An Overview of Canine Inherited Neurological Disorders with Known Causal Variants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Canine Neurological Disorders with Known Causal Variants
2.1. Hereditary Ataxias
2.2. Lysosomal Storage Disorders
2.3. Neuronal Axonal Dystrophy
2.4. Hereditary Neuropathies
2.5. Congenital Myasthenic Syndromes
2.6. Epilepsies
2.7. Deafness
2.8. Dyskinesias
2.9. Encephalopathies and Myelopathies
2.10. Leukodystrophies and Hypomyelinating Disorders
2.11. Neurometabolic Disorders and Other Inherited Neurological Conditions
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mellersh, C. Inherited Neurologic Disorders in the Dog. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; De Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-Wide Association Studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Starkey, M.P. Dogs Really Are Man’s Best Friend--Canine Genomics Has Applications in Veterinary and Human Medicine! Brief. Funct. Genom. Proteom. 2005, 4, 112–128. [Google Scholar] [CrossRef]
- Parker, H.G.; Shearin, A.L.; Ostrander, E.A. Man’s Best Friend Becomes Biology’s Best in Show: Genome Analyses in the Domestic Dog. Annu. Rev. Genet. 2010, 44, 309–336. [Google Scholar] [CrossRef] [PubMed]
- Partridge, B.; Rossmeisl, J.H. Companion Animal Models of Neurological Disease. J. Neurosci. Methods 2020, 331, 108484. [Google Scholar] [CrossRef] [PubMed]
- Broad Sequencing Platform Members; Lindblad-Toh, K.; Wade, C.M.; Mikkelsen, T.S.; Karlsson, E.K.; Jaffe, D.B.; Kamal, M.; Clamp, M.; Chang, J.L.; Kulbokas, E.J.; et al. Genome Sequence, Comparative Analysis and Haplotype Structure of the Domestic Dog. Nature 2005, 438, 803–819. [Google Scholar] [CrossRef]
- Nicholas, F.; Tammen, I. Online Mendelian Inheritance in Animals (OMIA). 1995. Available online: https://ses.library.usyd.edu.au/handle/2123/31190 (accessed on 12 November 2023).
- Manto, M.; Marmolino, D. Cerebellar Ataxias. Curr. Opin. Neurol. 2009, 22, 419–429. [Google Scholar] [CrossRef]
- Hersheson, J.; Haworth, A.; Houlden, H. The Inherited Ataxias: Genetic Heterogeneity, Mutation Databases, and Future Directions in Research and Clinical Diagnostics. Hum. Mutat. 2012, 33, 1324–1332. [Google Scholar] [CrossRef]
- Urkasemsin, G.; Olby, N.J. Canine Hereditary Ataxia. Vet. Clin. N. Am. Small Anim. Pract. 2014, 44, 1075–1089. [Google Scholar] [CrossRef]
- Stee, K.; Van Poucke, M.; Lowrie, M.; Van Ham, L.; Peelman, L.; Olby, N.; Bhatti, S.F.M. Phenotypic and Genetic Aspects of Hereditary Ataxia in Dogs. Vet. Intern. Med. 2023, 37, 1306–1322. [Google Scholar] [CrossRef]
- De Lahunta, A.; Glass, E.; Kent, M. Cerebellum. In De Lahunta’s Veterinary Neuroanatomy and Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 374–413. ISBN 978-0-323-69611-1. [Google Scholar]
- Mauri, N.; Kleiter, M.; Leschnik, M.; Högler, S.; Dietschi, E.; Wiedmer, M.; Dietrich, J.; Henke, D.; Steffen, F.; Schuller, S.; et al. A Missense Variant in KCNJ10 in Belgian Shepherd Dogs Affected by Spongy Degeneration with Cerebellar Ataxia (SDCA1). G3 Genes Genomes Genet. 2017, 7, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, D.; O’Brien, D.P.; Coates, J.R.; Johnson, G.S.; Johnson, G.C.; Mhlanga-Mutangadura, T.; Hansen, L.; Taylor, J.F.; Schnabel, R.D. A Homozygous KCNJ10 Mutation in Jack Russell Terriers and Related Breeds with Spinocerebellar Ataxia with Myokymia, Seizures, or Both. Vet. Intern. Med. 2014, 28, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Christen, M.; Zdora, I.; Leschnik, M.; Jagannathan, V.; Puff, C.; Hünerfauth, E.; Volk, H.A.; Baumgärtner, W.; Koch, T.C.; Schäfer, W.; et al. RALGAPA1 Deletion in Belgian Shepherd Dogs with Cerebellar Ataxia. Genes 2023, 14, 1520. [Google Scholar] [CrossRef] [PubMed]
- Christen, M.; Högler, S.; Kleiter, M.; Leschnik, M.; Weber, C.; Thaller, D.; Jagannathan, V.; Leeb, T. Deletion of the SELENOP Gene Leads to CNS Atrophy with Cerebellar Ataxia in Dogs. PLoS Genet. 2021, 17, e1009716. [Google Scholar] [CrossRef] [PubMed]
- Mauri, N.; Kleiter, M.; Dietschi, E.; Leschnik, M.; Högler, S.; Wiedmer, M.; Dietrich, J.; Henke, D.; Steffen, F.; Schuller, S.; et al. A SINE Insertion in ATP1B2 in Belgian Shepherd Dogs Affected by Spongy Degeneration with Cerebellar Ataxia (SDCA2). G3 Genes Genomes Genet. 2017, 7, 2729–2737. [Google Scholar] [CrossRef]
- Agler, C.; Nielsen, D.M.; Urkasemsin, G.; Singleton, A.; Tonomura, N.; Sigurdsson, S.; Tang, R.; Linder, K.; Arepalli, S.; Hernandez, D.; et al. Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24. PLoS Genet. 2014, 10, e1003991. [Google Scholar] [CrossRef]
- Jenkins, C.A.; Kalmar, L.; Matiasek, K.; Mari, L.; Kyöstilä, K.; Lohi, H.; Schofield, E.C.; Mellersh, C.S.; De Risio, L.; Ricketts, S.L. Characterisation of Canine KCNIP4: A Novel Gene for Cerebellar Ataxia Identified by Whole-Genome Sequencing Two Affected Norwegian Buhund Dogs. PLoS Genet. 2020, 16, e1008527. [Google Scholar] [CrossRef]
- Mari, L.; Matiasek, K.; Jenkins, C.A.; De Stefani, A.; Ricketts, S.L.; Forman, O.; De Risio, L. Hereditary Ataxia in Four Related Norwegian Buhunds. J. Am. Vet. Med. Assoc. 2018, 253, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Farias, F.H.G.; Johnson, G.S.; McKay, S.D.; Schnabel, R.D.; Decker, J.E.; Taylor, J.F.; Mann, C.S.; Katz, M.L.; Johnson, G.C.; et al. A Truncated Retrotransposon Disrupts the GRM1 Coding Sequence in Coton de Tulear Dogs with Bandera’s Neonatal Ataxia: Canine GRM1 Mutation Causes Neonatal Ataxia. J. Vet. Intern. Med. 2011, 25, 267–272. [Google Scholar] [CrossRef]
- Coates, J.R.; O’Brien, D.P.; Kline, K.L.; Starts, R.W.; Johnson, G.C.; Shelton, G.D.; Patterson, E.E.; Abbott, L.C. Neonatal Cerebellar Ataxia in Coton de Tulear Dogs. Vet. Intern. Med. 2002, 16, 680–689. [Google Scholar] [CrossRef]
- Kyöstilä, K.; Cizinauskas, S.; Seppälä, E.H.; Suhonen, E.; Jeserevics, J.; Sukura, A.; Syrjä, P.; Lohi, H. A SEL1L Mutation Links a Canine Progressive Early-Onset Cerebellar Ataxia to the Endoplasmic Reticulum—Associated Protein Degradation (ERAD) Machinery. PLoS Genet. 2012, 8, e1002759. [Google Scholar] [CrossRef]
- Bellamy, K.K.L.; Skedsmo, F.S.; Hultman, J.; Arnet, E.F.; Guttersrud, O.A.; Skogmo, H.K.; Thoresen, S.I.; Espenes, A.; Jäderlund, K.H.; Lingaas, F. A 1 Bp Deletion in HACE1 Causes Ataxia in Norwegian Elkhound, Black. PLoS ONE 2022, 17, e0261845. [Google Scholar] [CrossRef]
- Forman, O.P.; De Risio, L.; Mellersh, C.S. Missense Mutation in CAPN1 Is Associated with Spinocerebellar Ataxia in the Parson Russell Terrier Dog Breed. PLoS ONE 2013, 8, e64627. [Google Scholar] [CrossRef]
- Forman, O.P.; De Risio, L.; Matiasek, K.; Platt, S.; Mellersh, C. Spinocerebellar Ataxia in the Italian Spinone Dog Is Associated with an Intronic GAA Repeat Expansion in ITPR1. Mamm. Genome 2015, 26, 108–117. [Google Scholar] [CrossRef]
- Letko, A.; Dietschi, E.; Nieburg, M.; Jagannathan, V.; Gurtner, C.; Oevermann, A.; Drögemüller, C. A Missense Variant in SCN8A in Alpine Dachsbracke Dogs Affected by Spinocerebellar Ataxia. Genes 2019, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Van Poucke, M.; Stee, K.; Sonck, L.; Stock, E.; Bosseler, L.; Van Dorpe, J.; Van Nieuwerburgh, F.; Deforce, D.; Peelman, L.J.; Van Ham, L.; et al. Truncating SLC12A6 Variants Cause Different Clinical Phenotypes in Humans and Dogs. Eur. J. Hum. Genet. 2019, 27, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Forman, O.P.; De Risio, L.; Stewart, J.; Mellersh, C.S.; Beltran, E. Genome-Wide mRNA Sequencing of a Single Canine Cerebellar Cortical Degeneration Case Leads to the Identification of a Disease Associated SPTBN2 Mutation. BMC Genet. 2012, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Wade, C.M.; Pan, A.Y.H.; Taylor, R.M.; Williamson, P. Cerebellar Abiotrophy in Australian Working Kelpies Is Associated with Two Major Risk Loci. Genes 2022, 13, 1709. [Google Scholar] [CrossRef] [PubMed]
- Fenn, J.; Boursnell, M.; Hitti, R.J.; Jenkins, C.A.; Terry, R.L.; Priestnall, S.L.; Kenny, P.J.; Mellersh, C.S.; Forman, O.P. Genome Sequencing Reveals a Splice Donor Site Mutation in the SNX14 Gene Associated with a Novel Cerebellar Cortical Degeneration in the Hungarian Vizsla Dog Breed. BMC Genet. 2016, 17, 123. [Google Scholar] [CrossRef]
