Concentration of Potentially Toxic Elements in Farmed Fallow Deer Antlers Depending on Diet and Age
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sampling
2.3. Analysis of PTEs Concentration in Antlers, Winter Food, and Pasture Plants
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawicka-Kapusta, K.; Kozłowski, J.; Sokołowska, T. Heavy Metals in Tits from Polluted Forests in Southern Poland. Environ. Pollut. 1986, 42, 297–310. [Google Scholar] [CrossRef]
- Falandysz, J.; Szymczyk–Kobrzyńska, K.; Brzostowski, A.; Zalewski, K.; Zasadowski, A. Concentrations of heavy metals in the tissues of red deer (Cervus elaphus) from the region of Warmia and Mazury, Poland. Food Addit Contam. 2005, 22, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Cygan-Szczegielniak, D.; Stanek, M.; Stasiak, K.; Roślewska, A.; Janicki, B. The content of mineral elements and heavy metals in the hair of red deer (Cervus elaphus L.) from selected regions of Poland. Folia Biol. 2018, 66, 133–142. [Google Scholar] [CrossRef]
- Cappelli, J.; Frasca, I.; Garcia, A.; Landete-Castillejos, T.; Luccarini, S.; Gallego, L.; Morimando, F.; Varuzza, P.; Zaccaroni, M. Roe deer as a bioindicator: Preliminary data on the impact of the geothermal power plants on the mineral profile internal and bone tissues in Tuscany (Italy). Environ. Sci. Pollut. Res. 2020, 27, 36121–36131. [Google Scholar] [CrossRef]
- Gaspar-López, E.; Landete-Castillejos, T.; Gallego, L.; García, A.J. Antler growth rate in yearling Iberian red deer (Cervus elaphus hispanicus). Eur. J. Wildl. Res. 2008, 54, 753–755. [Google Scholar] [CrossRef]
- Gómez, J.A.; Ceacero, F.; Landete-Castillejos, T.; Gaspar-López, E.; García, A.J.; Gallego, L. Factors affecting antler investment in Iberian red deer. Anim. Prod. Sci. 2012, 52, 867–873. [Google Scholar] [CrossRef]
- Ceacero, F.; Pluháček, J.; Landete-Castillejos, T.; García, A.J.; Gallego, L. Inter-Specific Differences in the Structure and Mechanics but Not the Chemical Composition of Antlers in Three Deer Species. Ann. Zool. Fenn. 2015, 52, 368–376. [Google Scholar] [CrossRef]
- Chyla, A.; Lorenz, K.; Gaggi, C.; Renzoni, A. Pollution effects on wildlife: Roe deer antlers as non-destructive bioindicator. Environ. Prot. Eng. 1996, 22, 65–70. [Google Scholar]
- Kierdorf, U.; Kierdorf, H. Roe and red deer antlers as bioindicators of pollution of deer habitats by lead and fluoride. Vet. Arhiv 2006, 76, S117–S129. [Google Scholar]
- Pokorny, B. Roe deer Capreolus capreolus as an accumulative bioindicator of heavy metals in Slovenia. Web Ecol. 2000, 1, 54–62. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Liu, X.F.; Hou, Y.T.; Wang, R.R.; Li, P.F.; Zhao, C.W. Quality control of chinese velvet antler by profiling of pesticide residues and heavy metals. Appl. Ecol. Environ. Res. 2019, 17, 10731–10742. [Google Scholar] [CrossRef]
- Ludolphy, C.; Kierdorf, U.; Kierdorf, H. Antlers of European roe deer (Capreolus capreolus) as monitoring units to assess lead pollution in a floodplain contaminated by historical metal ore mining, processing, and smelting in the Harz Mountains, Germany. Environ. Pollut. 2022, 302, 119080. [Google Scholar] [CrossRef] [PubMed]
