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Simple Summary: The gut microbiome can provide valuable information on the ecology and health
of wildlife. We profiled the gut microbiota of the southern greater glider, an endangered Australian
marsupial that was heavily disturbed by the 2019–2020 Australian bushfire season. Geographic
location was found to be a significant driver of gut microbial community diversity and structure. In
addition, the wildfires were shown to shape some aspects of the gut microbiome. By establishing
baseline microbiome data for the southern greater glider, we lay the foundation for the future
monitoring of populations at risk of compromised health, as well as inform future conservation
management decisions for this endangered species.

Abstract: Studying the gut microbiome can provide valuable insights into animal health and inform
the conservation management of threatened wildlife. Gut microbiota play important roles in regulat-
ing mammalian host physiology, including digestion, energy metabolism and immunity. Dysbiosis
can impair such physiological processes and compromise host health, so it is essential that the gut
microbiome be considered in conservation planning. The southern greater glider (Petauroides volans)
is an endangered arboreal marsupial that faced widespread habitat fragmentation and population
declines following the 2019–2020 Australian bushfire season. This study details baseline data on
the gut microbiome of this species. The V3–V4 region of the 16S rRNA gene was amplified from
scats collected from individuals inhabiting burnt and unburnt sites across southeastern Australia and
sequenced to determine bacterial community composition. Southern greater glider gut microbiomes
were characterised by high relative abundances of Firmicutes and Bacteroidota, which is consistent
with that reported for other marsupial herbivores. Significant differences in gut microbial diversity
and community structure were detected among individuals from different geographic locations.
Certain microbiota and functional orthologues were also found to be significantly differentially
abundant between locations. The role of wildfire in shaping southern greater glider gut microbiomes
was shown, with some significant differences in the diversity and abundance of microbiota detected
between burnt and unburnt sites. Overall, this study details the first data on greater glider (Petau-
roides) gut microbiomes, laying the foundation for future studies to further explore relationships
between microbial community structure, environmental stressors and host health.

Keywords: greater glider; southern greater glider; endangered; microbiome; arboreal mammal;
marsupial; bushfire; health; biodiversity

1. Introduction

The microbiome has been recognised as an increasingly important aspect of threatened
wildlife health [1] and there is a strong need to consider species’ microbiomes when plan-
ning for effective conservation management. The gut microbiome refers to the community
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of microorganisms that live within the gastrointestinal tract of a host. Gut microbiota play
important symbiotic roles in regulating host physiological processes [2], including immu-
nity [3], metabolism [4] and behaviour [5]. Imbalance, or dysbiosis, of the gut microbiome
can have detrimental effects on host health [6], so preserving a healthy, balanced gut micro-
biome is vital for maintaining host fitness. Environmental stressors can shape microbial
community structure [7,8]. Stressful events can cause the release of stress hormones that
regulate immunity in the gut, which can alter microbial composition [9]. Profiling the gut
microbiome therefore has the potential to reveal the impacts of disturbance events, such as
wildfires, on gut symbiosis.

Consideration of the microbiome is especially important for obligate dietary specialists,
which often have specific microbial assemblages adapted for the effective digestion of
certain food types [10]. Greater gliders (Petauroides) are specialist herbivores endemic to
eastern Australia with a diet that consists almost exclusively of foliage from the genus
Eucalyptus [11,12]. The southern greater glider (Petauroides volans) is one of three species of
greater glider, with a reported distribution from Prosperine, QLD through NSW and the
ACT into VIC [13]. In July 2022, the species was uplisted to endangered under the National
Environment Protection and Biodiversity Conservation Act 1999, citing rapid population
declines and critical habitat destruction after the 2019–2020 Australian bushfire season as
evidence that the species is now a conservation priority [14]. The koala is another arboreal
herbivore that shares a similar Eucalyptus-centric diet, for which the gut microbiome has
been well characterised [15–20]. Dietary differences caused by differential consumption
of the foliage of different Eucalyptus sp. have been found to profoundly influence the
gut microbiome of koalas [18]. This could have important implications for translocating
specialist Eucalyptus folivores, such as the southern greater glider. Differences in diet
between the source and destination habitats may contribute to poor translocation and
overall health outcomes, with the translocated animals lacking gut microbiomes adapted to
the new diet. To reduce this risk, careful consideration of the gut microbiome of the target
population is necessary.

Microbial communities can be characterised by amplicon sequencing targeting the
16S ribosomal RNA gene, which is highly conserved in bacteria and remains the gold
standard in microbial typing [21]. Molecular analyses of 16S have been a staple of microbial
research for decades [22]. High-throughput, short-read sequencing of 16S based on the
Illumina MiSeq platform is designed to specifically target the V3–V4 region and offers
high taxonomic resolution at a reduced cost compared to other next-generation sequencing
platforms [23]. In the context of Australian marsupials, previous work has focused on using
16S sequencing to characterise gut microbiota of select members of the Dasyuridae [24–26],
Vombatidae [17,27] and Phascolarctidae [15–18,20]. However, the gut microbiome has yet
to be formally investigated through 16S sequencing in the Pseudocheiridae family, which
includes all extant greater gliders and ringtail possums.

To characterise gut microbiota of the southern greater glider and explore relationships
between fire and gut microbiome composition, we analysed scat samples from twenty-five
individuals across seven locations in southeastern NSW, including a mix of habitats that
were burnt and remained unburnt during the 2019–2020 Australian bushfire season. To our
knowledge, this is the first report of the southern greater glider (Petauroides volans) micro-
biome and provides baseline gut microbial community data for this species. Successive
studies will benefit from having benchmark microbiome data available for greater gliders
and the wider Pseudocheiridae family, laying the foundation for future studies to further
explore relationships between microbial community structure, environmental stressors and
host health.

2. Materials and Methods
2.1. Study Area

Scats were collected from twenty-five southern greater gliders (n = 11 male, n = 14
female) at seven sites across southeastern NSW in late 2021 (Figure 1). Localities included



Animals 2023, 13, 3583 3 of 29

Seven Mile Beach National Park (NP) (n = 4), Broulee (n = 4), Eurobodalla NP (n = 3), Meroo
NP (n = 3), Monga NP (n = 6), Murramarang NP (n = 3) and the wildlife sanctuary Sharewa-
ter (n = 2). Sites sampled were burnt to varying degrees during the 2019–2020 Australian
bushfire season, with forest canopies ranging from unburnt to completely burnt (detailed
in [28]). Dominant vegetation classes, reported Eucalyptus species, temperature ranges,
annual mean rainfall, burn status during the 2019–2020 bushfire season and estimated
greater glider effective population sizes for each location are provided in Table A1.
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Figure 1. Map of southern greater glider sampling locations across southeastern NSW, Australia.
Locations include Seven Mile Beach National Park (NP); Meroo NP; Murramarang NP; a public
reserve in Broulee; Eurobodalla NP; Monga NP; and Sharewater, a wildlife sanctuary near Braidwood.
Fire severity was taken from NSW Department of Planning and Environment Fire Extent and Severity
Mapping (FESM) 2019/20 overlay [29]. Sampling locations are marked as burnt (red) or unburnt
(green). Map generated using qGIS v3.32.1.

2.2. Sample Collection

Scats were collected from individuals following live capture from tree hollows (as
described in [30]) and stored dry in sterilised vials at −20 ◦C prior to microbial analyses.
All scats were collected directly from the cloaca upon discharge to prevent microbial
contamination and ensure the samples could be correctly matched to the individual. In
the laboratory, 250 mg faecal material from each individual was weighed, transferred to a
sterilised safe-lock microtube (Eppendorf, Hamburg, Germany) and sent to the Australian
Genome Research Facility (AGRF, Adelaide, Australia) on dry ice for DNA extraction
and 16S microbial profiling. All research protocols were approved by the University of
Wollongong Animal Ethics committee (AE19/02) and conducted under an NSW DPIE
Scientific Licence (SL101968).

2.3. DNA Extraction and 16S Microbial Diversity Profiling

DNA extraction was performed by the AGRF as part of their Microbiome DNA
Extraction Service. For 16S microbial profiling, the AGRF applied a polymerase chain



Animals 2023, 13, 3583 4 of 29

reaction (PCR) to amplify the 300 bp V3–V4 341F-806R region of the 16S rRNA gene
using validated forward primer (5′-CCTAYGGGRBGCASCAG-3′) and reverse primer
(5′-GGACTACNNGGGTATCTAAT-3′) sequences. Amplicons were pooled and sequenced
on the Illumina MiSeq platform using Nextera XT Indexes and paired-end sequencing
chemistry, generating paired-end .fastq sequences. Demultiplexing, quality control and
amplicon sequence variant (ASV) calling was then performed. Reads were analysed using
QIIME 2 2019.7 [31]. Demultiplexed raw reads were primer-trimmed and quality-filtered
using the cutadapt plugin, followed by denoising with DADA2 [32]. Taxonomy was
assigned to ASVs in QIIME v2023.2 using the q2-feature-classifier classify-sklearn Naive
Bayes taxonomy classifier [33] trained on the SILVA 138.1 small subunit rRNA database [34]
with a 97% confidence threshold.