- Christen, M.; Rupp, S.; Van Soens, I.; Bhatti, S.F.M.; Matiasek, K.; Von Klopmann, T.; Jagannathan, V.; Madden, I.; Batcher, K.; Bannasch, D.; et al. SLC25A12 Missense Variant in Nova Scotia Duck Tolling Retrievers Affected by Cerebellar Degeneration—Myositis Complex (CDMC). Genes 2022, 13, 1223. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M.; Fischer, A.; Jagannathan, V.; Drögemüller, M.; Drögemüller, C.; Schmidt, M.J.; Bernardino, F.; Manz, E.; Matiasek, K.; Rentmeister, K.; et al. A Deletion in the VLDLR Gene in Eurasier Dogs with Cerebellar Hypoplasia Resembling a Dandy-Walker-Like Malformation (DWLM). PLoS ONE 2015, 10, e0108917. [Google Scholar] [CrossRef]
- Abitbol, M.; Jagannathan, V.; Laurent, N.; Noblet, E.; Dutil, G.F.; Troupel, T.; De Dufaure De Citres, C.; Gache, V.; Blot, S.; Escriou, C.; et al. A PNPLA8 Frameshift Variant in Australian Shepherd Dogs with Hereditary Ataxia. Anim. Genet. 2022, 53, 709–712. [Google Scholar] [CrossRef]
- Kyöstilä, K.; Syrjä, P.; Jagannathan, V.; Chandrasekar, G.; Jokinen, T.S.; Seppälä, E.H.; Becker, D.; Drögemüller, M.; Dietschi, E.; Drögemüller, C.; et al. A Missense Change in the ATG4D Gene Links Aberrant Autophagy to a Neurodegenerative Vacuolar Storage Disease. PLoS Genet. 2015, 11, e1005169. [Google Scholar] [CrossRef]
- O’Brien, D.P. Genetic Mapping of Canine Multiple System Degeneration and Ectodermal Dysplasia Loci. J. Hered. 2005, 96, 727–734. [Google Scholar] [CrossRef] [PubMed]
- St. Jean, S.C.; Jortner, B.S.; Doan, R.N.; Dindot, S.V.; Johnson, G.S.; Bullock, G.; Whitley, D.B.; Levine, J.M.; Hancock, S.K.; Ambrus, A.; et al. Pathologic Characterization of Canine Multiple System Degeneration in the Ibizan Hound. Vet. Pathol. 2022, 59, 132–137. [Google Scholar] [CrossRef]
- Sheth, J.; Nair, A. Treatment for Lysosomal Storage Disorders. CPD 2020, 26, 5110–5118. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J.; Hofmann, S.L. The Neuronal Ceroid-Lipofuscinoses (Batten Disease): A New Class of Lysosomal Storage Diseases. J. Inherit. Metab. Dis. 1999, 22, 535–544. [Google Scholar] [CrossRef]
- Sanders, D.N.; Farias, F.H.; Johnson, G.S.; Chiang, V.; Cook, J.R.; O’Brien, D.P.; Hofmann, S.L.; Lu, J.-Y.; Katz, M.L. A Mutation in Canine PPT1 Causes Early Onset Neuronal Ceroid Lipofuscinosis in a Dachshund. Mol. Genet. Metab. 2010, 100, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Kolicheski, A.; Barnes Heller, H.L.; Arnold, S.; Schnabel, R.D.; Taylor, J.F.; Knox, C.A.; Mhlanga-Mutangadura, T.; O’Brien, D.P.; Johnson, G.S.; Dreyfus, J.; et al. Homozygous PPT1 Splice Donor Mutation in a Cane Corso Dog With Neuronal Ceroid Lipofuscinosis. J. Vet. Intern. Med. 2017, 31, 149–157. [Google Scholar] [CrossRef]
- Awano, T.; Katz, M.L.; O’Brien, D.P.; Sohar, I.; Lobel, P.; Coates, J.R.; Khan, S.; Johnson, G.C.; Giger, U.; Johnson, G.S. A Frame Shift Mutation in Canine TPP1 (the Ortholog of Human CLN2) in a Juvenile Dachshund with Neuronal Ceroid Lipofuscinosis. Mol. Genet. Metab. 2006, 89, 254–260. [Google Scholar] [CrossRef]
- Melville, S.; Wilson, C.; Chiang, C.; Studdert, V.; Lingaas, F.; Wilton, A. A Mutation in Canine CLN5 Causes Neuronal Ceroid Lipofuscinosis in Border Collie Dogs☆. Genomics 2005, 86, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Kolicheski, A.; Johnson, G.S.; O’Brien, D.P.; Mhlanga-Mutangadura, T.; Gilliam, D.; Guo, J.; Anderson-Sieg, T.D.; Schnabel, R.D.; Taylor, J.F.; Lebowitz, A.; et al. Australian Cattle Dogs with Neuronal Ceroid Lipofuscinosis Are Homozygous for a CLN5 Nonsense Mutation Previously Identified in Border Collies. J. Vet. Intern. Med. 2016, 30, 1149–1158. [Google Scholar] [CrossRef]
- Gilliam, D.; Kolicheski, A.; Johnson, G.S.; Mhlanga-Mutangadura, T.; Taylor, J.F.; Schnabel, R.D.; Katz, M.L. Golden Retriever Dogs with Neuronal Ceroid Lipofuscinosis Have a Two-Base-Pair Deletion and Frameshift in CLN5. Mol. Genet. Metab. 2015, 115, 101–109. [Google Scholar] [CrossRef]
- Katz, M.L.; Farias, F.H.; Sanders, D.N.; Zeng, R.; Khan, S.; Johnson, G.S.; O’Brien, D.P. A Missense Mutation in Canine CLN6 in an Australian Shepherd with Neuronal Ceroid Lipofuscinosis. J. Biomed. Biotechnol. 2011, 2011, 198042. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; O’Brien, D.P.; Mhlanga-Mutangadura, T.; Olby, N.J.; Taylor, J.F.; Schnabel, R.D.; Katz, M.L.; Johnson, G.S. A Rare Homozygous MFSD8 Single-Base-Pair Deletion and Frameshift in the Whole Genome Sequence of a Chinese Crested Dog with Neuronal Ceroid Lipofuscinosis. BMC Vet. Res. 2014, 10, 960. [Google Scholar] [CrossRef] [PubMed]
- Ashwini, A.; D’Angelo, A.; Yamato, O.; Giordano, C.; Cagnotti, G.; Harcourt-Brown, T.; Mhlanga-Mutangadura, T.; Guo, J.; Johnson, G.S.; Katz, M.L. Neuronal Ceroid Lipofuscinosis Associated with an MFSD8 Mutation in Chihuahuas. Mol. Genet. Metab. 2016, 118, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Faller, K.M.E.; Bras, J.; Sharpe, S.J.; Anderson, G.W.; Darwent, L.; Kun-Rodrigues, C.; Alroy, J.; Penderis, J.; Mole, S.E.; Gutierrez-Quintana, R.; et al. The Chihuahua Dog: A New Animal Model for Neuronal Ceroid Lipofuscinosis CLN7 Disease? J. Neurosci. Res. 2016, 94, 339–347. [Google Scholar] [CrossRef]
- Karli, P.; Oevermann, A.; Bauer, A.; Jagannathan, V.; Leeb, T. MFSD 8 Single-base Pair Deletion in a Chihuahua with Neuronal Ceroid Lipofuscinosis. Anim. Genet. 2016, 47, 631. [Google Scholar] [CrossRef]
- Katz, M.L.; Khan, S.; Awano, T.; Shahid, S.A.; Siakotos, A.N.; Johnson, G.S. A Mutation in the CLN8 Gene in English Setter Dogs with Neuronal Ceroid-Lipofuscinosis. Biochem. Biophys. Res. Commun. 2005, 327, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Hirz, M.; Drögemüller, M.; Schänzer, A.; Jagannathan, V.; Dietschi, E.; Goebel, H.H.; Hecht, W.; Laubner, S.; Schmidt, M.J.; Steffen, F.; et al. Neuronal Ceroid Lipofuscinosis (NCL) Is Caused by the Entire Deletion of CLN8 in the Alpenländische Dachsbracke Dog. Mol. Genet. Metab. 2017, 120, 269–277. [Google Scholar] [CrossRef]
- Lingaas, F.; Guttersrud, O.-A.; Arnet, E.; Espenes, A. Neuronal Ceroid Lipofuscinosis in Salukis Is Caused by a Single Base Pair Insertion in CLN8. Anim. Genet. 2018, 49, 52–58. [Google Scholar] [CrossRef]
- Guo, J.; Johnson, G.S.; Brown, H.A.; Provencher, M.L.; Da Costa, R.C.; Mhlanga-Mutangadura, T.; Taylor, J.F.; Schnabel, R.D.; O’Brien, D.P.; Katz, M.L. A CLN8 Nonsense Mutation in the Whole Genome Sequence of a Mixed Breed Dog with Neuronal Ceroid Lipofuscinosis and Australian Shepherd Ancestry. Mol. Genet. Metab. 2014, 112, 302–309. [Google Scholar] [CrossRef]
- Guo, J.; Johnson, G.S.; Cook, J.; Harris, O.K.; Mhlanga-Mutangadura, T.; Schnabel, R.D.; Jensen, C.A.; Katz, M.L. Neuronal Ceroid Lipofuscinosis in a German Shorthaired Pointer Associated with a Previously Reported CLN8 Nonsense Variant. Mol. Genet. Metab. Rep. 2019, 21, 100521. [Google Scholar] [CrossRef]
- Awano, T.; Katz, M.L.; O’Brien, D.P.; Taylor, J.F.; Evans, J.; Khan, S.; Sohar, I.; Lobel, P.; Johnson, G.S. A Mutation in the Cathepsin D Gene (CTSD) in American Bulldogs with Neuronal Ceroid Lipofuscinosis. Mol. Genet. Metab. 2006, 87, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Farias, F.H.G.; Zeng, R.; Johnson, G.S.; Wininger, F.A.; Taylor, J.F.; Schnabel, R.D.; McKay, S.D.; Sanders, D.N.; Lohi, H.; Seppälä, E.H.; et al. A Truncating Mutation in ATP13A2 Is Responsible for Adult-Onset Neuronal Ceroid Lipofuscinosis in Tibetan Terriers. Neurobiol. Dis. 2011, 42, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, I.; Jagannathan, V.; Bartenschlager, F.; Stein, V.M.; Gruber, A.D.; Leeb, T.; Katz, M.L. ATP13A2 Missense Variant in Australian Cattle Dogs with Late Onset Neuronal Ceroid Lipofuscinosis. Mol. Genet. Metab. 2019, 127, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Bullock, G.; Johnson, G.S.; Mhlanga-Mutangadura, T.; Petesch, S.C.; Thompson, S.; Goebbels, S.; Katz, M.L. Lysosomal Storage Disease Associated with a CNP Sequence Variant in Dalmatian Dogs. Gene 2022, 830, 146513. [Google Scholar] [CrossRef] [PubMed]
- Harm, T.A.; Hostetter, S.J.; Nenninger, A.S.; Valentine, B.N.; Ellinwood, N.M.; Smith, J.D. Temporospatial Development of Neuropathologic Findings in a Canine Model of Mucopolysaccharidosis IIIB. Vet. Pathol. 2021, 58, 205–222. [Google Scholar] [CrossRef]
- Shull, R.M.; Munger, R.J.; Spellacy, E.; Hall, C.W.; Constantopoulos, G.; Neufeld, E.F. Canine Alpha-L-Iduronidase Deficiency. A Model of Mucopolysaccharidosis I. Am. J. Pathol. 1982, 109, 244–248. [Google Scholar]
- Menon, K.P.; Tieu, P.T.; Neufeld, E.F. Architecture of the Canine IDUA Gene and Mutation Underlying Canine Mucopolysaccharidosis I. Genomics 1992, 14, 763–768. [Google Scholar] [CrossRef]