- Landete-Castillejos, T.; Molina-Quilez, I.; Estevez, J.A.; Ceacero, F.; Garcia, A.J.; Gallego, L. Alternative hypothesis for the origin of osteoporosis: The role of Mn. Front Biosci. 2012, 4, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Ceacero, F. Long or heavy? Physiological constraints in the evolution of antlers. J. Mamm. Evol. 2015, 23, 2209–2216. [Google Scholar] [CrossRef]
- Tajchman, K.; Ukalska-Jaruga, A.; Ceacero, F.; Pecio, M.; Steiner-Bogdaszewska, Ż. Concentration of Macroelements and Trace Elements in Farmed Fallow Deer Antlers Depending on Age. Animals 2022, 12, 3409. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; Estevez, J.A.; Ceacero, F.; García, A.J.; Gallego, L. A review of factors affecting antler composition and mechanics. Front. Biosci. 2012, 4, 2328–2339. [Google Scholar] [CrossRef]
- Kuiters, A.T. Accumulation of cadmium and lead in red deer and wild boar at the Veluwe, the Netherlands. Vet. Q. 1996, 18 (Suppl. 3), 134–135. [Google Scholar] [CrossRef]
- Sileo, L.; Beyer, W.N. Heavy metals in white-tailed deer living near a zinc smelter in Pennsylvania. J. Wildl. Dis. 1985, 21, 289–296. [Google Scholar] [CrossRef]
- Medvedev, N. Concentrations of Cadmium, Lead and Sulphur in Tissues of Wild, Forest Reindeer from North-West Russia. Environ. Pollut. 1995, 90, 1–5. [Google Scholar] [CrossRef]
- Alldredge, M.W.; Peek, J.M.; Wall, W.A. Nutritional quality of forages used by elk in northern Idaho. J. Range Manag. 2002, 55, 253–259. [Google Scholar] [CrossRef]
- Demesko, J.; Markowski, J.; Demesko, E.; Słaba, M.; Hejduk, J.; Minias, P. Ecotype Variation in Trace Element Content of Hard Tissues in the European Roe Deer (Capreolus capreolus). Arch. Environ. Contam. Toxicol. 2019, 7, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Tajchman, K.; Ukalska-Jaruga, A.; Bogdaszewski, M.; Pecio, M.; Dziki-Michalska, K. Accumulation of Toxic elements in Bone and Bone Marrow of Diet Living in Various Ecosystems. A Case Study of Farmed and Wild-Living Deer. Animals 2020, 10, 2151. [Google Scholar] [CrossRef] [PubMed]
- Mattiello, S. Welfare issues of modern deer farming. Ital. J. Anim. Sci. 2009, 8, 205–217. [Google Scholar] [CrossRef]
- Dryden, G.M. Nutrition of antler growth in deer. Anim. Prod. Sci. 2016, 56, 962–970. [Google Scholar] [CrossRef]
- Tajchman, K.; Steiner-Bogdaszewska, Ż.; Żółkiewski, P. Requirements and role of selected micro and macro elements in nutrition of Cervids (Cervidae)—Review. Appl. Ecol. Environ. Res. 2018, 16, 7669–7686. [Google Scholar] [CrossRef]
- DEFRA. Code of Recommendations for the Welfare of Farmed Deer. IOP Publishing PhysicsWeb. 2023. Available online: http://www.defra.gov.uk/animalh/welfare/farmed/othersps/deer/pb0055/deercode.htm (accessed on 25 February 2023).
- FEDFA. The Federation of European Deer Farmers Associations. IOP Publishing PhysicsWeb. 2023. Available online: https://www.fedfa.com/en/fedfa-members/#1364 (accessed on 25 February 2023).