2.4. Microbial Diversity Analyses

Alpha diversity and beta diversity of gut microbial communities were analysed in
QIIME2 v2023.2 [31]. Alpha diversity measures the diversity of microbial taxa within
individual samples, while beta diversity measures the diversity of microbial community
composition among samples. Alpha diversity was assessed by calculating the observed
number of ASVs [35], Chao1 index [36] and Shannon index [37]. Boxplots for each alpha
diversity metric were generated in R v4.3.1 using the ggplots2 package. Kruskal–Wallis tests
were used to test for statistically significant (p < 0.05) differences in alpha diversity among
samples based on location, burn status of the habitat during the 2019–2020 bushfire season,
sex and month of scat collection. Amplicon sequence variant richness was determined by
calculating the mean number of ASVs +/− the standard error of the mean for each location.
Beta diversity was assessed by calculating unweighted UniFrac distances [38], weighted
UniFrac distances [39], Bray–Curtis dissimilarity [40] and Jaccard distances [41]. Matrices
of the distances between pairs of samples were generated for each beta diversity metric.
Principal coordinate analysis (PCoA) of the matrices was conducted in QIIME2 v2023.2 and
visualised by generating scatter plots in R v4.3.1 using the ggplots2 package. Permutational
multivariate analysis of variance (PERMANOVA) tests, with 999 permutations, were used
to test for statistically significant (p < 0.05) differences in beta diversity between samples.

2.5. Taxonomic Composition Profiling

Taxonomy bar plots were generated in R v4.3.1 using the qiime2R package. Taxa
relative abundance (mean % +/− SEM) was compared at the phylum, family and genus
levels. For baseline characterisation of the southern greater glider gut microbiome, the
mean relative abundances of taxa and Firmicutes/Bacteroidota (F:B) ratio were calculated
using data from twenty-four individuals (n = 24). It should be noted that one individual
from Eurobodalla NP (CONGO40) was deemed to be an outlier due to disproportionately
skewed abundances of dominant gut phyla (F:B ratio of 194.2:1). This individual was
excluded from all analyses to determine accurate baseline microbial community informa-
tion. To investigate differences in the dominant bacterial phyla between populations across
southeastern NSW, variations in taxa abundance were compared (i) among geographic
locations across southeastern NSW, and (ii) between burnt and unburnt sites. Wilcoxon
rank sum tests were used to test for statistically significant (p < 0.05) differences in the
relative abundances of taxa between groups.

2.6. Prediction of Functional Profiles of Microbial Communities

The Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt2) program was used to predict metagenome functional profiles of south-
ern greater glider gut microbial communities based on 16S sequencing data [42]. KEGG
orthologue (KO) abundance output was analysed in R v4.3.1. KOs of interest were
checked against the KO and KEGG databases to annotate individual genes and describe
the functional pathways in which the identified microbial communities are implicated [43].
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Wilcoxon rank sum tests were used to test for statistically significant (p < 0.05) differences
in the relative abundance of KOs between populations from separate geographic locations.

2.7. Differential Abundance Analysis

Analysis of composition of microbiomes (ANCOM) was run in QIIME2 v2023.2 and
used to test for significantly differentially abundant microbial taxa and KOs (i) among
locations and (ii) between burnt and unburnt sites. This method of differential abundance
analysis accounts for the compositional constraints of microbiome data by performing an
additive log ratio transformation prior to comparing microbial community composition
among samples [44]. In the ANCOM volcano plot output, the W value represents the
number of times the null hypothesis (that the average abundance of a given taxon/KO in
one population is equal to that in another population) is rejected for a given taxon/KO and
the centred logarithmic ratio (clr) value indicates the effect size.

2.8. Data Availability

All 16S rRNA gene sequence data generated within this study have been uploaded
to the National Centre for Biotechnology Information (NCBI) open access Sequence Read
Archive under the BioProject accession number PRJNA1026323.

3. Results
3.1. Microbial Diversity

Alpha diversity was significantly different among geographic locations (Kruskal–
Wallis test, p < 0.05) (Table 1). Gut microbial diversity was greatest in individuals from
Seven Mile Beach NP and lowest in individuals from Eurobodalla NP (Figure 2). No
significant differences in alpha diversity were detected between burnt and unburnt sites
(Table 1). Additionally, alpha diversity did not significantly vary based on the sex of the
greater glider or the month of scat collection (Table 1). A total of 1093 ASVs were identified
across the 24 southern greater glider gut samples, with a mean of 244 ± 34 ASVs per
sample. The greatest ASV richness was observed in individuals from Seven Mile Beach NP
(283 ± 11 ASVs), while individuals from Eurobodalla NP had the lowest ASV richness
(218 ± 6 ASVs). No significant differences in ASV richness were detected between burnt
and unburnt sites.
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Figure 2. Alpha diversity of southern greater glider gut microbiomes from southeastern NSW.
Boxplots show mean alpha diversity of samples at each location, with interquartile range and
outlier values indicated. (a) Chao1 index. (b) Shannon index. 7MBNP = Seven Mile Beach NP
(n = 4), BROUL = Broulee (n = 4), CONGO = Eurobodalla NP (n = 2), MEROO = Meroo NP (n = 3),
MONGA = Monga NP (n = 6), MURRA = Murramarang NP (n = 3), SHARE = Sharewater (n = 2).
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Table 1. Alpha diversity of southern greater glider gut microbiomes. Individuals grouped based on
sampling location, burn status of site, sex and month of collection. Analysis performed in QIIME2
v2023.2. Kruskal–Wallis test used to test for significant differences among groups. Test statistic (H) is
indicated for each comparison. * = p < 0.05.

Number of Observed Features (ASVs) Chao1 Shannon

Location 15.52 * 15.52 * 16.18 *
Burn status of site 2.69 2.69 1.37

Sex 1.66 1.66 0.31
Month collected 8.35 8.35 5.28

Geographic location was found to significantly influence gut microbial community
structure, with dissimilarity in microbiome composition observed among locations (PER-
MANOVA, p < 0.05) (Table 2). Principal coordinate analysis of Bray–Curtis distances
revealed strong clustering of samples based on location, where individuals from the same
site had microbiomes that were more similar to each other than to individuals from dis-
parate locations (Figure 3a). This was consistent with the PCoA of Jaccard distances, which
similarly showed a strong clustering pattern based on location (Figure 3b). Clustering
together of individuals from Monga NP and Sharewater was observed in both plots, as was
the clustering of individuals from Meroo NP and Murramarang NP (Figure 3a,b). Individu-
als from Eurobodalla NP were also clearly separated from individuals from other locations
(Figure 3a,b). Jaccard, Bray–Curtis and unweighted UniFrac distances significantly dif-
fered between burnt and unburnt sites (PERMANOVA, p < 0.05), although differences
in weighted UniFrac distances were not significant (Table 2). No significant sex-based
influence on gut microbial diversity was identified (Table 2).

Animals 2023, 13, x FOR PEER REVIEW 6 of 29 
 

Figure 2. Alpha diversity of southern greater glider gut microbiomes from southeastern NSW. Box-
plots show mean alpha diversity of samples at each location, with interquartile range and outlier 
values indicated. (a) Chao1 index. (b) Shannon index. 7MBNP = Seven Mile Beach NP (n = 4), BROUL 
= Broulee (n = 4), CONGO = Eurobodalla NP (n = 2), MEROO = Meroo NP (n = 3), MONGA = Monga 
NP (n = 6), MURRA = Murramarang NP (n = 3), SHARE = Sharewater (n = 2). 

Table 1. Alpha diversity of southern greater glider gut microbiomes. Individuals grouped based on 
sampling location, burn status of site, sex and month of collection. Analysis performed in QIIME2 
v2023.2. Kruskal–Wallis test used to test for significant differences among groups. Test statistic (H) 
is indicated for each comparison. * = p < 0.05. 

 Number of Observed Features (ASVs) Chao1 Shannon 
Location 15.52 * 15.52 * 16.18 * 

Burn status of site 2.69 2.69 1.37 
Sex 1.66 1.66 0.31 

Month collected 8.35 8.35 5.28 

Geographic location was found to significantly influence gut microbial community 
structure, with dissimilarity in microbiome composition observed among locations (PER-
MANOVA, p < 0.05) (Table 2). Principal coordinate analysis of Bray–Curtis distances re-
vealed strong clustering of samples based on location, where individuals from the same 
site had microbiomes that were more similar to each other than to individuals from dis-
parate locations (Figure 3a). This was consistent with the PCoA of Jaccard distances, which 
similarly showed a strong clustering pattern based on location (Figure 3b). Clustering to-
gether of individuals from Monga NP and Sharewater was observed in both plots, as was 
the clustering of individuals from Meroo NP and Murramarang NP (Figure 3a,b). Indi-
viduals from Eurobodalla NP were also clearly separated from individuals from other 
locations (Figure 3a,b). Jaccard, Bray–Curtis and unweighted UniFrac distances signifi-
cantly differed between burnt and unburnt sites (PERMANOVA, p < 0.05), although dif-
ferences in weighted UniFrac distances were not significant (Table 2). No significant sex-
based influence on gut microbial diversity was identified (Table 2). 

 
(a) (b) 

Figure 3. Principal coordinate analysis of beta diversity distances between southern greater glider 
gut microbiomes. (a) Bray–Curtis distances. (b) Jaccard distances. The proportion of variance among 
the samples explained by each axis is indicated in brackets. Individuals sampled from various geo-
graphic locations across southeastern NSW. 7MBNP = Seven Mile Beach NP (n = 4), BROUL = Brou-
lee (n = 4), CONGO = Eurobodalla NP (n = 2), MEROO = Meroo NP (n = 3), MONGA = Monga NP 
(n = 6), MURRA = Murramarang NP (n = 3), SHARE = Sharewater (n = 2). Plots generated in R v4.3.1. 