- Mansour, T.A.; Woolard, K.D.; Vernau, K.L.; Ancona, D.M.; Thomasy, S.M.; Sebbag, L.; Moore, B.A.; Knipe, M.F.; Seada, H.A.; Cowan, T.M.; et al. Whole Genome Sequencing for Mutation Discovery in a Single Case of Lysosomal Storage Disease (MPS Type 1) in the Dog. Sci. Rep. 2020, 10, 6558. [Google Scholar] [CrossRef]
- Faller, K.M.E.; Ridyard, A.E.; Gutierrez-Quintana, R.; Rupp, A.; Kun-Rodrigues, C.; Orme, T.; Tylee, K.L.; Church, H.J.; Guerreiro, R.; Bras, J. A Deletion of IDUA Exon 10 in a Family of Golden Retriever Dogs with an Attenuated Form of Mucopolysaccharidosis Type I. Vet. Intern. Med. 2020, 34, 1813–1824. [Google Scholar] [CrossRef]
- Yogalingam, G.; Pollard, T.; Gliddon, B.; Jolly, R.D.; Hopwood, J.J. Identification of a Mutation Causing Mucopolysaccharidosis Type IIIA in New Zealand Huntaway Dogs. Genomics 2002, 79, 150–153. [Google Scholar] [CrossRef]
- Fischer, A.; Carmichael, K.P.; Munnell, J.F.; Jhabvala, P.; Thompson, J.N.; Matalon, R.; Jezyk, P.F.; Wang, P.; Giger, U. Sulfamidase Deficiency in a Family of Dachshunds: A Canine Model of Mucopolysaccharidosis IIIA (Sanfilippo A). Pediatr. Res. 1998, 44, 74–82. [Google Scholar] [CrossRef]
- Aronovich, E.L.; Carmichael, K.P.; Morizono, H.; Koutlas, I.G.; Deanching, M.; Hoganson, G.; Fischer, A.; Whitley, C.B. Canine Heparan Sulfate Sulfamidase and the Molecular Pathology Underlying Sanfilippo Syndrome Type A in Dachshunds. Genomics 2000, 68, 80–84. [Google Scholar] [CrossRef]
- Jolly, R.D.; Allan, F.J.; Collett, M.G.; Rozaklis, T.; Muller, V.J.; Hopwood, J.J. Mucopolysaccharidosis IIIA (Sanfilippo Syndrome) in a New Zealand Huntaway Dog with Ataxia. N. Z. Vet. J. 2000, 48, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Ellinwood, N.M.; Wang, P.; Skeen, T.; Sharp, N.J.H.; Cesta, M.; Decker, S.; Edwards, N.J.; Bublot, I.; Thompson, J.N.; Bush, W.; et al. A Model of Mucopolysaccharidosis IIIB (Sanfilippo Syndrome Type IIIB): N.-acetyl-α-D-glucosaminidase Deficiency in Schipperke Dogs. J. Inherit. Metab. Dis. 2003, 26, 489–504. [Google Scholar] [CrossRef]
- Raj, K.; Ellinwood, N.M.; Giger, U. An Exonic Insertion in the NAGLU Gene Causing Mucopolysaccharidosis IIIB in Schipperke Dogs. Sci. Rep. 2020, 10, 3170. [Google Scholar] [CrossRef]
- D’Avanzo, F.; Zanetti, A.; De Filippis, C.; Tomanin, R. Mucopolysaccharidosis Type VI, an Updated Overview of the Disease. Int. J. Mol. Sci. 2021, 22, 13456. [Google Scholar] [CrossRef] [PubMed]
- Jolly, R.; Hopwood, J.; Marshall, N.; Jenkins, K.; Thompson, D.; Dittmer, K.; Thompson, J.; Fedele, A.; Raj, K.; Giger, U. Mucopolysaccharidosis Type VI in a Miniature Poodle-Type Dog Caused by a Deletion in the Arylsulphatase B Gene. N. Z. Vet. J. 2012, 60, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Margolis, C.; Lin, G.; Buza, E.L.; Quick, S.; Raj, K.; Han, R.; Giger, U. Mucopolysaccharidosis Type VI in a Great Dane Caused by a Nonsense Mutation in the ARSB Gene. Vet. Pathol. 2018, 55, 286–293. [Google Scholar] [CrossRef]
- Raj, K.; Berman-Booty, L.; Foureman, P.; Giger, U. ARSB Gene Variants Causing Mucopolysaccharidosis VI in Miniature Pinscher and Miniature Schnauzer Dogs. Anim. Genet. 2020, 51, 982–986. [Google Scholar] [CrossRef]
- Ray, J.; Bouvet, A.; DeSanto, C.; Fyfe, J.C.; Xu, D.; Wolfe, J.H.; Aguirre, G.D.; Patterson, D.F.; Haskins, M.E.; Henthorn, P.S. Cloning of the Canine β-Glucuronidase cDNA, Mutation Identification in Canine MPS VII, and Retroviral Vector-Mediated Correction of MPS VII Cells. Genomics 1998, 48, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, D.C.S.; Carmichael, K.P.; Wang, P.; O’Malley, T.M.; Haskins, M.E.; Giger, U. Mucopolysaccharidosis Type VII in a German Shepherd Dog. J. Am. Vet. Med. Assoc. 2004, 224, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Hytönen, M.K.; Arumilli, M.; Lappalainen, A.K.; Kallio, H.; Snellman, M.; Sainio, K.; Lohi, H. A Novel GUSB Mutation in Brazilian Terriers with Severe Skeletal Abnormalities Defines the Disease as Mucopolysaccharidosis VII. PLoS ONE 2012, 7, e40281. [Google Scholar] [CrossRef]
- Abitbol, M.; Thibaud, J.-L.; Olby, N.J.; Hitte, C.; Puech, J.-P.; Maurer, M.; Pilot-Storck, F.; Hédan, B.; Dréano, S.; Brahimi, S.; et al. A Canine Arylsulfatase G (ARSG) Mutation Leading to a Sulfatase Deficiency Is Associated with Neuronal Ceroid Lipofuscinosis. Proc. Natl. Acad. Sci. USA 2010, 107, 14775–14780. [Google Scholar] [CrossRef] [PubMed]
- Kowalewski, B.; Lamanna, W.C.; Lawrence, R.; Damme, M.; Stroobants, S.; Padva, M.; Kalus, I.; Frese, M.-A.; Lübke, T.; Lüllmann-Rauch, R.; et al. Arylsulfatase G Inactivation Causes Loss of Heparan Sulfate 3-O-Sulfatase Activity and Mucopolysaccharidosis in Mice. Proc. Natl. Acad. Sci. USA 2012, 109, 10310–10315. [Google Scholar] [CrossRef]
- Malm, D.; Nilssen, Ø. Alpha-Mannosidosis. Orphanet J. Rare Dis. 2008, 3, 21. [Google Scholar] [CrossRef]
- Bullock, G.; Johnson, G.S.; Pattridge, S.G.; Mhlanga-Mutangadura, T.; Guo, J.; Cook, J.; Campbell, R.S.; Vite, C.H.; Katz, M.L. A Homozygous MAN2B1 Missense Mutation in a Doberman Pinscher Dog with Neurodegeneration, Cytoplasmic Vacuoles, Autofluorescent Storage Granules, and an α-Mannosidase Deficiency. Genes 2023, 14, 1746. [Google Scholar] [CrossRef]
- Patterson, J.S.; Jones, M.Z.; Lovell, K.L.; Abbitt, B. Neuropathology of Bovine β-Mannosidosis. J. Neuropathol. Exp. Neurol. 1991, 50, 538–546. [Google Scholar] [CrossRef]
- Jolly, R.D.; Dittmer, K.E.; Garrick, D.J.; Chernyavtseva, A.; Hemsley, K.M.; King, B.; Fietz, M.; Shackleton, N.M.; Fairley, R.; Wylie, K. β-Mannosidosis in German Shepherd Dogs. Vet. Pathol. 2019, 56, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Bolfa, P.; Wang, P.; Nair, R.; Rajeev, S.; Armien, A.G.; Henthorn, P.S.; Wood, T.; Thrall, M.A.; Giger, U. Hereditary β-Mannosidosis in a Dog: Clinicopathological and Molecular Genetic Characterization. Mol. Genet. Metab. 2019, 128, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, E.-R.; Annunziata, I.; d’Azzo, A.; Platt, F.M.; Tifft, C.J.; Stepien, K.M. GM1 Gangliosidosis—A Mini-Review. Front. Genet. 2021, 12, 734878. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.; Alldinger, S.; Moritz, A.; Zurbriggen, A.; Kirchhof, N.; Sewell, A.; Baumgärtner, W. GM 1 -Gangliosidosis in Alaskan Huskies: Clinical and Pathologic Findings. Vet. Pathol. 2001, 38, 281–290. [Google Scholar] [CrossRef]
- Alroy, J.; Orgad, U.; DeGasperi, R.; Richard, R.; Warren, C.D.; Knowles, K.; Thalhammer, J.G.; Raghavan, S.S. Canine GM1-Gangliosidosis. A Clinical, Morphologic, Histochemical, and Biochemical Comparison of Two Different Models. Am. J. Pathol. 1992, 140, 675–689. [Google Scholar] [PubMed]
- Wang, Z.H.; Zeng, B.; Shibuya, H.; Johnson, G.S.; Alroy, J.; Pastores, G.M.; Raghavan, S.; Kolodny, E.H. Isolation and Characterization of the Normal Canine Β-galactosidase Gene and Its Mutation in a Dog Model of GM1-gangliosidosis. J. Inherit. Metab. Dis. 2000, 23, 593–606. [Google Scholar] [CrossRef]
- Yamato, O.; Endoh, D.; Kobayashi, A.; Masuoka, Y.; Yonemura, M.; Hatakeyama, A.; Satoh, H.; Tajima, M.; Yamasaki, M.; Maede, Y. A Novel Mutation in the Gene for Canine Acid Β-galactosidase That Causes GM1-gangliosidosis in Shiba Dogs. J. Inherit. Metab. Dis. 2002, 25, 525–526. [Google Scholar] [CrossRef]
- Pervin, S.; Islam, M.S.; Yorisada, Y.; Sakai, A.; Masamune, S.; Yabuki, A.; Rakib, T.M.; Maki, S.; Tacharina, M.R.; Yamato, O. Carrier Rate and Mutant Allele Frequency of GM1 Gangliosidosis in Miniature Shiba Inus (Mame Shiba): Population Screening of Breeding Dogs in Japan. Animals 2022, 12, 1242. [Google Scholar] [CrossRef]
- Kreutzer, R.; Leeb, T.; Müller, G.; Moritz, A.; Baumgärtner, W. A Duplication in the Canine β-Galactosidase Gene GLB1 Causes Exon Skipping and GM1-Gangliosidosis in Alaskan Huskies. Genetics 2005, 170, 1857–1861. [Google Scholar] [CrossRef]
- Sanders, D.N.; Zeng, R.; Wenger, D.A.; Johnson, G.S.; Johnson, G.C.; Decker, J.E.; Katz, M.L.; Platt, S.R.; O’Brien, D.P. GM2 Gangliosidosis Associated with a HEXA Missense Mutation in Japanese Chin Dogs: A Potential Model for Tay Sachs Disease. Mol. Genet. Metab. 2013, 108, 70–75. [Google Scholar] [CrossRef]
- Rahman, M.M.; Chang, H.-S.; Mizukami, K.; Hossain, M.A.; Yabuki, A.; Tamura, S.; Kitagawa, M.; Mitani, S.; Higo, T.; Uddin, M.M.; et al. A Frameshift Mutation in the Canine HEXB Gene in Toy Poodles with GM2 Gangliosidosis Variant 0 (Sandhoff Disease). Vet. J. 2012, 194, 412–416. [Google Scholar] [CrossRef]