- Kulik, M.; Tajchman, K.; Lipiec, A.; Bąkowski, M.; Ukalska-Jaruga, A.; Ceacero, F.; Pecio, M.; Steiner-Bogdaszewska, Z. The Impact of Rotational Pasture Management for Farm-Bred Fallow Deer (Dama dama) on Fodder Quality in the Context of Animal Welfare. Agronomy 2023, 13, 1155. [Google Scholar] [CrossRef]
- Kosnett, M.J. Lead. In Poisoning and Drug Overdose, 5th ed.; Olson, K.R., Ed.; McGraw-Hill Professional: Chicago, IL, USA, 2006; ISBN 978-0-07-144333-3. [Google Scholar]
- Brzóska, M.M.; Moniuszko-Jakoniuk, J. Interactions between cadmium and zinc in the organism. Food Chem. Toxicol. 2001, 39, 967–971. [Google Scholar] [CrossRef]
- Martelli, A.; Pousselet, E.; Dycke, C.; Bouron, A.; Moulis, J.M. Cadmium toxicity in animal cells by interference with essential metals. Biochemie 2006, 88, 1807–1814. [Google Scholar] [CrossRef]
- Reeves, A.L. Specific metals. In Barium W: Handbook on the Toxicology of Metals; Elsevier Science Publishers: Amsterdam, The Netherlands, 1986; Volume II, pp. 84–93. [Google Scholar]
- Luckey, T.D.; Venugopal, B. Physiologic and Chemical Basis for Metal Toxicity; Plenum Press: New York, NY, USA, 1997; ISBN 978-1-4684-2952-7. [Google Scholar]
- Dahl, S.; Allain, P.; Marie, P.; Mauras, Y.; Boivin, G.; Ammann, P.; Tsouderos, Y.; Delmas, P.; Christiansen, C. Incorporation and distribution of strontium in bone. Bone 2001, 28, 446–453. [Google Scholar] [CrossRef]
- Kołodziejska, B.; Stępień, N.; Kolmas, J. The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. Mol. Sci. 2021, 22, 6564. [Google Scholar] [CrossRef]
- Querido, W.; Rossi, A.L.; Farina, M. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches. Micron 2016, 80, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Landete-Castillejos, T.; Currey, J.; Estevez, J.; Fierro, Y.; Calatayud, A.; Ceacero, F.; Garcia, A.; Gallego, L. Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 2010, 47, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Cuddihy, R.G.; Hall, R.P.; Griffith, W.C. Inhalation exposures to barium aerosols. Physical, chemical and mathematical analysis. Health Phys. 1974, 26, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Pałasz, A.; Czekaj, P. Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim. Pol. 2000, 47, 1107–1114. [Google Scholar] [CrossRef]
- Łoźna, K.; Biernat, J. Występowanie arsenu w środowisku i żywności. Rocz. Panst. Zakl. Hig. 2008, 59, 19–31. Available online: http://ros.edu.pl/text/pp_2012_029 (accessed on 25 February 2023).
- Satarug, S.; Baker, J.R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.E.; Williams, D.J.; Moore, M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83. [Google Scholar] [CrossRef]
- Brzóska, M.; Jurczuk, M.; Moniuszko-Jakoniuk, J. Interakcje kadmu z wybranymi biopierwiastkami. Terapia 1997, 7, 28–30. [Google Scholar]
- Mathews, N.E.; Porter, W.F. Acute Arsenic Toxication of Free-ranging White-tailed Deer in New York. J. Wildl. Dis. 1989, 25, 132–135. [Google Scholar] [CrossRef]