Figure 3. Principal coordinate analysis of beta diversity distances between southern greater glider gut
microbiomes. (a) Bray–Curtis distances. (b) Jaccard distances. The proportion of variance among the
samples explained by each axis is indicated in brackets. Individuals sampled from various geographic
locations across southeastern NSW. 7MBNP = Seven Mile Beach NP (n = 4), BROUL = Broulee
(n = 4), CONGO = Eurobodalla NP (n = 2), MEROO = Meroo NP (n = 3), MONGA = Monga NP
(n = 6), MURRA = Murramarang NP (n = 3), SHARE = Sharewater (n = 2). Plots generated in R v4.3.1.
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Table 2. Beta diversity of southern greater glider gut microbiomes. Individuals grouped based on
sampling location, burn status of site, and sex. Analysis performed in QIIME2 v2023.2. Permutational
multivariate analysis of variance (PERMANOVA) used to test for significant differences between
groups. Test statistic (pseudo F) is indicated for each comparison. * = p < 0.05.

Bray–Curtis
Distance

Jaccard
Distance

Unweighted
UniFrac
Distance

Weighted
UniFrac
Distance

Location 3.64 * 3.33 * 2.14 * 2.86 *
Burn status of site 2.60 * 2.85 * 2.33 * 0.81

Sex 0.84 0.89 0.87 0.76

3.2. Taxonomic Composition

Microbiome composition was investigated at the phylum, family and genus taxonomic
levels to characterise dominant microbial groups in the gut of southern greater gliders.

3.2.1. Phylum Level

Fourteen phyla were detected, with six phyla having a >1% relative abundance. Gut mi-
crobiomes were dominated by Firmicutes (mean relative abundance± SEM: 63.12% ± 1.80%)
and Bacteroidota (23.27% ± 1.79%), with a mean F:B ratio of 2.7:1. The next most abundant
phyla were Proteobacteria (3.62% ± 1.51%), Verrucomicrobiota (3.31% ± 0.49%), Syner-
gistota (2.98% ± 0.35%) and Actinobacteriota (1.80% ± 0.16%). Lower abundances (<1%)
of Cyanobacteria, Spirochaeota, Desulfobacterota and Campilobacterota from the domain
Bacteria, as well as Euryarchaeota and Thermoplasmatota from the domain Archaea, were
also detected (Figure 4a).

3.2.2. Family Level

Eighty-one families were detected, with 13 at >1% relative abundance. The Lach-
nospiraceae (33.04% ± 1.67%) were the dominant family in the southern greater glider gut,
with the next five most abundant families being unclassified Firmicutes (12.28% ± 1.09%),
Prevotellaceae (10.26% ± 0.94%), Rikenellaceae (9.82% ± 1.52%), Erysipelatoclostridiaceae
(9.51% ± 1.86%) and Oscillospiraceae (3.70% ± 0.41%). Other families detected at lower
relative abundances included Synergistaceae (2.98% ± 0.35%), unclassified Bacteroidales
(2.84% ± 0.25%), Ruminococcaceae (2.11% ± 0.28%), Puniceicoccaceae (1.99% ± 0.37%)
and Enterobacteriaceae (1.65% ± 0.70%) (Figure 4b).

3.2.3. Genus Level

Ninety-nine genera were detected, but only 14 were found to be at >1% relative
abundance. Among these, unclassified Lachnospiraceae had the greatest relative abun-
dance (31.06% ± 1.69%), following unclassified Firmicutes (12.28% ± 1.09%), the Rikenel-
laceae RC9 group (9.73% ± 1.53%), Erysipelatoclostridiaceae UCG 004 (9.50% ± 1.86), un-
classified Prevotellaceae (5.74% ± 0.60%), unclassified Oscillospiraceae (3.66% ± 0.41%),
Prevotella (3.69% ± 0.45%), Pyramidobacter (2.96% ± 0.35%), unclassified Bacteroidales
(2.84% ± 0.25%), Ruminococcus (2.11% ± 0.28%), Cerasicoccus (1.99% ± 0.37%), Shuttle-
worthia (1.95% ± 0.41%) and Escherichia-Shigella (1.64% ± 0.69%) (Figure 4c).

To investigate differences in the dominant bacterial phyla among populations across
southeastern NSW, the mean F:B ratio was calculated for each sampling location. The F:B
ratio was significantly higher at Eurobodalla NP (12.7:1) compared to that observed at
Sharewater (4.3:1), Meroo NP (3.1:1), Murramarang NP (2.6:1), Seven Mile Beach NP (2.6:1),
Broulee (2.3:1) and Monga NP (1.9:1) (Kruskal–Wallis test, p < 0.05). It should be noted that
the excluded outlier individual from the Eurobodalla NP population (CONGO40) had an
F:B ratio of 194.2:1.
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Figure 4. Taxonomic bar plots showing relative abundances of microbial taxa in southern greater
glider gut microbiomes. (a) Phylum-level plot. (b) Family-level plot. (c) Genus-level plot. The size of
the coloured regions on each plot indicates the proportional contributions (%) of each taxon to total
composition (100%). Individuals sampled from various geographic locations across southeastern
NSW. 7MBNP = Seven Mile Beach NP (n = 4), BRO = Broulee (n = 4), CONGO = Eurobodalla NP
(n = 2), MEROO = Meroo NP (n = 3), MONGA = Monga NP (n = 6), MUR = Murramarang NP (n = 3),
SW = Sharewater (n = 2). Plots generated in R v4.3.1.

To observe the potential impacts of fire on gut microbiome composition, the data were
then stratified based on whether the sample was collected from a site that was burnt during
the 2019–2020 wildfires. At the phylum level, compositional similarity was indicated be-
tween samples collected from burnt and unburnt habitats, with no significant differences in
the relative abundances of Firmicutes, Bacteroidota, Proteobacteria and Verrucomicrobiota.
However, the relative abundance of Synergistota was found to be significantly greater
in samples collected from burnt habitats (3.67%) compared to unburnt habitats (2.01%)
(Wilcoxon rank sum test, S = 88, p < 0.05) (Table 3). At the family level, similar relative
abundances of Lachnospiraceae, unclassified Firmicutes, Erysipelatoclostridiaceae, Pre-
votellaceae and Rikenellaceae were found (Table 3). Likewise, at the genus level, similar
levels of unclassified Lachnospiraceae, unclassified Firmicutes, the Rickenellaceae RC9 group,
Erysipelatoclostridiaceae UCG04 and unclassified Prevotellaceae were detected (Table 3).
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Table 3. Microbial taxa detected in southern greater glider gut microbiomes from burnt and unburnt
sites across southeastern NSW. The five most dominant taxa at the phylum, family and genus
taxonomic levels are shown. Relative abundance presented as mean (%) ± standard error of the mean
(SEM). p values from Wilcoxon rank sum test indicated. * = p < 0.05.

Taxonomic Level Taxa
Mean Relative Abundance (% ± SEM)

p Value
Burnt Habitat Unburnt Habitat

Phylum

Firmicutes 61.01 ± 2.23 66.08 ± 8.96 0.23
Bacteroidota 24.15 ± 2.21 22.03 ± 9.74 0.70

Proteobacteria 4.45 ± 2.59 2.46 ± 1.47 0.33
Verrucomicrobiota 2.75 ± 0.63 4.09 ± 2.38 0.15

Synergistota 3.67 ± 0.52 2.01 ± 0.57 0.03 *

Family

Lachnospiraceae 32.78 ± 1.69 33.40 ± 3.35 0.70
Unclassified Firmicutes 13.10 ± 1.31 11.15 ± 1.91 0.23

Erysipelatoclostridiaceae 8.54 ± 2.36 10.87 ± 3.10 0.36
Prevotellaceae 10.13 ± 1.24 10.45 ± 1.51 0.84
Rikenellaceae 10.85 ± 2.18 8.38 ± 2.04 0.62

Genus

Unclassified Lachnospiraceae 30.98 ± 1.71 31.16 ± 3.41 0.77
Unclassified Firmicutes 13.10 ± 1.31 11.15 ± 1.91 0.23
Rickenellaceae RC9 group 10.77 ± 2.19 8.28 ± 2.04 0.62

Erysipelatoclostridiaceae UCG04 8.54 ± 2.36 10.86 ± 9.81 0.36
Unclassified Prevotellaceae 5.15 ± 0.57 6.57 ± 1.18 0.21

Some ASVs were exclusively found in burnt or unburnt habitats. Four-hundred
twenty-six ASVs were exclusive to burnt sites, detected in at least one individual from
a burnt site but not at unburnt sites. Conversely, 270 ASVs were detected in at least one
individual from an unburnt site, but not at burnt sites. Thirty-nine ASVs were common
among all individuals sampled from burnt sites; however, none of these were found only
in burnt habitats, whereas 72 ASVs were common among individuals from unburnt sites,
with 1 ASV (d1d1a5a618360d5a64a3e9fe0a39e394: unclassified Lachnospiraceae) found
exclusively in unburnt habitats.

3.3. Functional Profiling of Microbial Communities

PICRUSt2 was used to predict functional profiles of 16S rRNA gene sequences sampled
from southern greater glider scats. A total of 4630 KOs were common among all southern
greater glider microbiomes, while 419 KOs were unique to individuals. Differences in the
expression of KOs coding for plant-fibre-degrading enzymes were found among geographic
locations (Figure 5, Table A3). The expression of K01181 (endo-1,4-beta-xylanase), K15924
(glucuronoarabinoxylan endo-1,4-beta-xylanase) and K01811 (alpha-D-xyloside xylohy-
drolase), coding for xylanases, was significantly different among locations (Wilcoxon rank
sum test, p < 0.05). Likewise, the expression of K18650 (exo-poly-alphagalacturonosidase),
coding for a pectinase, significantly differed among locations (Wilcoxon rank sum test,
p < 0.05). No significant differences in the expression of KOs coding for cellulases were
detected among locations.

