Diet Digestibility and Partitioning of Nutrients in Adult Male Alpacas Fed a Blend of Oat Hay and Alfalfa Pellets at Two Levels of Intake
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Management, and Data Collection
2.2. Processing of Samples and Analyses of Chemical Composition
2.3. Diet Digestibility, Partitioning of Nutrients, and Estimation of Enteric CH4 Emissions
2.4. Statistical Analysis
3. Results
3.1. Animal Performance and Diet Digestibility
3.2. Energy Partitioning and Balances of Nutrients
4. Discussion
4.1. Body Weight Changes and Nutrients Intakes
4.2. Apparent Digestibility of the Diet
4.3. Energy Partitioning and Estimated CH4 Emissions
4.4. Carbon and Nitrogen Balances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INEI (National Institute of Statistics and Information of Peru). Principales Resultados—Pequeñas y Medianas Unidades Agropecuarias 2014–2019 y 2021–2022; INEI (National Institute of Statistics and Information of Peru): Lima, Peru, 2023. [Google Scholar]
- Fernández-Baca, S. Situación Actual de Los Camélidos Sudamericanos en Perú 2005. Available online: http://tarwi.lamolina.edu.pe/~emellisho/zootecnia_archivos/situacion%20alpcas%20peru.pdf (accessed on 8 December 2022).
- Gutierrez, G.A.; Gutierrez, J.P.; Huanca, T.; Wurzinger, M. Challenges and Opportunities of Genetic Improvement in Alpacas and Llamas in Peru. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand; 2018; pp. 12–16. [Google Scholar]
- Wheeler, J.C. Evolution and Present Situation of the South American Camelidae. Biol. J. Linn. Soc. 1995, 54, 271–295. [Google Scholar] [CrossRef]
- Velásquez, V.C.; Novoa, M.C. Superovulación Con PMSG Aplicada En Fase Folicular Fase Luteal En Alpacas. Rev. Investig. Vet. Perú 1999, 10, 39–47. [Google Scholar] [CrossRef]
- Martin, F.S.; Bryant, F. Nutrition of domesticated South American Llamas and Alpacas. Small Rumin. Res. 1989, 2, 191–216. [Google Scholar] [CrossRef]
- Van Saun, R.J. Feeding and Nutrition. In Medicine and Surgery of Camelids; Niehaus, A.J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2022; pp. 55–107. [Google Scholar]
- Engelhardt, W.V.; Lechner-Doll, M.; Heller, R.; Rutagwenda, T.; Schwartz, H.-J.; Schultka, W. Physiology of the Forestomach in Camelids with Particular Reference to Adaptation to Extreme Dietary Conditions—A Comparative Approach. Anim. Res. Dev. 1988, 28, 56–70. [Google Scholar]
- San Martín, F. Comparative Forage Selectivity and Nutrition of South American Camelids and Sheep. PhD Thesis, Texas Tech University, Lubbock, TX, USA, 1987. [Google Scholar]
- Dulphy, J.; Dardillat, C.; Jailler, M.; Ballet, J. Comparative Study of Forestomach Digestion in Llamas and Sheep. Reprod. Nutr. Dev. 1997, 37, 709–725. [Google Scholar] [CrossRef]
- San Martín, F.; Van Saun, R.J. Applied Digestive Anatomy and Feeding Behavior. In Llama and Alpaca Care: Medicine, Surgery, Reproduction, Nutrition, and Herd Health; Cebra, C., Anderson, D.E., Tibary, A., Van Saun, R.J., Johnson, L.W., Eds.; Elsevier Inc.: St. Louis, MO, USA, 2014; pp. 51–58. [Google Scholar]
- Sponheimer, M.; Robinson, T.; Roeder, B.; Hammer, J.; Ayliffe, L.; Passey, B.; Cerling, T.; Dearing, D.; Ehleringer, J. Digestion and Passage Rates of Grass Hays by Llamas, Alpacas, Goats, Rabbits, and Horses. Small Rumin. Res. 2003, 48, 149–154. [Google Scholar] [CrossRef]