- Kolicheski, A.; Johnson, G.S.; Villani, N.A.; O’Brien, D.P.; Mhlanga-Mutangadura, T.; Wenger, D.A.; Mikoloski, K.; Eagleson, J.S.; Taylor, J.F.; Schnabel, R.D.; et al. GM 2 Gangliosidosis in Shiba Inu Dogs with an In-Frame Deletion in HEXB. Vet. Intern. Medicne 2017, 31, 1520–1526. [Google Scholar] [CrossRef]
- Walvoort, H.C. Glycogen Storage Disease Type II in the Lapland Dog. Vet. Q. 1985, 7, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, E.H.; Reuser, A.J.J.; Lohi, H. A Nonsense Mutation in the Acid α-Glucosidase Gene Causes Pompe Disease in Finnish and Swedish Lapphunds. PLoS ONE 2013, 8, e56825. [Google Scholar] [CrossRef]
- Kondagari, G.S.; Ramanathan, P.; Taylor, R. Canine Fucosidosis: A Neuroprogressive Disorder. Neurodegener. Dis. 2011, 8, 240–251. [Google Scholar] [CrossRef]
- Skelly, B.J.; Sargan, D.R.; Herrtage, M.E.; Winchester, B.G. The Molecular Defect Underlying Canine Fucosidosis. J. Med. Genet. 1996, 33, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, A.M.; Bagel, J.H.; Jiang, X.; Swain, G.P.; Prociuk, M.L.; Fitzgerald, C.A.; O’Donnell, P.A.; Braund, K.G.; Ory, D.S.; Vite, C.H. Clinical, Electrophysiological, and Biochemical Markers of Peripheral and Central Nervous System Disease in Canine Globoid Cell Leukodystrophy (K Rabbe’s Disease). J. Neurosci. Res. 2016, 94, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Victoria, T.; Rafi, M.A.; Wenger, D.A. Cloning of the Canine GALC cDNA and Identification of the Mutation Causing Globoid Cell Leukodystrophy in West Highland White and Cairn Terriers. Genomics 1996, 33, 457–462. [Google Scholar] [CrossRef]
- McGraw, R.A.; Carmichael, K.P. Molecular Basis of Globoid Cell Leukodystrophy in Irish Setters. Vet. J. 2006, 171, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Hammack, S.; Hague, D.W.; Vieson, M.D.; Esdaile, E.; Hughes, S.S.; Bellone, R.R.; McCoy, A.M. Novel Genetic Variant Associated with Globoid Cell Leukodystrophy in a Family of Mixed Breed Dogs. Vet. Intern. Med. 2023, 37, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, J.C.; Al-Tamimi, R.A.; Castellani, R.J.; Rosenstein, D.; Goldowitz, D.; Henthorn, P.S. Inherited Neuroaxonal Dystrophy in Dogs Causing Lethal, Fetal-Onset Motor System Dysfunction and Cerebellar Hypoplasia. J. Comp. Neurol. 2010, 518, 3771–3784. [Google Scholar] [CrossRef]
- Tsuboi, M.; Watanabe, M.; Nibe, K.; Yoshimi, N.; Kato, A.; Sakaguchi, M.; Yamato, O.; Tanaka, M.; Kuwamura, M.; Kushida, K.; et al. Identification of the PLA2G6 c.1579G>A Missense Mutation in Papillon Dog Neuroaxonal Dystrophy Using Whole Exome Sequencing Analysis. PLoS ONE 2017, 12, e0169002. [Google Scholar] [CrossRef]
- Lucot, K.L.; Dickinson, P.J.; Finno, C.J.; Mansour, T.A.; Letko, A.; Minor, K.M.; Mickelson, J.R.; Drögemüller, C.; Brown, C.T.; Bannasch, D.L. A Missense Mutation in the Vacuolar Protein Sorting 11 (VPS11) Gene Is Associated with Neuroaxonal Dystrophy in Rottweiler Dogs. G3 Genes Genomes Genet. 2018, 8, 2773–2780. [Google Scholar] [CrossRef]
- Hahn, K.; Rohdin, C.; Jagannathan, V.; Wohlsein, P.; Baumgärtner, W.; Seehusen, F.; Spitzbarth, I.; Grandon, R.; Drögemüller, C.; Jäderlund, K.H. TECPR2 Associated Neuroaxonal Dystrophy in Spanish Water Dogs. PLoS ONE 2015, 10, e0141824. [Google Scholar] [CrossRef]
- Fyfe, J.C.; Al-Tamimi, R.A.; Liu, J.; Schäffer, A.A.; Agarwala, R.; Henthorn, P.S. A Novel Mitofusin 2 Mutation Causes Canine Fetal-Onset Neuroaxonal Dystrophy. Neurogenetics 2011, 12, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Correard, S.; Plassais, J.; Lagoutte, L.; Botherel, N.; Thibaud, J.-L.; Hédan, B.; Richard, L.; Lia, A.-S.; Delague, V.; Mège, C.; et al. Canine Neuropathies: Powerful Spontaneous Models for Human Hereditary Sensory Neuropathies. Hum. Genet. 2019, 138, 455–466. [Google Scholar] [CrossRef]
- Granger, N. Canine Inherited Motor and Sensory Neuropathies: An Updated Classification in 22 Breeds and Comparison to Charcot–Marie–Tooth Disease. Vet. J. 2011, 188, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Quintana, R.; Christen, M.; Faller, K.M.E.; Guevar, J.; Jagannathan, V.; Leeb, T. SCN9A Variant in a Family of Mixed Breed Dogs with Congenital Insensitivity to Pain. Vet. Intern. Medicne 2023, 37, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, I.; Jäderlund, K.H.; Nennesmo, I.; Holmqvist, E.; Heidrich, N.; Larsson, N.-G.; Andersson, G.; Wagner, E.G.H.; Hedhammar, Å.; Wibom, R.; et al. Sensory Ataxic Neuropathy in Golden Retriever Dogs Is Caused by a Deletion in the Mitochondrial tRNATyr Gene. PLoS Genet. 2009, 5, e1000499. [Google Scholar] [CrossRef]
- Gutierrez-Quintana, R.; Mellersh, C.; Wessmann, A.; Ortega, M.; Penderis, J.; Sharpe, S.; Freeman, E.; Stevenson, L.; Burmeister, L. Hereditary Sensory and Autonomic Neuropathy in a Family of Mixed Breed Dogs Associated with a Novel RETREG1 Variant. Vet. Intern. Med. 2021, 35, 2306–2314. [Google Scholar] [CrossRef]
- Forman, O.P.; Hitti, R.J.; Pettitt, L.; Jenkins, C.A.; O’Brien, D.P.; Shelton, G.D.; De Risio, L.; Quintana, R.G.; Beltran, E.; Mellersh, C. An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed. G3 Genes Genomes Genet. 2016, 6, 2687–2692. [Google Scholar] [CrossRef]
- Plassais, J.; Lagoutte, L.; Correard, S.; Paradis, M.; Guaguère, E.; Hédan, B.; Pommier, A.; Botherel, N.; Cadiergues, M.-C.; Pilorge, P.; et al. A Point Mutation in a lincRNA Upstream of GDNF Is Associated to a Canine Insensitivity to Pain: A Spontaneous Model for Human Sensory Neuropathies. PLoS Genet. 2016, 12, e1006482. [Google Scholar] [CrossRef]
- Ekenstedt, K.J.; Becker, D.; Minor, K.M.; Shelton, G.D.; Patterson, E.E.; Bley, T.; Oevermann, A.; Bilzer, T.; Leeb, T.; Drögemüller, C.; et al. An ARHGEF10 Deletion Is Highly Associated with a Juvenile-Onset Inherited Polyneuropathy in Leonberger and Saint Bernard Dogs. PLoS Genet. 2014, 10, e1004635. [Google Scholar] [CrossRef]
- Becker, D.; Minor, K.M.; Letko, A.; Ekenstedt, K.J.; Jagannathan, V.; Leeb, T.; Shelton, G.D.; Mickelson, J.R.; Drögemüller, C. A GJA9 Frameshift Variant Is Associated with Polyneuropathy in Leonberger Dogs. BMC Genom. 2017, 18, 662. [Google Scholar] [CrossRef]
- Granger, N.; Luján Feliu-Pascual, A.; Spicer, C.; Ricketts, S.; Hitti, R.; Forman, O.; Hersheson, J.; Houlden, H. Charcot-Marie-Tooth Type 4B2 Demyelinating Neuropathy in Miniature Schnauzer Dogs Caused by a Novel Splicing SBF2 (MTMR13) Genetic Variant: A New Spontaneous Clinical Model. PeerJ 2019, 7, e7983. [Google Scholar] [CrossRef] [PubMed]
- Drögemüller, C.; Becker, D.; Kessler, B.; Kemter, E.; Tetens, J.; Jurina, K.; Hultin Jäderlund, K.; Flagstad, A.; Perloski, M.; Lindblad-Toh, K.; et al. A Deletion in the N-Myc Downstream Regulated Gene 1 (NDRG1) Gene in Greyhounds with Polyneuropathy. PLoS ONE 2010, 5, e11258. [Google Scholar] [CrossRef]
- Bruun, C.S.; Jäderlund, K.H.; Berendt, M.; Jensen, K.B.; Spodsberg, E.H.; Gredal, H.; Shelton, G.D.; Mickelson, J.R.; Minor, K.M.; Lohi, H.; et al. A Gly98Val Mutation in the N-Myc Downstream Regulated Gene 1 (NDRG1) in Alaskan Malamutes with Polyneuropathy. PLoS ONE 2013, 8, e54547. [Google Scholar] [CrossRef]
- Mhlanga-Mutangadura, T.; Johnson, G.S.; Schnabel, R.D.; Taylor, J.F.; Johnson, G.C.; Katz, M.L.; Shelton, G.D.; Lever, T.E.; Giuliano, E.; Granger, N.; et al. A Mutation in the Warburg Syndrome Gene, RAB3GAP1, Causes a Similar Syndrome with Polyneuropathy and Neuronal Vacuolation in Black Russian Terrier Dogs. Neurobiol. Dis. 2016, 86, 75–85. [Google Scholar] [CrossRef]
- Mhlanga-Mutangadura, T.; Johnson, G.S.; Ashwini, A.; Shelton, G.D.; Jablonski Wennogle, S.A.; Johnson, G.C.; Kuroki, K.; O’Brien, D.P. A Homozygous RAB 3 GAP 1:C.743delC Mutation in Rottweilers with Neuronal Vacuolation and Spinocerebellar Degeneration. Vet. Intern. Med. 2016, 30, 813–818. [Google Scholar] [CrossRef]
- Wiedmer, M.; Oevermann, A.; Borer-Germann, S.E.; Gorgas, D.; Shelton, G.D.; Drögemüller, M.; Jagannathan, V.; Henke, D.; Leeb, T. A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, Ocular Abnormalities, and Neuronal Vacuolation (POANV) Resembling Human Warburg Micro Syndrome 1 (WARBM1). G3 Genes Genomes Genet. 2016, 6, 255–262. [Google Scholar] [CrossRef]
- Letko, A.; Minor, K.M.; Friedenberg, S.G.; Shelton, G.D.; Salvador, J.P.; Mandigers, P.J.J.; Leegwater, P.A.J.; Winkler, P.A.; Petersen-Jones, S.M.; Stanley, B.J.; et al. A CNTNAP1 Missense Variant Is Associated with Canine Laryngeal Paralysis and Polyneuropathy. Genes 2020, 11, 1426. [Google Scholar] [CrossRef]