Comparison between individuals from burnt and unburnt sites also revealed some
differences in the expression of fibre-degrading KOs (Figure 5, Table A4). K01179 (endoglu-
canase) had a significantly higher abundance in the gut of individuals from unburnt sites
(0.081%) compared to burnt sites (0.063%) (Wilcoxon rank sum test, S = 165, p < 0.05). Simi-
larly, K15924 (Glucuronoarabinoxylan endo-1,4-beta-xylanase) had a significantly higher
abundance at unburnt sites (0.0062% in unburnt vs. 0.0028% in burnt) (Wilcoxon rank sum
test, S = 180, p < 0.05). In contrast, K01181 (endo-1,4-beta-xylanase) had a higher abundance
at burnt sites (0.0095% in burnt vs. 0.016% in unburnt) (Wilcoxon rank sum test, S = 171,
p < 0.05).
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Figure 5. Heatmap plot showing relative abundance of KEGG orthologues (KOs) coding for plant-
fibre-degrading enzymes detected across southern greater glider gut microbiomes from southeastern
NSW. Geographic location and burn status of the sampling site are indicated. Relative abundance
(%) of KO in each sample indicated by colour gradient. White cells indicate that the KO was
not detected in the sample. K01179: endoglucanase, K05350: beta-glucosidase, K18650: exo-poly-
alpha-galacturonosidase, K06113: arabinan endo-1,5-alpha-L-arabinosidas, K01051: pectinesterase,
K01728: pectate lyase, K01181: endo-1,4-beta-xylanase, K15924: glucuronoarabinoxylan endo-1,4-
beta-xylanase, K01811: alpha-D-xyloside xylohydrolase, K01805: xylose isomerase. Plot generated in
R v4.3.1.

3.4. Differential Abundance Analysis

Differential abundance analysis was performed using ANCOM to identify significantly
differentially abundant microbial taxa between southern greater glider gut microbiomes.
The Defluviitaleaceae family was found to be differentially abundant between locations
(W = 40). Defluviitaleaceae had the greatest relative abundance in individuals from Seven
Mile Beach NP (0.06%), followed by Murramarang NP (0.05%), Broulee (0.05%), Monga
NP (0.03%), Meroo NP (0.01%) and Eurobodalla NP (0.01%), while the family was not
detected in individuals from Sharewater. The Oscillospiraceae V9D2013 group genus was also
found to be differentially abundant between locations (W = 93). The relative abundance of
the Oscillospiraceae V9D2013 group was highest in individuals from Seven Mile Beach NP
(1.40%), with similar abundances at Murramarang NP (0.06%) and Broulee (0.06%), and a
very low abundance at Meroo NP (<0.01%), while the genus was not detected at Eurobodalla
NP, Monga NP or Sharewater. Twenty-two ASVs were found to be differentially abundant
between geographic locations (Table A2) and evidence of site-specific microbial taxa was
found. An unclassified Firmicutes, Bacteroidales, Prevotellaceae and two Cerasicoccus
ASVs were detected only in the Seven Mile Beach NP population. Likewise, unclassified
Lachnospiraceae ASVs were only found in the Eurobodalla NP and Monga NP populations,
while an unclassified Ruminococcus ASV was only found in the Broulee population. An
uncultured Enterorhabdus ASV was found among all South Coast populations (Seven Mile
Beach NP, Broulee, Eurobodalla NP, Meroo NP, Murramarang NP), but not populations
further inland (Monga NP, Sharewater). Additionally, an unclassified Lachnospiraceae
ASV was found only in the inland populations. No differentially abundant phyla, families
or genera were detected between burnt and unburnt sites.
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ANCOM was also used to test for significantly differentially abundant KOs between
southern greater glider gut microbiomes. Three KOs were found to be differentially
abundant between locations, K08256 (W = 4022), K11779 (W = 3514) and K11263 (W = 3665)
(Figure 6a). K08256 had the greatest relative abundance in individuals from Meroo NP
(0.00016%) and Eurobodalla NP (0.00015%), followed by Murramarang NP (0.00011%),
Broulee (0.00010%) and Seven Mile Beach NP (0.00003%). The KO was also detected at
very low abundance in one individual from Monga NP (<0.00001%) but was absent in
individuals from Sharewater (Figure 6b, Table A5). Following a similar pattern, K11779 also
had greater relative abundances at Meroo NP (0.00016%) and Eurobodalla NP (0.00015%),
with lower abundances detected in Murramarang NP (0.00011%), Broulee (0.00010%)
and Seven Mile Beach NP (0.00003%), although the KO was absent from individuals
from Monga NP and Sharewater (Figure 6b, Table A5). Finally, K11263 had the greatest
relative abundance in individuals from Meroo NP (0.00031%), followed by Eurobodalla NP
(0.00015%), Murramarang NP (0.00011%) and Broulee (0.00011%). Lower abundances were
also detected at Seven Mile Beach NP (0.00003%) and Monga NP (<0.00001%), but as with
the aforementioned KOs, K11263 was absent in individuals from Sharewater (Figure 6b,
Table A5). No differentially abundant KOs were detected between burnt and unburnt sites.
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Figure 6. Differentially abundant KOs detected between southern greater glider gut microbiomes
from across southeastern NSW. (a) Volcano plot from ANCOM differential abundance analysis. Only
significantly differentially abundant KOs (assuming a 0.05 significance threshold) are labelled. The
y-axis value (W) represents the number of times the null hypothesis (that the average abundance of a
given KO in one population is equal to that in another population) was rejected. The x-axis value
(clr) represents the effect size change between the compared populations. (b) Heatmap showing
relative abundance of significantly differentially abundant KOs at each sampling location. Relative
abundance (%) of KO in each sample indicated by colour gradient. White cells indicate that the KO
was not detected in the sample. Plots generated in R v4.3.1.

4. Discussion

This study is the first characterisation of the southern greater glider gut microbiome
and provides preliminary insights into the microbiome of greater gliders (Petauroides).
Greater gliders are specialist folivores that exclusively rely on the leaves of Eucalyptus
trees for nutrition [45]. Understanding the gut microbiome is of high importance when
considering conservation actions for a dietary specialist species, as they often require
specific microbial assemblages to effectively digest and harvest energy from their preferred
food sources [19]. Analysis of the gut microbiome can also inform us of the health of
individuals by identifying opportunistic pathogens [44,46] or dysbiosis, which can be a
diagnostic of compromised health [47–49]. High localised extinction risks are predicted for
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many southern greater glider populations across southern NSW [28]. However, essential
baseline health data are currently lacking for greater gliders, limiting the ability to make
informed conservation management decisions for the species. Our study aimed to fill this
gap in knowledge by characterising the gut microbiome of southern greater gliders from
various geographic locations across southeastern NSW post-fire.

4.1. Southern Greater Glider Gut Microbiomes Exhibit Varied Microbial Diversity across
the Landscape

Gut microbial diversity was found to significantly vary between southern greater
gliders from different geographic locations, indicating that the distribution of microbial
species in the gut is similar between individuals within a population but distinct between
populations. This is supported by the clustering based on location observed in the PCoA of
Bray–Curtis and Jaccard distance matrices (Figure 3), suggesting local habitat specificity in
the gut microbial communities of southern greater gliders. Gut microbial diversity has been
found to be substantially impacted by geographic location in a range of mammals [50–52].
Diet has been noted as a key factor in explaining differences in gut microbial diversity
between populations [19,53–56]. The digestive systems of mammalian herbivores heavily
rely on gut microbiota to assist in the extraction of nutrients and energy from their diet [57].
More diverse gut microbiomes have previously been associated with diets higher in fibre,
while less diverse microbiomes have been linked to diets with less fibre and more starch
content [58–60].

The higher microbial diversity observed at sampling locations dominated by South
Coast Sands Dry Sclerophyll Forest (Seven Mile Beach NP, Broulee) could suggest that
these populations are better adapted to the digestion of Eucalyptus sp. with high foliar fibre
content. This is supported by a study which found that koalas feeding on the foliage of
messmate stringybark (Eucalyptus obliqua), a high-fibre eucalypt of low nutritional quality,
had gut microbiomes with significantly higher microbial diversity than koalas feeding on
manna gum (Eucalyptus viminalis), which is lower in fibre and more nutritious [18]. South
Coast Sands Dry Sclerophyll Forests are dominated by blackbutt (Eucalyptus pilularis) and
bangalay (Eucalyptus botryoides) [61], with greater gliders found to have a preference for
foraging the former at Seven Mile Beach NP [62]. Although no information is available
on the foliar fibre content of blackbutt and bangalay at present, it is possible that these
eucalypts are fibre-rich, and this has driven gut microbiomes to become more diverse.
The significant differences in gut microbial diversity observed between locations in our
study could therefore reflect the adaptation of gut microbiomes to locally available diets.
Meanwhile, the sex of the animal and differences in sampling month had negligible impacts
on gut microbial diversity and do not appear to be major drivers of southern greater glider
gut microbiota.

Interestingly, individuals from Eurobodalla NP had microbiomes with substantially
lower microbial diversity and were clustered together away from all other samples in
the PCoA of Bray–Curtis and Jaccard distances (Figure 3). Collectively, these results
suggest that there may be underlying factors at Eurobodalla NP that are influencing the gut
microbial community structure of the resident southern greater glider population, whether
that be environmental, genetic or a combination of both. Anthropogenic disturbances can
induce dysbiosis of wildlife gut microbiomes [63] and could offer a potential explanation
for the lack of microbial diversity observed at Eurobodalla NP. Recent work has shown
that anthropogenic habitat disturbances can significantly disrupt the gut microbiome and
lead to reduced microbial diversity in the gray-brown mouse lemur [64], Kuhl’s pipistrelle
bat [65], Tome’s spiny rat and common opossum [66]. Eurobodalla NP is bounded by
Moruya River to the north, Coila Lake to the south, and the Princes Highway and cleared
land to the west, which act as major barriers to dispersal for arboreal marsupials. Human
encroachment and loss of the surrounding old growth forest have resulted in the isolation
and decline of the Eurobodalla NP greater glider population, culminating in its listing
as an endangered population by the NSW State Government [67]. A recent study by
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Knipler et al. found that the Eurobodalla NP population exhibited the lowest effective
population size of fourteen populations sampled across southeastern NSW [28]. In theory,
microbial transmission between individuals via social interactions should be closely linked
to population density. Social interactions have been shown to promote species richness
within microbiomes in a variety of taxa [68–70]. Although considered generally solitary [71],
social interactions between greater gliders have been documented [11] and population
density is believed to shape some aspects of the species’ social organisation [72]. The
reduced size of the Eurobodalla NP population, and consequently the decreased likelihood
of social interactions between individuals, could thus play a role in preventing the assembly
of diverse gut microbiomes.