- Webb, W.L.; Rosasco, E.M.; Simpkins, S.V.R. The Effect of Chemical Debarking on Forest Wildlife. In Chemical Debarking of Some Pulpwood Species, Technical Publication 79; Wilcox, H., Czabator, F.J., Gerdami, C., Moreland, D.E., Smith, R.F., Eds.; State University of New York, College of Environmental Science and Forestry: Syracuse, NY, USA, 1956. [Google Scholar]
- Dickinson, J.O. Toxicity of The Arsenical Herbicide Monosodium Acid Methanearsonate in Cattle. Am. J. Vet. Res. 1972, 33, 1889–1892. [Google Scholar]
- Peana, M.; Medici, S.; Dadar, M.; Zoroddu, M.A.; Pelucelli, A.; Chasapis, C.T.; Bjørklund, G. Environmental barium: Potential exposure and health-hazards. Arch. Toxicol. 2021, 95, 2605–2612. [Google Scholar] [CrossRef]
- Fricker, S.P. The therapeutic application of lanthanides. Chem. Soc. Rev. 2006, 35, 5240533. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, H.A.; Griffin, R.N. Antler cycles of white-tailed deer in Mississippi. In Antler Development in Cervidae; Brown, R.D., Ed.; Caesar Kleberg, Wildlife Research Institute: Kingsville, TX, USA, 1982; pp. 15–22. [Google Scholar]
- Cygan-Szczegielniak, D.; Stasiak, K. Effects of age and sex on the content of heavy metals in the hair, liver and the longissimus lumborum muscle of roe deer Capreolus capreolus. Environ. Sci. Pollut. Res. 2021, 29, 10782–10790. [Google Scholar] [CrossRef] [PubMed]
Analysed Parameters | Group I Position 1 | Group II | Group III | Group IV | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Position 1 | Position 2 | Position 3 | Position 1 | Position 2 | Position 3 | Position 1 | Position 2 | Position 3 | |||||||||||||
M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | ||
Cd | mg/kg | 0.004 | 0.003 | 0.008 | 0.003 | 0.015 | 0.014 | 0.015 | 0.014 | 0.014 | 0.009 | 0.013 | 0.09 | 0.014 | 0.012 | 0.011 | 0.011 | 0.007 | 0.006 | 0.029 | 0.045 |
Pb | 0.166 | 0.050 | 0.197 | 0.083 | 1.375 | 2.008 | 0.385 | 0.359 | 0.698 | 1.112 | 0.209 | 0.081 | 0.286 | 0.142 | 0.317 | 0.276 | 0.326 | 0.313 | 0.414 | 0.322 | |
As | 0.024 | 0.013 | 0.023 | 0.017 | 0.032 | 0.042 | 0.061 | 0.060 | 0.085 | 0.032 | 0.070 | 0.026 | 0.076 | 0.027 | 0.136 | 0.135 | 0.090 | 0.020 | 0.113 | 0.039 | |
Ba | 68.704 | 13.115 | 77.533 | 7.173 | 81.950 | 8.628 | 71.532 | 3.758 | 70.943 | 27.282 | 61.711 | 15.422 | 53.881 | 18.383 | 59.211 | 11.174 | 54.782 | 10.530 | 53.411 | 13.903 | |
Ni | 0.253 | 0.092 | 0.431 | 0.137 | 0.853 | 1.004 | 0.594 | 0.396 | 0.511 | 0.190 | 0.382 | 0.124 | 0.420 | 0.262 | 0.400 | 0.118 | 0.411 | 0.109 | 0.523 | 0.196 | |
Sr | 5.571 | 0.734 | 5.641 | 0.441 | 5.469 | 0.343 | 5.223 | 0.238 | 4.844 | 0.994 | 4.556 | 0.660 | 4.329 | 0.711 | 4.394 | 0.237 | 4.269 | 0.349 | 4.268 | 0.421 | |
La | 0.021 | 0.014 | 0.015 | 0.005 | 0.019 | 0.009 | 0.028 | 0.011 | 0.014 | 0.005 | 0.010 | 0.002 | 0.017 | 0.007 | 0.017 | 0.013 | 0.012 | 0.004 | 0.032 | 0.048 | |