- Mignan, T.; Targett, M.; Lowrie, M. Classification of Myasthenia Gravis and Congenital Myasthenic Syndromes in Dogs and Cats. Vet. Intern. Med. 2020, 34, 1707–1717. [Google Scholar] [CrossRef]
- Rinz, C.J.; Lennon, V.A.; James, F.; Thoreson, J.B.; Tsai, K.L.; Starr-Moss, A.N.; Humphries, H.D.; Guo, L.T.; Palmer, A.C.; Clark, L.A.; et al. A CHRNE Frameshift Mutation Causes Congenital Myasthenic Syndrome in Young Jack Russell Terriers. Neuromuscul. Disord. 2015, 25, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Herder, V.; Ciurkiewicz, M.; Baumgärtner, W.; Jagannathan, V.; Leeb, T. Frame-Shift Variant in the CHRNE Gene in a Juvenile Dog with Suspected Myasthenia Gravis-like Disease. Anim. Genet. 2017, 48, 625. [Google Scholar] [CrossRef] [PubMed]
- Proschowsky, H.F.; Flagstad, A.; Cirera, S.; Joergensen, C.B.; Fredholm, M. Identification of a Mutation in the CHAT Gene of Old Danish Pointing Dogs Affected with Congenital Myasthenic Syndrome. J. Hered. 2007, 98, 539–543. [Google Scholar] [CrossRef]
- Mariani, C.L. Terminology and Classification of Seizures and Epilepsy in Veterinary Patients. Top. Companion Anim. Med. 2013, 28, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Boas, W.V.E.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J. Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Wielaender, F.; Sarviaho, R.; James, F.; Hytönen, M.K.; Cortez, M.A.; Kluger, G.; Koskinen, L.L.E.; Arumilli, M.; Kornberg, M.; Bathen-Noethen, A.; et al. Generalized Myoclonic Epilepsy with Photosensitivity in Juvenile Dogs Caused by a Defective DIRAS Family GTPase 1. Proc. Natl. Acad. Sci. USA 2017, 114, 2669–2674. [Google Scholar] [CrossRef]
- Jokinen, T.S.; Metsähonkala, L.; Bergamasco, L.; Viitmaa, R.; Syrjä, P.; Lohi, H.; Snellman, M.; Jeserevics, J.; Cizinauskas, S. Benign Familial Juvenile Epilepsy in Lagotto Romagnolo Dogs. J. Vet. Intern. Med. 2007, 21, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, E.H.; Jokinen, T.S.; Fukata, M.; Fukata, Y.; Webster, M.T.; Karlsson, E.K.; Kilpinen, S.K.; Steffen, F.; Dietschi, E.; Leeb, T.; et al. LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs. PLoS Genet. 2011, 7, e1002194. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, J.; Tiberia, E.; Striano, P.; Genton, P.; Carpenter, S.; Ackerley, C.A.; Minassian, B.A. Lafora Disease. Epileptic Disord. 2016, 18, S38–S62. [Google Scholar] [CrossRef] [PubMed]
- Flegel, T.; Kornberg, M.; Mühlhause, F.; Neumann, S.; Fischer, A.; Wielaender, F.; König, F.; Pakozdy, A.; Quitt, P.R.; Trapp, A.M.; et al. A Retrospective Case Series of Clinical Signs in 28 Beagles with Lafora Disease. Vet. Intern. Med. 2021, 35, 2359–2365. [Google Scholar] [CrossRef]
- Lohi, H.; Young, E.J.; Fitzmaurice, S.N.; Rusbridge, C.; Chan, E.M.; Vervoort, M.; Turnbull, J.; Zhao, X.-C.; Ianzano, L.; Paterson, A.D.; et al. Expanded Repeat in Canine Epilepsy. Science 2005, 307, 81. [Google Scholar] [CrossRef]
- Mari, L.; Comero, G.; Mueller, E.; Kuehnlein, P.; Kehl, A. NHLRC1 Homozygous Dodecamer Expansion in a Newfoundland Dog with Lafora Disease. J. Small Anim. Pract. 2021, 62, 1030–1032. [Google Scholar] [CrossRef]
- Barrientos, L.; Maiolini, A.; Häni, A.; Jagannathan, V.; Leeb, T. NHLRC 1 Dodecamer Repeat Expansion Demonstrated by Whole Genome Sequencing in a Chihuahua with Lafora Disease. Anim. Genet. 2019, 50, 118–119. [Google Scholar] [CrossRef]
- Kehl, A.; Cizinauskas, S.; Langbein-Detsch, I.; Mueller, E. NHLRC 1 Dodecamer Expansion in a Welsh Corgi (Pembroke) with Lafora Disease. Anim. Genet. 2019, 50, 413–414. [Google Scholar] [CrossRef] [PubMed]
- Hytönen, M.K.; Sarviaho, R.; Jackson, C.B.; Syrjä, P.; Jokinen, T.; Matiasek, K.; Rosati, M.; Dallabona, C.; Baruffini, E.; Quintero, I.; et al. In-Frame Deletion in Canine PITRM1 Is Associated with a Severe Early-Onset Epilepsy, Mitochondrial Dysfunction and Neurodegeneration. Hum. Genet. 2021, 140, 1593–1609. [Google Scholar] [CrossRef] [PubMed]
- Cook, L.B. Neurologic Evaluation of the Ear. Vet. Clin. N. Am. Small Anim. Pract. 2004, 34, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Shan, S.; Sommerlad, S.; Seddon, J.M.; Brenig, B. A Missense Mutation in the KLF7 Gene Is a Potential Candidate Variant for Congenital Deafness in Australian Stumpy Tail Cattle Dogs. Genes 2021, 12, 467. [Google Scholar] [CrossRef]
- Abitbol, M.; Jagannathan, V.; Lopez, M.; Courtin, A.; Dufaure De Citres, C.; Gache, V.; Leeb, T. A CDH23 Missense Variant in Beauceron Dogs with Non-syndromic Deafness. Anim. Genet. 2023, 54, 73–77. [Google Scholar] [CrossRef]
- Kawakami, T.; Raghavan, V.; Ruhe, A.L.; Jensen, M.K.; Milano, A.; Nelson, T.C.; Boyko, A.R. Early Onset Adult Deafness in the Rhodesian Ridgeback Dog Is Associated with an In-Frame Deletion in the EPS8L2 Gene. PLoS ONE 2022, 17, e0264365. [Google Scholar] [CrossRef]
- Hytönen, M.K.; Niskanen, J.E.; Arumilli, M.; Brookhart-Knox, C.A.; Donner, J.; Lohi, H. Missense Variant in LOXHD1 Is Associated with Canine Nonsyndromic Hearing Loss. Hum. Genet. 2021, 140, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, M.K.; Palmer, A.C. Congenital Deafness and Vestibular Deficit in the Dobermann. J. Small Anim. Pract. 1992, 33, 218–224. [Google Scholar] [CrossRef]
- Webb, A.A.; Ruhe, A.L.; Neff, M.W. A Missense Mutation in MYO7A Is Associated with Bilateral Deafness and Vestibular Dysfunction in the Doberman Pinscher Breed. Can. J. Vet. Res. 2019, 83, 142–148. [Google Scholar]
- Guevar, J.; Olby, N.J.; Meurs, K.M.; Yost, O.; Friedenberg, S.G. Deafness and Vestibular Dysfunction in a Doberman Pinscher Puppy Associated with a Mutation in the PTPRQ Gene. Vet. Intern. Med. 2018, 32, 665–669. [Google Scholar] [CrossRef]
- Kolicheski, A.L.; Johnson, G.S.; Mhlanga-Mutangadura, T.; Taylor, J.F.; Schnabel, R.D.; Kinoshita, T.; Murakami, Y.; O’Brien, D.P. A Homozygous PIGN Missense Mutation in Soft-Coated Wheaten Terriers with a Canine Paroxysmal Dyskinesia. Neurogenetics 2017, 18, 39–47. [Google Scholar] [CrossRef]
- Mandigers, P.J.J.; Van Steenbeek, F.G.; Bergmann, W.; Vos-Loohuis, M.; Leegwater, P.A. A Knockout Mutation Associated with Juvenile Paroxysmal Dyskinesia in Markiesje Dogs Indicates SOD1 Pleiotropy. Hum. Genet. 2021, 140, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.L.; Capper, D.; Vanbellinghen, J.-F.; Chung, S.-K.; Higgins, R.J.; Rees, M.I.; Shelton, G.D.; Harvey, R.J. Startle Disease in Irish Wolfhounds Associated with a Microdeletion in the Glycine Transporter GlyT2 Gene. Neurobiol. Dis. 2011, 43, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.C.; Recio, A.; De La Fuente, C.; Guo, L.T.; Shelton, G.D.; Clark, L.A. A Glycine Transporter SLC6A5 Frameshift Mutation Causes Startle Disease in Spanish Greyhounds. Hum. Genet. 2019, 138, 509–513. [Google Scholar] [CrossRef]
- Heinonen, T.; Flegel, T.; Müller, H.; Kehl, A.; Hundi, S.; Matiasek, K.; Fischer, A.; Donner, J.; Forman, O.P.; Lohi, H.; et al. A Loss-of-Function Variant in Canine GLRA1 Associates with a Neurological Disorder Resembling Human Hyperekplexia. Hum. Genet. 2023, 142, 1221–1230. [Google Scholar] [CrossRef]
- Christen, M.; Gutierrez-Quintana, R.; James, M.; Faller, K.M.E.; Lowrie, M.; Rusbridge, C.; Bossens, K.; Mellersh, C.; Pettitt, L.; Heinonen, T.; et al. A TNR Frameshift Variant in Weimaraner Dogs with an Exercise-Induced Paroxysmal Movement Disorder. Mov. Disord. 2023, 38, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.L.; Tsai, K.L.; Krey, C.; Noorai, R.E.; Vanbellinghen, J.-F.; Garosi, L.S.; Shelton, G.D.; Clark, L.A.; Harvey, R.J. A Canine BCAN Microdeletion Associated with Episodic Falling Syndrome. Neurobiol. Dis. 2012, 45, 130–136. [Google Scholar] [CrossRef]
- Chen, X.; Johnson, G.S.; Schnabel, R.D.; Taylor, J.F.; Johnson, G.C.; Parker, H.G.; Patterson, E.E.; Katz, M.L.; Awano, T.; Khan, S.; et al. A Neonatal Encephalopathy with Seizures in Standard Poodle Dogs with a Missense Mutation in the Canine Ortholog of ATF2. Neurogenetics 2008, 9, 41–49. [Google Scholar] [CrossRef]
- Vernau, K.M.; Runstadler, J.A.; Brown, E.A.; Cameron, J.M.; Huson, H.J.; Higgins, R.J.; Ackerley, C.; Sturges, B.K.; Dickinson, P.J.; Puschner, B.; et al. Genome-Wide Association Analysis Identifies a Mutation in the Thiamine Transporter 2 (SLC19A3) Gene Associated with Alaskan Husky Encephalopathy. PLoS ONE 2013, 8, e57195. [Google Scholar] [CrossRef]