4.2. Southern Greater Glider Gut Microbiomes Are Taxonomically Diverse

The dominance of Firmicutes and Bacteroidota in the gut of southern greater gliders
is consistent with that reported in other marsupial herbivores, including the koala [17],
common wombat [17], southern hairy-nosed wombat [27] and various macropods [73].
Like the koala, greater gliders are specialist folivores known to feed almost exclusively
on Eucalyptus leaves [45]. Before the cell contents of Eucalyptus foliage can be digested
and used as an energy source, the cell walls must be broken down. Previous studies have
shown that the efficiency of digesting the cell walls of Eucalyptus leaf cells is low among
arboreal marsupial herbivores [74–76], citing their high fibre content as a major challenge
for digestion. The acquisition of fibre-degrading bacteria in the gut is therefore crucial
to enable the host to efficiently digest and extract energy from a high-fibre Eucalyptus
diet. Both the koala and greater gliders are hindgut fermenters, with a small, simple
stomach and enlarged cecum that acts as the primary site of microbial activity [74,76]. A
similarity in the overall taxonomic composition of the gut microbiomes of these species
was therefore expected.

The F:B ratio is widely accepted to have an important influence on intestinal home-
ostasis [77] and is often discussed in the context of host health. Changes in this ratio have
been implicated in various pathologies in animals [78–80]. An increase in F:B ratio has
been associated with increased energy harvest and a heightened risk of obesity, while a
decrease in F:B ratio has been linked to weight loss [78,81,82]. In our study, we established
a baseline F:B ratio for the southern greater glider (2.7:1) by sampling individuals across
a wide geographic spread in southeastern NSW. While the F:B ratio was observed to be
significantly higher at Eurobodalla NP, the relative proportions of these dominant phyla
in the gut microbiome remained similar across the other geographic locations. Having
baseline F:B ratio data established for the southern greater glider will benefit future studies
by enabling intra- and inter-species comparisons of dominant phyla.

The monitoring of this ratio may also be useful in assessing the health status of
individuals or populations, with deviance from the baseline F:B ratio a potential biomarker
for compromised health. For instance, the exceedingly high F:B ratio observed for the outlier
individual sampled from Eurobodalla NP (194.2:1) is indicative of extreme dysbiosis and
could suggest that this animal is suffering from a pathology that is critically impacting their
gut ecosystem. While not to the same degree of extremity, a high F:B ratio was also observed
for another individual sampled from Eurobodalla NP (12.7:1) relative to the greater gliders
from other locations. This, coupled with the low gut microbial diversity observed in
samples collected from Eurobodalla NP, appears to be indicative of an underlying problem
in either the habitat or population itself that is causing an overdominance of Firmicutes
and suppression of Bacteroidota in the gut. It is important to note that, while the F:B ratio
can be informative and is commonly reported in microbiome studies of wildlife, dysbiotic
increases or decreases in other phyla are not necessarily captured by this ratio. For example,
sustained increases in the abundance of the phylum Proteobacteria have been found to
contribute to dysbiosis [83], so the F:B ratio cannot be used on its own as a tell-all biomarker
for gut health.
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The dominance of the Lachnospiraceae family observed in the southern greater glider
gut was also expected, as this family is a major constituent of mammalian gut micro-
biomes [84]. The Lachnospiraceae have previously been shown to be abundant in the
gut microbiomes of other marsupials, such as the koala [17,19], common opossum and
gray four-eyed opossum [66]. The Lachnospiraceae encode key enzymes involved in the
breakdown of carbohydrates, sugar transport mechanisms and metabolic pathways that are
highly specialised for the degradation of complex plant material [85]. The family is known
to be fibrolytic and can breakdown plant fibres, such as cellulose and hemicellulose, that are
otherwise indigestible by the host, enabling them to be harvested and used for energy [85].
Other abundant families included the Prevotellaceae, Rikenellaceae and Oscillospiraceae.
The Prevotellaceae contains species with extensive polysaccharide and protein degradation
capabilities [86–88]. Meanwhile, the Rikenellaceae and Oscillospiraceae are two of the
most dominant bacterial families found in herbivore microbiomes [89]. The former has
been shown to be highly abundant in the gut of the southern hairy-nosed wombat [27] and
various ruminants [89], as well as being enriched in mice fed a high-fat diet [90]. The latter
contains species that play crucial roles in cellulose degradation [91] and are dominant in
the gut of ruminants such as giraffes, cattle and hartebeest [92].

The high relative abundances of the Rikenellaceae RC9 group and Erysipelatoclostridiaceae
UCG 004 observed in our study further support the notion that the southern greater glider
microbiome is well adapted to the degradation of a fibre-rich plant diet. A positive rela-
tionship between Rikenellaceae RC9 group abundance and dietary fibre has been previously
confirmed in cattle [93,94]. Likewise, the Erysipelatoclostridiaceae UCG 004, which contains
fermentative and fatty-acid-synthesising bacteria [95], has been shown to be a core genus
occurring in the gut of healthy newborn calves [96]. Surprisingly, the Ruminococcus genus,
which contains important cellulolytic bacteria [57] that dominate the koala gut [16], was
detected in low abundances in southern greater glider gut microbiomes. Despite their
similar Eucalyptus diets, it appears that either the Ruminococcus play less prominent roles in
fibre digestion in greater gliders compared to koalas or that, despite making up a smaller
proportion of the gut microbiome, they remain a key contributor to fibrolysis.

We observed patterns of differential abundance among ASVs that underscore the
presence of site-specific microbial taxa, further supporting an intrinsic link between the
gut microbiome and local environment. We identified twenty-two ASVs that showed
differential abundance between geographic locations, encompassing diverse taxonomic
groups such as Firmicutes, Lachnospiraceae, Bacteroidales, Burkholderiales, Enterorhabdus,
Cerasicoccus and Ruminococcus. Some ASVs were exclusive to populations, suggesting
the accumulation of specific microbiota to suit local conditions. For instance, unclassi-
fied Firmicutes, Bacteroidales, Prevotellaceae and Cerasicoccus ASVs were solely found
in the Seven Mile Beach NP population, reflecting the high gut microbial diversity ob-
served. These findings highlight the importance of local environmental factors in shaping
the microbiome in different geographic contexts. Additionally, the presence of unique
Enterorhabdus and Lachnospiraceae ASVs found only in coastal and inland populations,
respectively, suggests potential microbiome adaptations driven by ecological or climatic
factors that vary with proximity to the coast. It has been shown that gut microbiota can
vary between high- and low-altitude environments in various mammals, including the
domestic pig [97], wild plateau pika [98] and rhesus macaque [99]. Differences in elevation
may therefore contribute to the selection of Enterorhabdus species in the gut of greater
gliders from coastal (lower elevation) populations versus those found further inland (at
higher elevation). Further research is needed to explore the functional significance of these
site-specific microbial taxa, the factors driving their selection, and their potential impacts
on greater glider ecology and health.
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It should be acknowledged that the use of 16S rRNA amplicon sequencing limits the
taxonomic resolution achievable in this study and overlooks taxa outside the domains Bac-
teria and Archaea. This could be improved by using whole-genome shotgun metagenomic
sequencing [100], which enables the strain-level identification of taxa and can facilitate
the detection of other microorganisms present in the gut, albeit at higher cost. It should
also be noted that using faecal samples as a proxy for the gut has its own limitations in
microbiome research. Previous work in koalas has shown that rectal swabs contain all of the
diversity present in faecal samples along with additional taxa [16], suggesting that faecal
microbial communities may only subsample overall gut microbial diversity. Nevertheless,
the non-invasive nature of faecal sampling offers an effective way of profiling the gut
microbiome of wild animals, while minimising the stress and risks of harm associated with
more invasive sampling approaches.

4.3. Gut Microbial Community Functional Profiles Provide Insights into Greater Glider
Metabolism, Diet and Health

Variability in the abundance of functional orthologues coding for fibre-degrading
enzymes found across geographic locations further reflects dietary differences across the
landscape. In particular, xylanases were found to show the most macrospatial variability,
while no differences in the expression of cellulases were detected among locations. The
enrichment of microbiota expressing endo-1,4-beta-xylanase in the gut of individuals from
burnt sites could have important ecological and physiological implications. This enzyme
catalyses the hydrolysis of xylans, complex hemicellulose carbohydrates found in plant
cell walls, particularly in woody plant tissue [101]. In the aftermath of fire, there might
be an increase in the availability of charred or partially burnt woody plant material to
opportunistically forage. The enrichment of endo-1,4-beta-xylanase in individuals from
burnt habitats may therefore provide a competitive advantage in a post-fire environment
by enabling them to more effectively digest burnt plant material. Meanwhile, the lowered
expression of endoglucanase in gliders from burnt sites could suggest that individuals
in burnt habitats are not relying as heavily on cellulose-rich plant material in their diet.
A previous study found that wild Asian elephant microbiomes had a greater abundance
of hemicellulose-degrading enzymes than cellulases, with the authors’ suggesting that
breaking down hemicelluloses over cellulose could maximise energy extraction from plant
material [102]. Cellulose is generally a more recalcitrant and energy-intensive substrate to
digest than hemicelluloses [103]. A community shift toward xylanase-producing microbiota
may represent a strategy for greater gliders to conserve energy in a post-fire environment,
where there are expected to be increased energy demands for foraging, mate-seeking and
predator vigilance.

