; Whitham, T.G. Genetically informed ecological niche models improve climate change predictions. Glob. Chang. Biol. 2017, 23, 164–176. [Google Scholar] [CrossRef]
- Oney, B.; Reineking, B.; O’Neill, G.; Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 2013, 3, 437–449. [Google Scholar] [CrossRef]
- Grebmeier, J.M.; Overland, J.E.; Moore, S.E.; Farley, E.V.; Carmack, E.C.; Cooper, L.W.; Frey, K.E.; Helle, J.H.; McLaughlin, F.A.; McNutt, S.L. A major ecosystem shift in the northern Bering Sea. Science 2006, 311, 1461–1464. [Google Scholar] [CrossRef]
- Polovina, J.J.; Howell, E.A.; Kobayashi, D.R.; Seki, M.P. The transition zone chlorophyll front updated: Advances from a decade of research. Prog. Oceanogr. 2017, 150, 79–85. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.; Han, Z. Predicting the Effects of Climate Change on the Suitable Habitat of Japanese Spanish Mackerel (Scomberomorus niphonius) Based on the Species Distribution Model. Front. Mar. Sci. 2022, 9, 927790. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, L.; Shao, F.; Lu, Z.; Tian, J.; Liu, C. Estimating the impacts of climate change on the habitat suitability of common minke whales integrating local adaptation. Front. Mar. Sci. 2022, 9, 923205. [Google Scholar] [CrossRef]
- Chen, Y.; Shan, X.; Ovando, D.; Yang, T.; Dai, F.; Jin, X. Predicting current and future global distribution of black rockfish (Sebastes schlegelii) under changing climate. Ecol. Indic. 2021, 128, 107799. [Google Scholar] [CrossRef]
- Breiner, F.T.; Guisan, A.; Bergamini, A.; Nobis, M.P.; Anderson, B. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 2015, 6, 1210–1218. [Google Scholar] [CrossRef]
- Bahn, V.; McGill, B.J. Testing the predictive performance of distribution models. Oikos 2013, 122, 321–331. [Google Scholar] [CrossRef]
- Albouy, C.; Delattre, V.; Donati, G.; Frölicher, T.L.; Albouy-Boyer, S.; Rufino, M.; Pellissier, L.; Mouillot, D.; Leprieur, F. Global vulnerability of marine mammals to global warming. Sci. Rep. 2020, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, J. conservation of biodiversity in China: Advances and prospects. Biodivers. Sci. 2021, 29, 133–149. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, Y.; Melville, D.S.; Fan, J.; Liu, J.; Dong, J.; Tan, K.; Cheng, X.; Fuller, R.A.; Xiao, X.; et al. Changes in area and number of nature reserves in China. Conserv. Biol. 2019, 33, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Witherell, D.; Woodby, D. Application of Marine Protected Areas for Sustainable Production and Marine. Mar. Fish. Rev. 2005, 67, 1–28. [Google Scholar]
- Hamilton, C.D.; Lydersen, C.; Aars, J.; Acquarone, M.; Atwood, T.; Baylis, A.; Biuw, M.; Boltunov, A.N.; Born, E.W.; Boveng, P.; et al. Marine mammal hotspots across the circumpolar Arctic. Divers. Distrib. 2022, 28, 2729–2753. [Google Scholar] [CrossRef]
- Trukhin, A.M.; Permyakov, P.A.; Ryazanov, S.D.; Lobanov, V.B.; Kim, H.W.; Choi, Y.M.; Sohn, H. Migrations of young spotted seals (Phoca largha) from Peter the Great Bay, Sea of Japan/East Sea, and the pattern of their use of seasonal habitats. PLoS ONE 2021, 16, e0244232. [Google Scholar]
- Solovyeva, M.A.; Kuznetsova, D.M.; Glazov, D.M.; Burkanov, V.N.; Rozhnov, V.V. The First Data on the Use of the Pacific Ocean Area by the Okhotsk Population of the Spotted Seal Phoca largha. Biol. Bull. 2021, 48 (Suppl. S1), S219–S224. [Google Scholar] [CrossRef]
- Solov’eva, M.A.; Glazov, D.M.; Kuznetsova, D.M.; Rozhnov, V.V. Movements of spotted seals (Phoca largha) in the Sea of Okhotsk according to satellite tagging data. Russ. J. Ecol. 2016, 47, 405–411. [Google Scholar] [CrossRef]
- Han, J.; Lu, Z.; Tian, J.; Ma, Z.; Wang, Z.; Yang, Y.; Wang, Q.; Song, X.; Peng, Z. Release studies on spotted seals (Phoca largha) using satellite telemetry tracking technique. Acta Theriol. Sin. 2013, 33, 300. [Google Scholar]