- Drögemüller, M.; Letko, A.; Matiasek, K.; Jagannathan, V.; Corlazzoli, D.; Rosati, M.; Jurina, K.; Medl, S.; Gödde, T.; Rupp, S.; et al. SLC19A3 Loss-of-Function Variant in Yorkshire Terriers with Leigh-Like Subacute Necrotizing Encephalopathy. Genes 2020, 11, 1215. [Google Scholar] [CrossRef] [PubMed]
- Mandigers, P.J.J.; Stehling, O.; Vos-Loohuis, M.; Van Steenbeek, F.G.; Lill, R.; Leegwater, P.A. A Novel IBA57 Variant Is Associated with Mitochondrial Iron–Sulfur Protein Deficiency and Necrotizing Myelopathy in Dogs. Front. Genet. 2023, 14, 1190222. [Google Scholar] [CrossRef]
- Shelton, G.D.; Johnson, G.C.; O’Brien, D.P.; Katz, M.L.; Pesayco, J.P.; Chang, B.J.; Mizisin, A.P.; Coates, J.R. Degenerative Myelopathy Associated with a Missense Mutation in the Superoxide Dismutase 1 (SOD1) Gene Progresses to Peripheral Neuropathy in Pembroke Welsh Corgis and Boxers. J. Neurol. Sci. 2012, 318, 55–64. [Google Scholar] [CrossRef]
- Zeng, R.; Coates, J.R.; Johnson, G.C.; Hansen, L.; Awano, T.; Kolicheski, A.; Ivansson, E.; Perloski, M.; Lindblad-Toh, K.; O’Brien, D.P.; et al. Breed Distribution of SOD 1 Alleles Previously Associated with Canine Degenerative Myelopathy. J. Vet. Intern. Med. 2014, 28, 515–521. [Google Scholar] [CrossRef]
- Wininger, F.A.; Zeng, R.; Johnson, G.S.; Katz, M.L.; Johnson, G.C.; Bush, W.W.; Jarboe, J.M.; Coates, J.R. Degenerative Myelopathy in a Bernese Mountain Dog with a Novel SOD1 Missense Mutation: Novel Mutation of SOD1-Associated Degenerative Myelopathy. J. Vet. Intern. Med. 2011, 25, 1166–1170. [Google Scholar] [CrossRef]
- Cook, S.; Hooser, B.N.; Williams, D.C.; Kortz, G.; Aleman, M.; Minor, K.; Koziol, J.; Friedenberg, S.G.; Cullen, J.N.; Shelton, G.D.; et al. Canine Models of Charcot-Marie-Tooth: MTMR2, MPZ, and SH3TC2 Variants in Golden Retrievers with Congenital Hypomyelinating Polyneuropathy. Neuromuscul. Disord. 2023, 33, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Vandevelde, M.; Braund, K.G.; Walker, T.L.; Kornegay, J.N. Dysmyelination of the Central Nervous System in the Chow-Chow Dog. Acta Neuropathol. 1978, 42, 211–215. [Google Scholar] [CrossRef]
- Pemberton, T.J.; Choi, S.; Mayer, J.A.; Li, F.-Y.; Gokey, N.; Svaren, J.; Safra, N.; Bannasch, D.L.; Sullivan, K.; Breuhaus, B.; et al. A Mutation in the Canine Gene Encoding Folliculin-Interacting Protein 2 (FNIP2) Associated with a Unique Disruption in Spinal Cord Myelination: A Mutation in FNIP2 Disrupts Myelination. Glia 2014, 62, 39–51. [Google Scholar] [CrossRef]
- Griffiths, I.R.; Duncan, I.D.; McCulloch, M.; Harvey, M.J.A. Shaking Pups: A Disorder of Central Myelination in the Spaniel Dog. J. Neurol. Sci. 1981, 50, 423–433. [Google Scholar] [CrossRef]
- Nadon, N.L.; Duncan, I.D.; Hudson, L.D. A Point Mutation in the Proteolipid Protein Gene of the ‘Shaking Pup’ Interrupts Oligodendrocyte Development. Development 1990, 110, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Köhler, W.; Curiel, J.; Vanderver, A. Adulthood Leukodystrophies. Nat. Rev. Neurol. 2018, 14, 94–105. [Google Scholar] [CrossRef]
- Li, F.-Y.; Cuddon, P.A.; Song, J.; Wood, S.L.; Patterson, J.S.; Shelton, G.D.; Duncan, I.D. Canine Spongiform Leukoencephalomyelopathy Is Associated with a Missense Mutation in Cytochrome b. Neurobiol. Dis. 2006, 21, 35–42. [Google Scholar] [CrossRef]
- Störk, T.; Nessler, J.; Anderegg, L.; Hünerfauth, E.; Schmutz, I.; Jagannathan, V.; Kyöstilä, K.; Lohi, H.; Baumgärtner, W.; Tipold, A.; et al. TSEN54 Missense Variant in Standard Schnauzers with Leukodystrophy. PLoS Genet. 2019, 15, e1008411. [Google Scholar] [CrossRef] [PubMed]
- Minor, K.M.; Letko, A.; Becker, D.; Drögemüller, M.; Mandigers, P.J.J.; Bellekom, S.R.; Leegwater, P.A.J.; Stassen, Q.E.M.; Putschbach, K.; Fischer, A.; et al. Canine NAPEPLD-Associated Models of Human Myelin Disorders. Sci. Rep. 2018, 8, 5818. [Google Scholar] [CrossRef] [PubMed]
- Van Poucke, M.; Martlé, V.; Van Brantegem, L.; Ducatelle, R.; Van Ham, L.; Bhatti, S.; Peelman, L.J. A Canine Orthologue of the Human GFAP c.716G>A (p.Arg239His) Variant Causes Alexander Disease in a Labrador Retriever. Eur. J. Hum. Genet. 2016, 24, 852–856. [Google Scholar] [CrossRef]
- Sanchez-Masian, D.F.; Artuch, R.; Mascort, J.; Jakobs, C.; Salomons, G.; Zamora, A.; Casado, M.; Fernandez, M.; Recio, A.; Lujan, A. L-2-Hydroxyglutaric Aciduria in Two Female Yorkshire Terriers. J. Am. Anim. Hosp. Assoc. 2012, 48, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Penderis, J.; Calvin, J.; Abramson, C.; Jakobs, C.; Pettitt, L.; Binns, M.M.; Verhoeven, N.M.; O’Driscoll, E.; Platt, S.R.; Mellersh, C.S. L-2-Hydroxyglutaric Aciduria: Characterisation of the Molecular Defect in a Spontaneous Canine Model. J. Med. Genet. 2007, 44, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Didiasova, M.; Banning, A.; Brennenstuhl, H.; Jung-Klawitter, S.; Cinquemani, C.; Opladen, T.; Tikkanen, R. Succinic Semialdehyde Dehydrogenase Deficiency: An Update. Cells 2020, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Vernau, K.M.; Struys, E.; Letko, A.; Woolard, K.D.; Aguilar, M.; Brown, E.A.; Cissell, D.D.; Dickinson, P.J.; Shelton, G.D.; Broome, M.R.; et al. A Missense Variant in ALDH5A1 Associated with Canine Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD) in the Saluki Dog. Genes 2020, 11, 1033. [Google Scholar] [CrossRef]
- Mason, E.; Hindmarch, C.C.T.; Dunham-Snary, K.J. Medium-chain Acyl-COA Dehydrogenase Deficiency: Pathogenesis, Diagnosis, and Treatment. Endocrinol. Diabetes Metab. 2023, 6, e385. [Google Scholar] [CrossRef]
- Christen, M.; Bongers, J.; Mathis, D.; Jagannathan, V.; Quintana, R.G.; Leeb, T. ACADM Frameshift Variant in Cavalier King Charles Spaniels with Medium-Chain Acyl-CoA Dehydrogenase Deficiency. Genes 2022, 13, 1847. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, M.D.; Sneddon, N.; Dittmer, K.; Keehan, M.; Stephen, M.; Drögemüller, M.; Garrick, D. A Frameshift-deletion Mutation in Reelin Causes Cerebellar Hypoplasia in White Swiss Shepherd Dogs. Anim. Genet. 2023, 54, 632–636. [Google Scholar] [CrossRef]
- Christen, M.; De Le Roi, M.; Jagannathan, V.; Becker, K.; Leeb, T. MYO5A Frameshift Variant in a Miniature Dachshund with Coat Color Dilution and Neurological Defects Resembling Human Griscelli Syndrome Type 1. Genes 2021, 12, 1479. [Google Scholar] [CrossRef]
- Mondino, A.; Delucchi, L.; Moeser, A.; Cerdá-González, S.; Vanini, G. Sleep Disorders in Dogs: A Pathophysiological and Clinical Review. Top. Companion Anim. Med. 2021, 43, 100516. [Google Scholar] [CrossRef]
- Hungs, M. Identification and Functional Analysis of Mutations in the Hypocretin (Orexin) Genes of Narcoleptic Canines. Genome Res. 2001, 11, 531–539. [Google Scholar] [CrossRef]
- Lin, L.; Faraco, J.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; De Jong, P.J.; Nishino, S.; Mignot, E. The Sleep Disorder Canine Narcolepsy Is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene. Cell 1999, 98, 365–376. [Google Scholar] [CrossRef]
- Trapp, B.; De Andrade Lourenção Freddi, T.; De Oliveira Morais Hans, M.; Fonseca Teixeira Lemos Calixto, I.; Fujino, E.; Alves Rojas, L.C.; Burlin, S.; Cerqueira Costa, D.M.; Carrete, H., Jr.; Abdala, N.; et al. A Practical Approach to Diagnosis of Spinal Dysraphism. Radiographics 2021, 41, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Van Den Broek, A.H.M.; Else, R.W.; Abercromby, R.; France, M. Spinal Dysraphism in the Weimaraner. J. Small Anim. Pract. 1991, 32, 258–260. [Google Scholar] [CrossRef]
- Safra, N.; Bassuk, A.G.; Ferguson, P.J.; Aguilar, M.; Coulson, R.L.; Thomas, N.; Hitchens, P.L.; Dickinson, P.J.; Vernau, K.M.; Wolf, Z.T.; et al. Genome-Wide Association Mapping in Dogs Enables Identification of the Homeobox Gene, NKX2-8, as a Genetic Component of Neural Tube Defects in Humans. PLoS Genet. 2013, 9, e1003646. [Google Scholar] [CrossRef]
- Patterson, E.E.; Minor, K.M.; Tchernatynskaia, A.V.; Taylor, S.M.; Shelton, G.D.; Ekenstedt, K.J.; Mickelson, J.R. A Canine DNM1 Mutation Is Highly Associated with the Syndrome of Exercise-Induced Collapse. Nat. Genet. 2008, 40, 1235–1239. [Google Scholar] [CrossRef]
- Van Dijk, P.J.; Ellis, T.H.N. The Full Breadth of Mendel’s Genetics. Genetics 2016, 204, 1327–1336. [Google Scholar] [CrossRef]