Of concern is the detection of the functional orthologue coding for phosphatidyl-
myo-inositol alpha-mannosyltransferase in a number of coastal southern greater glider
populations. Phosphatidyl-myo-inositol alpha-mannosyltransferase is an enzyme that is es-
sential for the biosynthesis of the cell envelope of members of the Mycobacterium tuberculosis
complex, which plays a key role in the pathogenesis of tuberculosis [104]. Tuberculosis is a
global health threat, affecting wildlife [105], livestock [106] and domestic animals [107], as
well as presenting significant zoonotic risk to humans [108]. Infection with M. tuberculosis
bacteria can occur through inhalation, ingestion or dermal contact with the pathogen,
presenting strong potential for both intraspecies and interspecies transmission [109]. The
common brushtail possum is the primary wildlife reservoir of M. bovis, the causative agent
of bovine tuberculosis, in New Zealand [110], although infection has never been reported
in possums in Australia. While bovine tuberculosis was declared eradicated from Australia
in 1997, infection control in the leadup was mainly limited to cattle, water buffalo and feral
pigs, with no native wildlife reservoirs identified [111]. Due to its ability to infect multiple
hosts and spread through varied transmission routes, it is plausible that, despite being
eradicated in livestock, the M. tuberculosis complex could persist in Australian wildlife.
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Detection of this orthologue in coastal greater glider populations could be a potential
indicator that the species is acting as a reservoir of mycobacterial infection. Higher abun-
dances of the orthologue were detected in the Meroo NP and Eurobodalla NP populations,
which have previously been shown to have the lowest contemporary effective population
sizes of all populations sampled on the NSW South Coast [28]. Due to their small size, it
is possible that the populations at Meroo NP and Eurobodalla NP have experienced ge-
netic drift and inbreeding effects [112–114] and this has contributed to reduced population
genetic diversity [28]. Genetic diversity is crucial for a population’s ability to respond to
disease outbreaks, with high genetic diversity increasing the chance of having individ-
uals in the population carrying advantageous alleles that confer resistance or immunity
to the pathogens. Reduced population genetic diversity could mean that the immune
systems of the animals at Meroo NP and Eurobodalla NP are compromised due to a lack
of immune-related adaptive genetic variability [115], making them more susceptible to
infection. Meanwhile, in populations further inland inhabiting contiguous forest, and for
which high levels of genetic diversity have been reported [28], the orthologue was detected
only in trace amounts (Monga NP) or not at all (Sharewater). It should also be noted
that the Meroo NP and Eurobodalla NP populations geographically occur in a current
and historically important area for dairy production in southeastern NSW that has been
ongoing since at least the mid-1800s [116], which might have increased risks of interspecies
transmission prior to the eradication of tuberculosis from livestock. Moreover, the M.
tuberculosis complex was recently detected in an Australian sea lion from South Australian
waters in 2017 [117], marking the first report of tuberculosis in an Australian pinniped in
over 20 years.

In response to these findings, we recommend that the populations identified to be at-
risk are screened for mycobacterial infection as soon as practicable to mitigate the potential
for an epizootic disease event.

4.4. Wildfire Affects the Presence and Abundance of Arboreal Marsupial Gut Microbiota

Our analyses revealed that the 2019–2020 wildfires had discernible impacts on south-
ern greater glider gut microbial communities. While inhabiting a burnt habitat was found
to have negligible influence on the levels of microbial diversity within the host’s micro-
biome, significant dissimilarity in microbial diversity was found between host populations
from burnt and unburnt habitats estimated using Jaccard, Bray–Curtis and unweighted
UniFrac metrics (Table 2). Although these results point to a significant relationship between
microbial beta diversity and habitat burnt during the wildfires, when assessed using the
weighted UniFrac metric, this was no longer found to be statistically significant. Weighted
UniFrac accounts for the proportionality of the taxa shared between samples when calculat-
ing dissimilarity, whereas unweighted UniFrac focuses only on the presence or absence
of taxa [38,39]. This suggests that while there are differences in the overall composition
of gut microbial communities in greater glider populations from burnt versus unburnt
habitats, when comparing the microbiomes based on the relative abundances of key taxa
using weighted UniFrac, this distinction becomes less evident.

Gut microbiota are sensitive to environmental changes [8,118] and the 2019–2020 wild-
fires were a major disturbance event impacting ecosystems across southern and eastern
Australia [119]. A recent study revealed that the 2019–2020 wildfires substantially altered
the gut microbiome of Kangaroo Island echidnas [120]. The authors’ found no differences
in alpha diversity between samples collected post fire from fire-affected and non-affected ar-
eas, which supports the findings of our study. Interestingly, they found that it was whether
or not the sample was collected pre- or post-bushfire that drove significant changes in
microbial community structure, with no clear differences between samples collected post
fire from within or outside burnt areas [120]. This is incongruous with our results, which
could be attributed to fundamental differences in the species biology or the severity of
wildfire experienced on Kangaroo Island compared to southeastern NSW. Alternatively,
the smaller sample size used in the aforementioned study (n = 7 post fire) may have intro-
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duced a stronger sampling bias compared to our study, which incorporated a considerably
larger sample size (n = 25) and may thus provide a more accurate representation of the
effects of fire on gut microbiomes. Habitat disturbances, more generally, have been well
documented to impact gut microbial diversity in mammals [27,64–66,121,122]. For instance,
gut microbial communities of the southern hairy-nosed wombat are more similar between
individuals from degraded habitats than with those from undisturbed habitats [27]. This is
consistent with the dissimilarity observed between the gut microbiomes of greater gliders
from burnt versus unburnt habitats in our study.

Several taxonomic groups at the phylum, family and genus levels remained relatively
stable between burnt and unburnt habitats, suggesting an overall resilience of gut micro-
biomes to wildfire disturbances. However, the Synergistota were found to be significantly
enriched in greater glider microbiomes from burnt sites, suggesting that the phylum may
play an important ecological role in post-fire conditions. The Synergistota as a phylum are
poorly characterised. While some species have been shown to be incapable of breaking
down carbohydrates, all Synergistota are able to ferment amino acids [123,124]. In post-fire
habitats, where dietary carbohydrates may be scarce, the enrichment of Synergistota in the
gut might provide a survival advantage by ensuring that amino acids can be efficiently
fermented and used as an alternative energy source. Future research directed at investigat-
ing the functional properties of Synergistota in the southern greater glider gut would be
valuable for better understanding how the species’ gut microbiome evolves in response to
wildfire-mediated habitat disturbances.

The detection of ASVs unique to southern greater gliders from burnt and unburnt habi-
tats further points to an influence of wildfire on the gut microbiome. Habitat degradation
creates suboptimal habitats for wildlife, which can enforce dietary changes that result in a
variable gut microbial community composition [121,122]. One study found that red colobus
monkeys from degraded habitats lacked microbiota with the metabolic potential to detoxify
plant xenobiotics, despite their presence in individuals from undisturbed habitats [122].
Likewise, others have found clear distinctions in the functional microbial communities of
captive black rhinoceros [125], giant panda [126] and Nambian cheetah [127] compared
to their wild counterparts. The reduction or loss of certain microbiota may reduce the
functional capacity of the host’s gut microbiome, and for herbivorous mammals that rely on
microbiota to facilitate the breakdown of plant material, losing the ability to process such
food sources could have major implications for host survivorship. Resolving the taxonomic
identity of the Lachnospiraceae ASV absent in the gut of individuals from burnt habitats
could discern whether a lack of this microbial species has important functional implications
for animals in a post-fire environment.

It should be acknowledged that variability in burn severity across a landscape can
occur during large-scale wildfires due to habitat patches that have different vegetation
types, moisture content and varying topography burning at different temperatures [128].
Patches experiencing lower-severity fires have been deemed an important source of greater
glider refugia during wildfire events [129]. These refugia enable animals to survive wildfire
and eventually repopulate the areas that experienced higher-severity fires [130]. This could
have important implications on the gut microbiome of greater gliders. Fire refugia, where
there are higher densities of greater gliders confined to a smaller area [129], could lead
to increased contact between individuals. This could potentially facilitate the transfer of
gut microbiota, symbiotic or pathogenic, from one animal to another [131]. While this
might enhance microbiota transfer, and lead to beneficial or detrimental effects on the
host, it does not necessarily guarantee increased microbiota diversity. In fact, the opposite
may occur. When animals are confined to a smaller refuge area with limited food sources
available, their diets may become more uniform. This could potentially lead to a loss of gut
microbial diversity within the population, as the microbiomes of the survivors adapt to
a shared, less diverse diet. An altered gut microbiome might, in turn, impact host fitness
by affecting the animal’s ability to digest varied foods or adapt to environmental changes,
which could influence their health, survival and reproductive success. Our baseline findings
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lay the foundation for future work by providing a reference point to assess the long-term
consequences of post-fire changes in greater glider gut microbiota. Understanding the
resilience of greater glider gut microbiomes to wildfire will be essential for improving our
ability to predict and mitigate declines in population health, leading to better informed,
more effective conservation management.