Ce | 0.054 | 0.033 | 0.030 | 0.012 | 0.040 | 0.017 | 0.064 | 0.025 | 0.034 | 0.011 | 0.022 | 0.004 | 0.041 | 0.016 | 0.036 | 0.028 | 0.026 | 0.011 | 0.062 | 0.081 |
Analysed Parameters | Group II | Group III | Group IV | H(3,23) | p | ρ | ||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |||||
Cd | mg/kg | 0.013 | 0.005 | 0.013 | 0.005 | 0.015 | 0.015 | 0.337 | 0.845 | - |
Pb | 0.653 | 0.643 | 0.398 | 0.355 | 0.352 | 0.202 | 0.284 | 0.867 | - | |
As | 0.039 | 0.034 | 0.077 | 0.021 | 0.113 | 0.047 | 9.321 | 0.009 * | II–IV (0.007 *) | |
Ba | 77.005 | 4.467 | 62.178 | 19.961 | 55.801 | 10.411 | 7.906 | 0.019 * | II–IV (0.022 *) | |
Ni | 0.626 | 0.462 | 0.438 | 0.091 | 0.445 | 0.059 | 0.112 | 0.945 | - | |
Sr | 5.445 | 0.279 | 4.576 | 0.703 | 4.311 | 0.285 | 10.794 | 0.004 * | II–III (0.047 *), II–IV (0.003 *) | |
La | 0.021 | 0.003 | 0.014 | 0.003 | 0.020 | 0.016 | 4.465 | 0.107 | - | |
Ce | 0.044 | 0.007 | 0.032 | 0.008 | 0.041 | 0.028 | 3.653 | 0.161 | - |
Analysed Parameters | Position 1 | Position 2 | Position 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
H(3,31) | p | ρ | H(3,23) | p | ρ | H(3,23) | p | ρ | |
Cd | 11.889 | 0.007 * | I–III (0.003 *) | 0.899 | 0.637 | - | 0.298 | 0.861 | - |
Pb | 6.790 | 0.078 | - | 0.073 | 0.964 | - | 0.494 | 0.781 | - |
As | 22.505 | 0.0001 * | I–III (0.014 *), I–IV (0.0009 *), II–III (0.025 *) II–IV (0.002 *) | 7.165 | 0.027 * | II–IV (0.023 *) | 6.290 | 0.043 * | II–IV (0.046 *) |
Ba | 6.957 | 0.073 | - | 9.787 | 0.007 * | II–IV (0.005 *) | 7.455 | 0.024 * | II–IV (0.035 *) |
Ni | 13.031 | 0.004 * | I–II (0.045 *), I–III (0.006 *) | 1.115 | 0.572 | - | 1.989 | 0.369 | - |
Sr | 15.082 | 0.001 * | I–IV (0.012 *), II–IV (0.009 *) | 10.628 | 0.004 * | II–IV (0.003 *) | 10.454 | 0.005 * | II–III (0.027 *), II–IV (0.006 *) |
La | 1.866 | 0.601 | - | 7.494 | 0.023 * | II–III (0.046 *), II–IV (0.043 *) | 6.624 | 0.035 * | II–III (0.046 *) |
Ce | 4.974 | 0.174 | - | 6.717 | 0.034 | - | 5.019 | 0.081 | - |
Analysed Elements N = 23 | Age | Body Mass | Antler Mass | |||
---|---|---|---|---|---|---|
ρ | p | ρ | p | ρ | p | |
Cd | −0.156 | 0.477 | −0.005 | 0.980 | −0.147 | 0.500 |
Pb | −0.081 | 0.713 | −0.159 | 0.466 | −0.205 | 0.346 |
As | 0.582 | 0.003 * | 0.340 | 0.112 | 0.389 | 0.066 |
Ba | −0.534 | 0.008 * | −0.436 | 0.037 * | −0.648 | 0.0008 * |
Ni | −0.041 | 0.849 | −0.006 | 0.976 | −0.124 | 0.571 |
Sr | −0.644 | 0.0008 * | −0.515 | 0.012 * | −0.582 | 0.003 * |
La | −0.395 | 0.061 | −0.112 | 0.610 | −0.322 | 0.133 |
Ce | −0.407 | 0.053 | −0.019 | 0.930 | −0.278 | 0.198 |
Measurements’ correlations | ||||||
Age | - | - | - | - | - | - |
Body mass | 0.663 | <0.001 * | - | - | ||
Antler mass | 0.665 | <0.001 * | 0.727 | <0.001 * | - | - |
Analysed Parameters | Position 1 | Position 2 | Position 3 | F | p | ρ | ||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | |||||