- Gulani, A.; Weiler, T. Genetics, Autosomal Recessive. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Houge, G.; Laner, A.; Cirak, S.; De Leeuw, N.; Scheffer, H.; Den Dunnen, J.T. Stepwise ABC System for Classification of Any Type of Genetic Variant. Eur. J. Hum. Genet. 2022, 30, 150–159. [Google Scholar] [CrossRef]
- Donner, J.; Freyer, J.; Davison, S.; Anderson, H.; Blades, M.; Honkanen, L.; Inman, L.; Brookhart-Knox, C.A.; Louviere, A.; Forman, O.P.; et al. Genetic Prevalence and Clinical Relevance of Canine Mendelian Disease Variants in over One Million Dogs. PLoS Genet. 2023, 19, e1010651. [Google Scholar] [CrossRef]
- Cummings, B.B.; Marshall, J.L.; Tukiainen, T.; Lek, M.; Donkervoort, S.; Foley, A.R.; Bolduc, V.; Waddell, L.B.; Sandaradura, S.A.; O’Grady, G.L.; et al. Improving Genetic Diagnosis in Mendelian Disease with Transcriptome Sequencing. Sci. Transl. Med. 2017, 9, eaal5209. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The New NHGRI-EBI Catalog of Published Genome-Wide Association Studies (GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901. [Google Scholar] [CrossRef]
- Lichou, F.; Trynka, G. Functional Studies of GWAS Variants Are Gaining Momentum. Nat. Commun. 2020, 11, 6283. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
Phene | Mode of Inheritance | Involved Chromosome | Concerned Gene and Its Description | Type of Variant | Affected Dog Breeds |
---|---|---|---|---|---|
Acral mutilation syndrome | Autosomal recessive | 4 | GDNF—glial cell derived neurotrophic factor | Regulatory | English Pointer, English Springer Spaniel, French Spaniel, German Shorthaired Pointer [114] |
Medium-chain acyl-CoA dehydrogenase deficiency | Autosomal recessive | 6 | ACADM—acyl-CoA dehydrogenase, C-4 to C-12 straight chain | Delins, gross (>20) | Cavalier King Charles Spaniel [177] |
Alexander disease | Autosomal dominant | 9 | GFAP—glial fibrillary acidic protein | Missense | Labrador Retriever [171] |
Cerebellar ataxia | Autosomal recessive | 5 | ATP1B2—ATPase, Na+/K+ transporting, beta 2 polypeptide | Insertion, gross (>20) | Belgian Shepherd [17] |
Cerebellar ataxia | Autosomal recessive | 4 | RAB24—RAB24, member RAS oncogene family | Missense | Gordon Setter, Old English Sheepdog [18] |
Cerebellar ataxia | Autosomal recessive | 3 | KCNIP4—Kv channel interacting protein 4 | Missense | Norwegian Buhund [19] |
Cerebellar ataxia | Autosomal recessive | 38 | KCNJ10—potassium channel, inwardly rectifying subfamily J, member 10 | Missense | Malinois, Jack Russell Terrier Parson, Russell Terrier [13,14] |
Cerebellar ataxia | Autosomal recessive | 1 | GRM1—glutamate receptor, metabotropic 1 | Insertion, gross (>20) | Coton de Tulear [21] |
Cerebellar ataxia | Autosomal recessive | 8 | SEL1L—sel-1 suppressor of lin-12-like (C. elegans) | Missense | Finnish Hound [23] |
Cerebellar ataxia | Autosomal recessive | 8 | RALGAPA1—Ral GTPase activating protein, alpha subunit 1 (catalytic) | Deletion, gross (>20) | Belgian Shepherd [15] |
Cerebellar ataxia | Autosomal recessive | 4 | SEPP1—selenoprotein P, plasma, 1 | Deletion, gross (>20) | Belgian Shepherd [16] |
Ataxia | Autosomal recessive | 12 | HACE1—HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 | Deletion, small (≤20) | Norwegian Elkhound [24] |
Spinocerebellar ataxia | Autosomal recessive | 18 | CAPN1—calpain 1, (mu/I) large subunit | Missense | Parson Russell Terrier [25] |
Spinocerebellar ataxia | Autosomal recessive | 20 | ITPR1—inositol 1,4,5-trisphosphate receptor, type 1 | Complex rearrangement | Italian Spinone [26] |
Spinocerebellar ataxia | Autosomal recessive | 27 | SCN8A—sodium channel, voltage-gated, type VIII alpha subunit | Missense | Alpine Dachsbracke [27] |
Spinocerebellar ataxia | Autosomal recessive | 30 | SLC12A6—solute carrier family 12 (potassium/chloride transporter), member 6 | Delins, small (≤20) | Belgian Shepherd [28] |
Spinocerebellar ataxia | Autosomal recessive | 18 | SPTBN2—spectrin, beta, non-erythrocytic 2 | Deletion, small (≤20) | Beagle [29] |
Cerebellar abiotrophy | Autosomal recessive | 9 | VMP1—vacuole membrane protein 1 | Missense | Australian Working Kelpie [30] |
Cerebellar cortical degeneration | Unknown | 12 | SNX14—sorting nexin 14 | Splicing | Vizsla [31] |
Cerebellar degeneration–myositis complex | Unknown | 36 | SLC25A12—solute carrier family 25 (aspartate/glutamate carrier), member 12 | Missense | Nova Scotia Duck Tolling Retriever [32] |
Cerebellar hypoplasia | Autosomal recessive | 1 | VLDLR—very low density lipoprotein receptor | Deletion, small (≤20) | Eurasier [33] |
Degenerative myelopathy | Autosomal recessive | 31 | SOD1—superoxide dismutase 1 | Missense | Multiple breeds [160] |
Dilute coat color with neurological defects | Autosomal recessive | 30 | MYO5A—myosin VA | Insertion, small (≤20) | Miniature Dachshund [179] |
Paroxysmal dyskinesia | Autosomal recessive | 1 | PIGN—phosphatidylinositol glycan anchor biosynthesis, class N | Missense | Soft-Coated Wheaten Terrier [148] |
Paroxysmal dyskinesia | Autosomal recessive | 31 | SOD1—superoxide dismutase 1 | Delins, small (≤20) | Markiesje [149] |
Paroxysmal dystonia–ataxia syndrome | Autosomal recessive | 7 | TNR—tenascin R | Insertion, small (≤20) | Weimaraner [153] |
Episodic falling | Autosomal recessive | 7 | BCAN—brevican | Deletion, gross (>20) | Cavalier King Charles Spaniel [154] |
Exercise-induced collapse | Autosomal recessive | 9 | DNM1—dynamin 1 | Missense | Chesapeake Bay Retriever, Curly-Coated Retriever, Labrador Retriever [186] |
Hyperekplexia | Autosomal recessive | 21 | SLC6A5—solute carrier family 6 member 5 | Deletion, gross (>20) | Irish Wolfhound [151] |
Hyperekplexia | Autosomal recessive | 4 | GLRA1—glycine receptor alpha 1 | Deletion, gross (>20) | Miniature Australian Shepherd [152] |
Hypomyelination of the central nervous system | Autosomal recessive | 15 | FNIP2—folliculin interacting protein 2 | Deletion, small (≤20) | Weimaraner [164] |
L-2-hydroxyglutarate dehydrogenase | Autosomal recessive | 8 | L2HGDH—L-2-hydroxyglutarate dehydrogenase | Missense | Yorkshire Terrier [172] |
Laryngeal paralysis and polyneuropathy | Autosomal recessive | 9 | CNTNAP1—contactin associated protein 1 | Missense | Labrador Retriever, Leonberger, Pyrenean Shepherd, Saint Bernard [123] |
Leukodystrophy | Mitochondrial | N/A | CYTB—cytochrome b | Missense | Australian Cattle Dog, Shetland Sheepdog [168] |
Leukodystrophy | Autosomal recessive | 9 | TSEN54—TSEN54 tRNA splicing endonuclease subunit | Missense | Standard Schnauzer [169] |
Leukoencephalomyelopathy | Autosomal recessive | 18 | NAPEPLD—N-acyl phosphatidylethanolamine phospholipase D | Insertion, small (≤20) | Great Dane, Rottweiler [170] |
Lissencephaly and cerebellar hypoplasia | Probably autosomal recessive | 18 | RELN—reelin | Deletion, small (≤20) | White Swiss Shepherd [178] |
Multiple system degeneration | Autosomal recessive | 1 | SERAC1—serine active site containing 1 | Splicing | Chinese Crested [12] |
Congenital myasthenic syndrome | Autosomal recessive | 28 | CHAT—choline O-acetyltransferase | Missense | Old Danish Pointer [127] |
Congenital myasthenic syndrome | Autosomal recessive | 5 | CHRNE—cholinergic receptor, nicotinic, epsilon (muscle) | Insertion, small (≤20) | Heideterrier, Jack Russell Terrier [125,126] |
Generalized myoclonic epilepsy with photosensitivity | Autosomal recessive | 20 | DIRAS1—DIRAS family, GTP-binding RAS-like 1 | Deletion, small (≤20) | Rhodesian Ridgeback [130] |
Benign familial juvenile epilepsy | Autosomal dominant with incomplete penetrance | 3 | LGI2—leucine rich repeat LGI family member 2 | Nonsense (stop-gain) | Lagotto Romagnolo [132] |
Myoclonus epilepsy of Lafora | Autosomal recessive | 35 | NHLRC1—NHL repeat containing E3 ubiquitin protein ligase 1 | Repeat variation | Beagle, Chihuahua, Miniature Wirehaired Dachshund, Newfoundland, Pembroke Welsh Corgi [135,136,137,138] |
Epilepsy with mitochondrial dysfunction and neurodegeneration | Autosomal recessive | 2 | PITRM1—pitrilysin metallopeptidase 1 | Deletion, small (≤20) | Parson Russell Terrier [139] |
Deafness | Unknown | 37 | KLF7—Kruppel-like transcription factor 7 | Missense | Australian Stumpy Tail Cattle Dogs [141] |
Deafness | Autosomal recessive | 4 | CDH23—cadherin-related 23 | Missense | Beauceron [142] |
Deafness | Autosomal recessive | 18 | EPS8L2—EPS8-like 2 | Deletion, small (≤20) | Rhodesian Ridgeback [143] |
Deafness | Autosomal recessive | 7 | LOXHD1—lipoxygenase homology PLAT domains 1 | Missense | Rottweiler [144] |