5. Conclusions

Here, we report the first characterisation of the southern greater glider gut microbiome
and provide baseline gut microbial data for Petauroides. This contributes to the limited,
yet growing, body of knowledge on Australian marsupial microbiomes. We characterised
predominant microbial taxa in the gut of southern greater gliders and found that geographic
location had the greatest impact on gut microbial diversity and composition. Site-adapted
taxa and functional profiles of microbial communities were evident, suggesting adaptation
of the gut microbiome to suit the varying habitat conditions found across southeastern
NSW. We also identified a potential indicator of pathogenic infection in coastal populations
that warrants further investigation. The 2019–2020 wildfires were indicated to have some
impact on the presence and abundance of specific microbiota in the southern greater
glider gut, although the exact mechanism for this remains unclear. Future work should
continue to focus on elucidating the role of wildfire in shaping the gut microbiomes of
Australian arboreal marsupials, which will be of high value for conservation planning with
predicted increases in the frequency and severity of wildfire events in Australia over the
coming decades.
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Appendix A

Table A1. Southern greater glider sampling locations in southeastern NSW, Australia. Vegetation
classes and reported Eucalyptus species sourced from the NSW State Vegetation Type Map [132].
Temperature ranges and rainfall data sourced from Bureau of Meterology using data from 2021
collected at the nearest Bureau station to the sampling location. Burn status of the habitat during the
2019–2020 Black Summer wildfires sourced from NSW Department of Planning and Environment
Fire Extent and Severity Mapping (FESM) 2019/20 [29]. Estimates of effective population size taken
from [28], where available.

Sampling
Location

Dominant
Vegetation

Classes

Reported
Eucalyptus

Species

Monthly Mean
Temperature

Range for 2021
(◦C)

Annual Mean
Rainfall for
2021 (mm)

2019–2020 Fires
Burn Status

Greater Glider
Effective

Population
Size

Seven Mile
Beach National

Park, Gerroa

South Coast
Sands Dry
Sclerophyll

Forests

E. botryoides
E. pilularis 20.9 1580.6 Unburnt 45.1

South Broulee
Beach, Broulee

South Coast
Sands Dry
Sclerophyll

Forests

E. botryoides
E. pilularis 20.1 1189.4 Unburnt 87.7

Eurobodalla
National Park,

Congo

Southern
Lowland Wet
Sclerophyll

Forests

E. pilularis
E. botyroides

E. scias
E. agglomerata
E. paniculata

20.9 1144.9 Unburnt 6.2

Meroo National
Park, Meroo

Southern
Lowland Wet
Sclerophyll

Forests;
Southeast Dry

Sclerophyll
Forests

E. pilularis
E. botyroides

E. scias
E. agglomerata
E. paniculata

E. agglomerata
E. globoidea

E. sieberi
E. consididenia

22.6 969.2 Burnt 8.2

Monga
National Park,

Monga

Southern
Escarpment

Wet Sclerophyll
Forests

E. cypellocarpa
E. fastigata
E. obliqua

E. viminalis

18.4 1473.0 Burnt 160.8

Murramarang
National Park,
Murramurang

Southeast Dry
Sclerophyll

Forests

E. agglomerata
E. paniculata

E. agglomerata
E. globoidea

E. sieberi
E. consididenia

22.0 1092.4 Burnt 7.8

Sharewater,
Tallaganda

Southern
Escarpment

Wet Sclerophyll
Forests;

Southeast Dry
Sclerophyll

Forests

E. cypellocarpa
E. fastigata
E. obliqua

E. viminalis
E. agglomerata
E. paniculata

E. agglomerata
E. globoidea

E. sieberi
E. blaxlandii

E. dives
E. smithii

18.4 1261.4 Burnt -
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Table A2. Differentially abundant amplicon sequence variants (ASVs) detected between southern
greater glider gut microbiomes across southeastern NSW. Amplicon sequence variants and the corre-
sponding taxonomic classifications listed. ANCOM was used to determine significantly differentially
abundant ASVs between sampling locations. W statistic represents the number of times the null
hypothesis (the average abundance of an ASV in one location is equal to that in another location)
was rejected for a given ASV, under a 0.05 significance threshold. Only significantly differentially
abundant ASVs are listed. Relative abundance (mean % ± SEM) given for locations where the
respective ASV was detected in at least one sample.

ASV Taxonomic Classification W Mean Relative Abundance (% ± SEM)

27a92e9d957ed8ff16
c0dfac8033bdf5

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 1091

Sharewater 2.11 ± 0.07
Monga NP 1.71 ± 0.18

24c0bed7fe8e9346c4
a624644cf979e8

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 1091

Murramarang NP 2.59 ± 0.99
Meroo NP 0.97 ± 0.37

d1d1a5a618360d5a64
a3e9fe0a39e394

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 1090

Broulee 0.81 ± 0.22
Eurobodalla NP 0.80 ± 0.12

Seven Mile Beach NP 0.60 ± 0.16

bc2343861ddbca17c5
5ee68a21fe8e3a d__Bacteria; p__Firmicutes 1090 Seven Mile Beach NP 3.52 ± 0.20

28b2ac3cac0b46d8b2
6a31f1ab59c922

d__Bacteria; p__Actinobacteriota;
c__Coriobacteriia; o__Coriobacteriales;
f__Eggerthellaceae; g__Enterorhabdus;

s__uncultured_bacterium

1084

Sharewater 0.41 ± 0.10
Monga NP 0.38 ± 0.09

Seven Mile Beach NP 0.24 ± 0.06

c001095135fb918b7c
1715ddecc36fa6

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 1082

Monga NP 0.51 ± 0.14
Seven Mile Beach NP 0.28 ± 0.08

8253eb9289121ce880
46e7ebb4b642e5

d__Bacteria; p__Actinobacteriota;
c__Coriobacteriia; o__Coriobacteriales;
f__Eggerthellaceae; g__Enterorhabdus;

s__uncultured_bacterium

1071

Eurobodalla NP 0.99 ± 0.31
Murramarang NP 0.64 ± 0.15

Meroo NP 0.29 ± 0.09
Seven Mile Beach NP 0.21 ± 0.03

Broulee 0.17 ± 0.04

f73e366c345a0d82a7
0413c5aec880b6

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 1009

Eurobodalla NP 0.74 ± 0.04
Monga NP 0.89 ± 0.44
Meroo NP 0.27 ± 0.07

Murramarang NP 0.07 ± 0.03

1bc20c352c5297c1e2
60d58aabeeb750

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 1033

Eurobodalla NP 5.04 ± 2.00
Sharewater 2.30 ± 0.35
Monga NP 1.57 ± 0.63

Broulee 0.51 ± 0.18
Meroo NP 0.34 ± 0.04

Murramarang NP 0.33 ± 0.14

e13ba7436b454d9525
ce3e631b789355

d__Bacteria; p__Verrucomicrobiota;
c__Verrucomicrobiae; o__Opitutales;

f__Puniceicoccaceae; g__Cerasicoccus;
s__uncultured_bacterium

1065 Seven Mile Beach NP 4.02 ± 1.72

bd537de474dbb1b14
c5cc52cc017a309

d__Bacteria; p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales 1046

Monga NP 0.39 ± 0.15
Murramarang NP 0.34 ± 0.06

Broulee 0.30 ± 0.05
Eurobodalla NP 0.22 ± 0.17

Sharewater 0.11 ± 0.03

50f8d53a33780a6434
8ec66e38a33cdf

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 1026

Eurobodalla NP 1.95 ± 1.58
Monga NP 0.33 ± 0.11

Broulee 0.05 ± 0.01
Murramarang NP 0.03 ± 0.03

0786c15611bf814f2d
41cf851a71b2b6

d__Bacteria; p__Proteobacteria;
c__Gammaproteobacteria; o__Burkholderiales 1048 Seven Mile Beach NP 1.35 ± 0.10

b47ecf8a5559f8e193a
4ca3cdbf074b6

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Oscillospirales; f__Ruminococcaceae;

g__Ruminococcus
1049 Broulee 1.67 ± 0.79
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Table A2. Cont.

ASV Taxonomic Classification W Mean Relative Abundance (% ± SEM)

021fe8edae51250b23
0154489e2dfb4c

d__Bacteria; p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales; f__Prevotellaceae 1026 Seven Mile Beach NP 1.11 ± 0.28

a75e2f333dcb0988db
971ba7d81e950b

d__Bacteria; p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales; f__Prevotellaceae 1013

Murramarang NP 0.38 ± 0.28
Meroo NP 0.19 ± 0.05

Broulee 0.10 ± 0.01

41ef40105853acf4d64
52e5e3c3859da

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 998

Murramarang NP 1.62 ± 0.24
Meroo NP 1.53 ± 0.36

Seven Mile Beach NP 0.43 ± 0.14
Broulee 0.39 ± 0.08

Eurobodalla NP 0.22 ± 0.03
Sharewater 0.12 ± 0.12

0656d5259d674955e7
a3e2d1d511bc10

d__Bacteria; p__Verrucomicrobiota;
c__Verrucomicrobiae; o__Opitutales;

f__Puniceicoccaceae; g__Cerasicoccus;
s__uncultured_bacterium

1002 Seven Mile Beach NP 0.67 ± 0.36

820a74cb34678c22bd
df0be11d75e893

d__Bacteria; p__Firmicutes; c__Clostridia;
o__Lachnospirales; f__Lachnospiraceae 1000

Sharewater 0.49 ± 0.19
Broulee 0.42 ± 0.11

Murramarang NP 0.31 ± 0.07
Monga NP 0.02 ± 0.02

9f5d77c743e4e8fd92
851d3fe40b323e

d__Bacteria; p__Proteobacteria;
c__Gammaproteobacteria; o__Burkholderiales 994

Broulee 0.21 ± 0.04
Eurobodalla NP 0.12 ± 0.02

01cf9a65286e6b93cc6
c83aef2e7f19e

d__Bacteria; p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales 988 Seven Mile Beach NP 1.05 ± 0.24

d9a15c071f0df2e405f
60ebbd8d5cb61

d__Bacteria; p__Bacteroidota; c__Bacteroidia;
o__Bacteroidales 982

Murramarang NP 0.41 ± 0.13
Meroo NP 0.39 ± 0.03

Broulee 0.21 ± 0.05
Eurobodalla NP 0.07 ± 0.07

Table A3. KOs coding for plant-fibre-degrading genes across southern greater glider gut microbiomes
from southeastern NSW. KEGG orthologue names and functional pathways taken from Kyoto
Encyclopaedia of Genes and Genomes database [43]. Wilcoxon rank sum test used to test for
statistically significant (p < 0.05) differences between groups. Mean relative abundance (%)± standard
error of mean (SEM) given to 2 significant figures. * = p < 0.05.