- Mizuno, A.W.; Wada, A.; Ishinazaka, T.; Hattori, K.; Watanabe, Y.; Ohtaishi, N. Distribution and abundance of spotted seals Phoca largha and ribbon seals Phoca fasciata in the southern Sea of Okhotsk. Ecol. Res. 2002, 17, 79–96. [Google Scholar] [CrossRef]
- Lowry, L.F.; Burkanov, V.N.; Frost, K.J.; Simpkins, M.A.; Davis, R.; DeMaster, D.P.; Suydam, R.; Springer, A. Habitat use and habitat selection by spotted seals (Phoca largha) in the Bering Sea. Can. J. Zool. 2000, 78, 1959–1971. [Google Scholar] [CrossRef]
- Lowry, L.F.; Frost, K.J.; Davis, R.; DeMaster, D.P.; Suydam, R.S. Movements and behavior of satellite-tagged spotted seals (Phoca largha) in the Bering and Chukchi Seas. Polar Biol. 1998, 19, 221–230. [Google Scholar] [CrossRef]
Environment Variable | Unit | Spatial Resolution | Source |
---|---|---|---|
water depth | m | 5 arc minutes | https://gmed.aucklandac.nz/, accessed on 15 April 2023 |
distance to shore | km | 5 arc minutes | https://gmed.auckland.ac.nz/, accessed on 15 April 2023 |
calcite | mol·m−3 | 5 arc minutes | https://bio-oracle.org/, accessed on 6 April 2023 |
chlorophyll concentration | mg·m−3 | 5 arc minutes | https://bio-oracle.org/, accessed on 6 April 2023 |
currents velocity | m·s−1 | 5 arc minutes | https://bio-oracle.org/, accessed on 6 April 2023 |
dissolved oxygen | mol·m−3 | 5 arc minutes | https://bio-oracle.org/, accessed on 6 April 2023 |
sea ice concentration | fraction | 5 arc minutes | https://bio-oracle.org/, accessed on 6 April 2023 |
ice thickness | m | 5 arc minutes | https://bio-oracle.org/, accessed on 6 April 2023 |
salinity | PSS | 5 arc minutes | https://bio-oracle.org/, accessed on 6 April 2023 |
water temperature | °C | 5 arc minutes | https://bio-oracle.org/, accessed on 6 April 2023 |
Populations Pair | βTotal | Niche Shift | Niche Contraction/ Expansion |
---|---|---|---|
BDPS-ODPS | 0.81 | 0.12(15%) | 0.69(85%) |
BDPS-SDPS | 0.92 | 0.04(4%) | 0.88(96%) |
ODPS-SDPS | 0.86 | 0.27(32%) | 0.59(68%) |
Ensemble | TSS | AUC | NME |
---|---|---|---|
Species model | 0.857 | 0.953 | 8 |
BDPS model | 0.861 | 0.949 | 9 |
ODPS model | 0.932 | 0.975 | 9 |
SDPS model | 0.950 | 0.978 | 9 |
RCP | BDPS | ODPS | SDPS | Species | ||||
---|---|---|---|---|---|---|---|---|
2050s | 2100s | 2050s | 2100s | 2050s | 2100s | 2050s | 2100s | |
RCP 2.6 | −32.48 | −38.34 | −32.80 | −47.61 | 13.15 | 17.86 | −1.43 | −1.73 |
RCP 8.5 | −38.24 | −63.94 | −44.25 | −66.51 | 9.57 | 62.91 | 2.27 | 36.16 |
Climate Scenario | Area Protected (km2) | Percentage of Protection [9] |
---|---|---|
current | 278,617 | 5.65 |
2050s RCP 2.6 | 278,062 | 6.17 |
2050s RCP 8.5 | 277,776 | 6.04 |
2100s RCP 2.6 | 279,403 | 6.22 |
2100s RCP 8.5 | 277,449 | 5.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhuang, H.; Liu, S.; Cong, B.; Huang, W.; Li, T.; Liu, K.; Zhao, L. Estimating the Spatial Distribution and Future Conservation Requirements of the Spotted Seal in the North Pacific. Animals 2023, 13, 3260. https://doi.org/10.3390/ani13203260
Yang L, Zhuang H, Liu S, Cong B, Huang W, Li T, Liu K, Zhao L. Estimating the Spatial Distribution and Future Conservation Requirements of the Spotted Seal in the North Pacific. Animals. 2023; 13(20):3260. https://doi.org/10.3390/ani13203260
Chicago/Turabian StyleYang, Leyu, Hongfei Zhuang, Shenghao Liu, Bailin Cong, Wenhao Huang, Tingting Li, Kaiyu Liu, and Linlin Zhao. 2023. "Estimating the Spatial Distribution and Future Conservation Requirements of the Spotted Seal in the North Pacific" Animals 13, no. 20: 3260. https://doi.org/10.3390/ani13203260
APA StyleYang, L., Zhuang, H., Liu, S., Cong, B., Huang, W., Li, T., Liu, K., & Zhao, L. (2023). Estimating the Spatial Distribution and Future Conservation Requirements of the Spotted Seal in the North Pacific. Animals, 13(20), 3260. https://doi.org/10.3390/ani13203260