Cd | mg/kg | 0.011 | 0.009 | 0.011 | 0.010 | 0.021 | 0.032 | 0.177 | 0.915 | - |
Ba | 66.215 | 18.376 | 62.803 | 16.174 | 57.049 | 15.594 | 13.238 | 0.001 * | 1–3 (0.013) 2–3 (0.019) | |
Pb | 0.414 | 0.671 | 0.608 | 1.140 | 0.349 | 0.255 | 2.952 | 0.228 | - | |
Ni | 0.434 | 0.152 | 0.527 | 0.553 | 0.497 | 0.275 | 0.095 | 0.953 | - | |
As | 0.099 | 0.101 | 0.076 | 0.030 | 0.092 | 0.046 | 1.143 | 0.564 | - | |
Sr | 4.739 | 0.704 | 4.568 | 0.603 | 4.468 | 0.616 | 1.809 | 0.404 | - | |
La | 0.015 | 0.009 | 0.013 | 0.006 | 0.025 | 0.033 | 9.181 | 0.010 * | 2–3 (0.047) | |
Ce | 0.034 | 0.021 | 0.028 | 0.013 | 0.053 | 0055 | 13.469 | 0.001 * | 2–3 (0.006) |
Analysed Parameters | Winter Foods | Pasture | Winter Foods + Pasture April/May (Term 1) | Pasture | F | p | ρ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentrate Feed | Hay | April/May | June (Term 2) | July (Term 3) | ||||||||||
M | SD | M | SD | M | SD | M | SD | |||||||
Cd | mg/kg | 0.01 | 0.07 | 0.151 | 0.035 | 0.121 | 0.060 | 0.208 | 0.089 | 0.121 | 0.028 | 5.597 | 0.009 * | 1–2 (0.018 *), 2–3 (0.021 *) |
Pb | 0.05 | 0.21 | 0.341 | 0.165 | 0.286 | 0.181 | 0.292 | 0.124 | 0.265 | 0.065 | 0.106 | 0.899 | - | |
As | 0.01 | 0.05 | 0.036 | 0.027 | 0.037 | 0.026 | 0.031 | 0.017 | 0.026 | 0.012 | 0.759 | 0.478 | - | |
Ba | 10.78 | 14.25 | 14.795 | 5.181 | 14.286 | 6.335 | 31.278 | 15.748 | 28.308 | 6.997 | 7.241 | 0.003 * | 1–2 (0.004 *), 1–3 (0.019 *) | |
Ni | 0.24 | 2.19 | 3.723 | 1.601 | 3.069 | 1.768 | 2.456 | 1.901 | 2.175 | 2.768 | 0.423 | 0.659 | - | |
Sr | 0.16 | 1.36 | 1.096 | 0.365 | 1.055 | 0.465 | 1.646 | 0.521 | 1.296 | 0.344 | 4.091 | 0.029 * | 1–2 (0.022 *) | |
La | 0.01 | 0.12 | 0.169 | 0.151 | 0.144 | 0.134 | 0.124 | 0.055 | 0.095 | 0.037 | 0.717 | 0.497 | - | |
Ce | 0.02 | 0.23 | 0.306 | 0.303 | 0.263 | 0.265 | 0.199 | 0.116 | 0.171 | 0.096 | 0.655 | 0.527 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajchman, K.; Ukalska-Jaruga, A.; Ceacero, F.; Janiszewski, P.; Pecio, M. Concentration of Potentially Toxic Elements in Farmed Fallow Deer Antlers Depending on Diet and Age. Animals 2023, 13, 3468. https://doi.org/10.3390/ani13223468
Tajchman K, Ukalska-Jaruga A, Ceacero F, Janiszewski P, Pecio M. Concentration of Potentially Toxic Elements in Farmed Fallow Deer Antlers Depending on Diet and Age. Animals. 2023; 13(22):3468. https://doi.org/10.3390/ani13223468
Chicago/Turabian StyleTajchman, Katarzyna, Aleksandra Ukalska-Jaruga, Fracisco Ceacero, Pawel Janiszewski, and Monika Pecio. 2023. "Concentration of Potentially Toxic Elements in Farmed Fallow Deer Antlers Depending on Diet and Age" Animals 13, no. 22: 3468. https://doi.org/10.3390/ani13223468
APA StyleTajchman, K., Ukalska-Jaruga, A., Ceacero, F., Janiszewski, P., & Pecio, M. (2023). Concentration of Potentially Toxic Elements in Farmed Fallow Deer Antlers Depending on Diet and Age. Animals, 13(22), 3468. https://doi.org/10.3390/ani13223468