Fibre
Degraded

KEGG
Orthologue Enzyme Mean Relative Abundance (% ± SEM) p Value

Cellulose

K01179 Endoglucanase

Broulee 0.077% ± 0.012%

0.10

Eurobodalla NP 0.094% ± 0.016%
Meroo NP 0.053% ± 0.0050%
Monga NP 0.068% ± 0.0053%

Murramarang NP 0.072% ± 0.0078%
Seven Mile Beach NP 0.083% ± 0.0059%

Sharewater 0.048% ± 0.0096%

K05350 Beta-glucosidase

Broulee 0.028% ± 0.0026%

0.07

Eurobodalla NP 0.037% ± 0.0041%
Meroo NP 0.033% ± 0.0010%
Monga NP 0.033% ± 0.0015%

Murramarang NP 0.036% ± 0.0023%
Seven Mile Beach NP 0.036% ± 0.0016%

Sharewater 0.020% ± 0.0022%
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Table A3. Cont.

Fibre
Degraded

KEGG
Orthologue Enzyme Mean Relative Abundance (% ± SEM) p Value

Pectin

K18650
Exo-poly-

alphagalacturonosidase

Broulee 0.00048% ± 0.000046%

0.03 *

Eurobodalla NP 0.00093% ± 0.00029%
Meroo NP 0.00032% ± 0.000027%
Monga NP 0.00060% ± 0.00010%

Murramarang NP 0.00078% ± 0.000024%
Seven Mile Beach NP 0.00085% ± 0.000039%

Sharewater 0.00040% ± 0.0000052%

K06113 Arabinan endo-1,5-alpha-
Larabinosidase

Broulee 0.021% ± 0.0029%

0.18

Eurobodalla NP 0.025% ± 0.0048%
Meroo NP 0.024% ± 0.00057%
Monga NP 0.024% ± 0.0020%

Murramarang NP 0.030% ± 0.0025%
Seven Mile Beach NP 0.027% ± 0.0029%

Sharewater 0.017% ± 0.0017%

K01051 Pectinesterase

Broulee 0.0040% ± 0.00053%

0.10

Eurobodalla NP 0.0029% ± 0.00081%
Meroo NP 0.0034% ± 0.00097%
Monga NP 0.0035% ± 0.00083%

Murramarang NP 0.0033% ± 0.0017%
Seven Mile Beach NP 0.0013% ± 0.000091%

Sharewater 0.0019% ± 0.00071%

K01728 Pectate lyase

Broulee 0.00020% ± 0.000088%

0.25

Eurobodalla NP 0.00011% ± 0.00011%
Meroo NP 0.00016% ± 0.000064%
Monga NP 0.00024% ± 0.000098%

Murramarang NP 0.00017% ± 0.000078%
Seven Mile Beach NP 0.000075% ± 0.000027%

Sharewater -

Xylan

K01181 Endo-1,4-beta-xylanase

Broulee 0.018% ± 0.0031%

0.04 *

Eurobodalla NP 0.015% ± 0.0039%
Meroo NP 0.0053% ± 0.00049%
Monga NP 0.011% ± 0.0011%

Murramarang NP 0.012% ± 0.0038%
Seven Mile Beach NP 0.015% ± 0.0016%

Sharewater 0.0079% ± 0.0021%

K15924
Glucuronoarabinoxylan
endo-1,4-beta-xylanase

Broulee 0.0065% ± 0.0016%

0.04 *

Eurobodalla NP 0.0032% ± 0.0021%
Meroo NP 0.0013% ± 0.00040%
Monga NP 0.0025% ± 0.00049%

Murramarang NP 0.0045% ± 0.0015%
Seven Mile Beach NP 0.0066% ± 0.00074%

Sharewater 0.0037% ± 0.0014%

K01811
Alpha-D-xyloside

xylohydrolase

Broulee 0.025% ± 0.0027%

0.03 *

Eurobodalla NP 0.017% ± 0.0027%
Meroo NP 0.015% ± 0.0019%
Monga NP 0.021% ± 0.0021%

Murramarang NP 0.022% ± 0.0017%
Seven Mile Beach NP 0.025% ± 0.00057%

Sharewater 0.012% ± 0.000057%

K01805 Xylose isomerase

Broulee 0.017% ± 0.0026%

0.06

Eurobodalla NP 0.0053% ± 0.0024%
Meroo NP 0.016% ± 0.0027%
Monga NP 0.012% ± 0.0021%

Murramarang NP 0.014% ± 0.0040%
Seven Mile Beach NP 0.016% ± 0.0013%

Sharewater 0.0063% ± 0.00012%
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Table A4. KOs coding for plant-fibre-degrading genes across southern greater glider gut microbiomes
from burnt and unburnt sites. Wilcoxon rank sum test used to test for statistically significant (p < 0.05)
differences between groups. Mean relative abundance (%) ± standard error of mean (SEM) given to 2
significant figures. Test statistic (S) and p values indicated. * = p < 0.05.

Fibre
Degraded

KEGG
Orthologue

Enzyme
Mean Relative Abundance (% ± SEM)

S p Value
Burnt Habitat Unburnt Habitat

Cellulose
K01179 Endoglucanase 0.063% ± 0.0039% 0.083% ± 0.0062% 190 0.01 *
K05350 Beta-glucosidase 0.032% ± 0.0016% 0.033% ± 0.0019% 146 0.89

Pectin

K18650 Exo-poly-
alphagalacturonosidase 0.00055% ± 0.000062% 0.00072% ± 0.000097% 172 0.12

K06113 Arabinan endo-1,5-
alpha-Larabinosidase 0.024% ± 0.0014% 0.024% ± 0.0020% 141 0.93

K01051 Pectinesterase 0.0032% ± 0.00051% 0.0027% ± 0.00044% 131 0.53
K01728 Pectate lyase 0.00017% ± 0.000049% 0.00013% ± 0.000044% 131 0.53

Xylan

K01181 Endo-1,4-beta-
xylanase 0.0095% ± 0.0011% 0.016% ± 0.0015% 195 <0.01 *

K15924 Glucuronoarabinoxylan
endo-1,4-beta-xylanase 0.0028% ± 0.00048% 0.0057% ± 0.00089% 191 <0.01 *

K01811 Alpha-D-xyloside
xylohydrolase 0.018% ± 0.0014% 0.023% ± 0.0016% 178 0.59

K01805 Xylose isomerase 0.012% ± 0.0014% 0.013% ± 0.0064% 157 0.46

Table A5. Differentially abundant KOs detected between southern greater glider gut microbiomes
from across southeastern NSW. ANCOM used to determine significantly differentially abundant
KOs between locations. W value represents the number of times the null hypothesis (the average
abundance of a KO in one population is equal to that in another population) was rejected for a given
KO, under a 0.05 significance threshold. Only significantly differentially abundant KOs are listed.
KEGG orthologue names and functional pathways taken from Kyoto Encyclopaedia of Genes and
Genomes database [43]. Relative abundance given as mean (%) ± standard error of the mean (SEM)
for locations where the respective KO was detected in at least one sample.

KO Name Pathways W Mean Relative Abundance (% ± SEM)

K08256

Phosphatidyl-myo-
inositol
alpha-

mannosyltransferase

Lipoarabinomannan biosynthesis
Metabolic pathways 4388

Meroo NP 0.00015 ± 0.00007
Eurobodalla NP 0.00015 ± 0.000001

Murramarang NP 0.00011 ± 0.00044
Broulee 0.00010 ± 0.00003

Seven Mile Beach NP 0.00003 ± 0.00001
Monga NP <0.00001%

K11779 F0 synthase

Methane metabolism
Metabolic pathways

Microbial metabolism in diverse
environments

3894

Meroo NP 0.00016 ± 0.00008
Eurobodalla NP 0.00015 ± 0.000002

Murramarang NP 0.00011 ± 0.00004
Broulee 0.00010 ± 0.00003

Seven Mile Beach NP 0.00003 ± 0.00001

K11263

Acetyl-
CoA/propionyl-CoA

carboxylase, biotin
carboxylase, biotin

carboxyl carrier
protein

Fatty acid biosynthesis
Valine, leucine and isoleucine

degradation
Pyruvate metabolism

Glyoxylate and dicarboxylate
metabolism

Propanoate metabolism
Metabolic pathways

Biosynthesis of secondary metabolites
Microbial metabolism in diverse

environments
Carbon metabolism

Fatty acid metabolism

3863

Meroo NP 0.00031 ± 0.00021
Eurobodalla NP 0.00017 ± 0.00002

Murramarang NP 0.00011 ± 0.00005
Broulee 0.00011 ± 0.00004

Seven Mile Beach NP 0.00003 ± 0.00001

Monga NP <0.00001
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