Bilateral deafness and vestibular dysfunction | Autosomal recessive | 21 | MYO7A—myosin VIIA | Missense | Doberman Pinscher [146] |
Unilateral deafness and vestibular dysfunction | Autosomal recessive | 15 | PTPRQ—protein tyrosine phosphatase receptor type Q | Insertion, small (≤20) | Doberman Pinscher [147] |
Myeloencephalopathy degenerative progressive | Autosomal recessive | 18 | PNPLA8—patatin-like phospholipase domain containing 8 | Duplication | Australian Shepherd [34] |
Subacute necrotising encephalopathy | Autosomal recessive | 25 | SLC19A3—solute carrier family 19 (thiamine transporter), member 3 | Delins, gross (>20) | Alaskan Husky [156] |
Necrotising myelopathy | Autosomal recessive | 14 | IBA57—homolog, iron-sulfur cluster assembly | Missense | Dutch Kooiker [158] |
Neonatal encephalopathy with seizures | Autosomal recessive | 36 | ATF2—activating transcription factor 2 | Missense | Standard Poodle [155] |
Neuroaxonal dystrophy | Autosomal recessive | 2 | MFN2—mitofusin 2 | Deletion, small (≤20) | Schnauzer–Beagle cross [107] |
Neuroaxonal dystrophy | Autosomal recessive | 10 | PLA2G6—phospholipase A2, group VI (cytosolic, calcium-independent) | Missense | Papillon [104] |
Neuroaxonal dystrophy | Autosomal recessive | 8 | TECPR2—tectonin beta-propeller repeat containing 2 | Missense | Spanish Water Dog [106] |
Neuroaxonal dystrophy | Autosomal recessive | 5 | VPS11—vacuolar protein sorting 11 homolog | Missense | Rottweiler [105] |
Lysosomal storage disease | Autosomal incomplete dominant | 9 | CNP—2′,3′-cyclic-nucleotide 3′-phosphodiesterase | Deletion, small (≤20) | Dalmatian [59] |
Lysosomal storage disease | Autosomal recessive | 9 | ARSG—arylsulfatase G | Missense | American Staffordshire Terrier [78] |
Mucopolysaccharidosis I | Autosomal recessive | 3 | IDUA—alpha-L-iduronidase | Splicing | Plott Hound [62] |
Insertion, small (≤20) | Boston Terrier [63] | ||||
Deletion, gross (>20) | Golden Retriever [64] | ||||
Mucopolysaccharidosis IIIA | Autosomal recessive | 9 | SGSH—N-sulfoglucosamine sulfohydrolase | Deletion, small (≤20) | Dachshund [67] |
Insertion, small (≤20) | New Zealand Huntaway Dog [65] | ||||
Mucopolysaccharidosis IIIB | Autosomal recessive | 9 | NAGLU—N-acetyl-alpha-glucosaminidase | Insertion, gross (>20) | Schipperke [70] |
Mucopolysaccharidosis VI | Autosomal recessive | 3 | ARSB—arylsulfatase B | Deletion, gross (>20) | Miniature Poodle [72] |
Nonsense (stop-gain) | Great Dane [73] | ||||
Deletion, gross (>20) | Miniature Schnauzer [74] | ||||
Missense | Miniature Pinscher [74] | ||||
Mucopolysaccharidosis VII | Autosomal recessive | 6 | GUSB—glucuronidase beta | Missense | German Shepherd [76] |
Missense | Brazilian Terrier [77] | ||||
Alpha-mannosidosis | Probably autosomal recessive | 20 | MAN2B1—mannosidase alpha class 2B member 1 | Missense | Doberman Pinscher [81] |
Beta-mannosidosis | Autosomal recessive | 32 | MANBA—mannosidase beta | Missense | German Shepherd [83] |
Duplication | Mixed dog breed [84] | ||||
GM1 gangliosidosis | Autosomal recessive | 23 | GLB1—galactosidase beta 1 | Missense | Portuguese Water Dog [88] |
Deletion, small (≤20) | Miniature Shiba, Shiba Inu [89] | ||||
Insertion, small (≤20) | Alaskan Husky [91] | ||||
GM2 gangliosidoses | Autosomal recessive | 30 | HEXA—hexosaminidase subunit alpha | Missense | Japanese Chin [92] |
GM2 gangliosidosis type II | Autosomal recessive | 2 | HEXB—hexosaminidase subunit beta | Deletion, small (≤20) | Toy Poodle [93] |
Deletion, small (≤20) | Shiba Inu [94] | ||||
Glycogen storage disease II | Autosomal recessive | 9 | GAA—alpha glucosidase | Nonsense (stop-gain) | Finnish Lapphund, Swedish Lapphund [96] |
Alpha fucosidosis | Autosomal recessive | 2 | FUCA1—alpha-L-fucosidase 1 | Deletion, small (≤20) | English Springer Spaniel [98] |
Krabbe disease | Autosomal recessive | 8 | GALC—galactosylceramidase | Missense | Cairn Terrier, West Highland White Terrier [100] |
Insertion, gross (>20) | Irish Setter [101] | ||||
Missense | Mixed dog breed [102] | ||||
Neurodegenerative vacuolar storage disease | Autosomal recessive | 20 | ATG4D—autophagy-related 4D, cysteine peptidase | Missense | Lagotto Romagnolo [35] |
Neuronal ceroid lipofuscinosis, type 1 | Autosomal recessive | 15 | PPT1—palmitoyl-protein thioesterase 1 | Splicing | Italian Cane Corso [41] |
Neuronal ceroid lipofuscinosis, type 2 | Autosomal recessive | 21 | TPP1—tripeptidyl peptidase I | Deletion, small (≤20) | Dachshund [42] |
Neuronal ceroid lipofuscinosis, type 5 | Autosomal recessive | 22 | CLN5—ceroid-lipofuscinosis, neuronal 5 | Deletion, small (≤20) | Golden Retriever [45] |
Neuronal ceroid lipofuscinosis, type 6 | Autosomal recessive | 30 | CLN6—ceroid-lipofuscinosis, neuronal 6, late infantile, variant | Missense | Australian Shepherd [46] |
Neuronal ceroid lipofuscinosis, type 7 | Autosomal recessive | 19 | MFSD8—major facilitator superfamily domain containing 8 | Deletion, small (≤20) | Chihuahua, Chinese Crested [47] |
Neuronal ceroid lipofuscinosis, type 8 | Autosomal recessive | 37 | CLN8—ceroid-lipofuscinosis, neuronal 8 (epilepsy, progressive with mental retardation) | Deletion, gross (>20) | Alpine Dachsbracke [52] |
Neuronal ceroid lipofuscinosis, type 10 | Autosomal recessive | 18 | CTSD—cathepsin D | Missense | American Bulldog [56] |
Neuronal ceroid lipofuscinosis, type 12 | Autosomal recessive | 2 | ATP13A2—ATPase type 13A2 | Splicing | Tibetan Terrier [57] |
Missense | Australian Cattle Dog [58] | ||||
Hereditary sensory and autonomic neuropathy | Autosomal recessive | 26 | SCN9A—sodium channel, voltage-gated, type IX, alpha subunit | Missense | Mixed dog breed [110] |
Sensory ataxic neuropathy | Mitochondrial | N/A | MTTY—mitochondrially encoded tRNA tyrosine | Deletion, small (≤20) | Golden Retriever [111] |
Sensory neuropathy | Autosomal recessive | 4 | FAM134B—family with sequence similarity 134, member B | Inversion | Border Collie [113] |
Polyneuropathy | Probably autosomal recessive | 16 | ARHGEF10—Rho guanine nucleotide exchange factor (GEF) 10 | Deletion, small (≤20) | Leonberger, Saint Bernard [115] |
Polyneuropathy | Autosomal incomplete dominant | 15 | GJA9—gap junction protein, alpha 9, 59kDa | Deletion, small (≤20) | Leonberger [116] |
Hypomyelinating polyneuropathy | Probably autosomal dominant | 38 | MPZ—myelin protein zero | Missense | Golden Retriever [162] |
Hypomyelinating polyneuropathy | Probably autosomal recessive | 21 | MTMR2—myotubularin-related protein 2 | Splicing | Golden Retriever [162] |
Hypomyelinating polyneuropathy | Probably autosomal recessive | 4 | SH3TC2—SH3 domain and tetratricopeptide repeats 2 | Nonsense (stop-gain) | Golden Retriever [162] |
Polyneuropathy | Autosomal recessive | 13 | NDRG1—N-myc downstream regulated 1 | Missense | Alaskan Malamute [119] |
Polyneuropathy with ocular abnormalities and neuronal vacuolation | Autosomal recessive | 19 | RAB3GAP1—RAB3 GTPase activating protein subunit 1 (catalytic) | Insertion, gross (>20) | Alaskan Husky [122] |
Polyneuropathy | Autosomal recessive | 21 | SBF2—SET binding factor 2 | Splicing | Miniature Schnauzer [117] |
Succinic semialdehyde dehydrogenase deficiency | Autosomal recessive | 25 | ALDH5A1—aldehyde dehydrogenase 5 family, member A1 | Missense | Saluki [175] |
Narcolepsy | Autosomal recessive | 12 | HCRTR2—hypocretin receptor 2 | Splicing | Doberman Pinscher [182] |
Splicing | Labrador Retriever [182] | ||||
Missense | Dachshund [181] | ||||
X-linked tremor | X-linked recessive | X | PLP1—proteolipid protein 1 | Missense | Springer Spaniel [166] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocostîrc, V.; Paștiu, A.I.; Pusta, D.L. An Overview of Canine Inherited Neurological Disorders with Known Causal Variants. Animals 2023, 13, 3568. https://doi.org/10.3390/ani13223568
Cocostîrc V, Paștiu AI, Pusta DL. An Overview of Canine Inherited Neurological Disorders with Known Causal Variants. Animals. 2023; 13(22):3568. https://doi.org/10.3390/ani13223568
Chicago/Turabian StyleCocostîrc, Vlad, Anamaria Ioana Paștiu, and Dana Liana Pusta. 2023. "An Overview of Canine Inherited Neurological Disorders with Known Causal Variants" Animals 13, no. 22: 3568. https://doi.org/10.3390/ani13223568
APA StyleCocostîrc, V., Paștiu, A. I., & Pusta, D. L. (2023). An Overview of Canine Inherited Neurological Disorders with Known Causal Variants. Animals, 13(22), 3568. https://doi.org/10.3390/ani13223568