- Vater, A.L.; Zandt, E.; Maierl, J. The Topographic and Systematic Anatomy of the Alpaca Stomach. Anat. Rec. 2021, 304, 1999–2013. [Google Scholar] [CrossRef]
- Pfister, J.; Martin, F.S.; Rosales, L.; Sisson, D.; Flores, E.; Bryant, F. Grazing Behaviour of Llamas, Alpacas and Sheep in the Andes of Peru. Appl. Anim. Behav. Sci. 1989, 23, 237–246. [Google Scholar] [CrossRef]
- Reiner, R.J.; Bryant, F.C. Botanical Composition and Nutritional Quality of Alpaca Diets in Two Andean Rangeland Communities. J. Range Manag. 1986, 39, 424–427. [Google Scholar] [CrossRef]
- Chino Velasquez, L.B.; Molina-Botero, I.C.; Moscoso Muñoz, J.E.; Gómez Bravo, C. Relationship between Chemical Composition and In Vitro Methane Production of High Andean Grasses. Animals 2022, 12, 2348. [Google Scholar] [CrossRef]
- San Martín, F. Avances y Alternativas de Alimentación Para Los Camélidos Sudamericanos. Rev. Investig. Vet. 1994, 7, 1–4. [Google Scholar]
- Reiner, R.J.; Bryant, F.C.; Farfan, R.D.; Craddock, B.F. Forage Intake of Alpacas Grazing Andean Rangeland in Peru. J. Anim. Sci. 1987, 64, 868–871. [Google Scholar] [CrossRef]
- Gross, J.E.; Alkon, P.U.; Demment, M.W. Nutritional Ecology of Dimorphic Herbivores: Digestion and Passage Rates in Nubian ibex. Oecologia 1996, 107, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Milne, J.A.; Macrae, J.C.; Spence, A.M.; Wilson, S. A Comparison of the Voluntary Intake and Digestion of a Range of Forages at Different Times of the Year by the Sheep and the Red Deer (Cervus elaphus). Br. J. Nutr. 1978, 40, 347–357. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Waghorn, G.C.; Machmüller, A.; Vlaming, B.; Molano, G.; Cavanagh, A.; Clark, H. Methane Emissions and Digestive Physiology of Non-Lactating Dairy Cows Fed Pasture Forage. Can. J. Anim. Sci. 2007, 87, 601–613. [Google Scholar] [CrossRef]
- Vélez-Marroquín, V.; Cabezas-Garcia, E.; Antezana-Julian, W.; Estellés-Barber, F.; Franco, F.; Pinares-Patiño, C. Design, Operation, and Validation of Metabolism Crates for Nutrition Studies in Alpacas (Vicugna pacos). Small Rumin. Res. 2022, 209, 106660. [Google Scholar] [CrossRef]
- Robinson, T.; Roeder, B.; Schaalje, G.; Hammer, J.; Burton, S.; Christensen, M. Nitrogen Balance and Blood Metabolites of Alpaca (Lama pacos) Fed Three Forages of Different Protein Content. Small Rumin. Res. 2005, 58, 123–133. [Google Scholar] [CrossRef]
- Lund, K.E.; Maloney, S.K.; Milton, J.T.B.; Blache, D. Gradual Training of Alpacas to the Confinement of Metabolism Pens Reduces Stress When Normal Excretion Behavior Is Accommodated. ILAR J. 2012, 53, E22–E30. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Van Saun, R.J. Feeds for Camelids. In Llama and Alpaca Care: Medicine, Surgery, Reproduction, Nutrition, and Herd Health; Cebra, C., Anderson, D.E., Tibary, A., Van Saun, R.J., Johnson, L.W., Eds.; Elsevier Inc.: St. Louis, MO, USA, 2014; pp. 80–91. [Google Scholar]
- Roque, H.B.; Bautista, P.J.; Beltrán, B.P.; Calsín, C.B.; Medina, S.J.; Aro, A.J.M.; Araníbar, A.M.; Sumari, M.R.; Benito, L.D.; Marca, C.U.; et al. Requerimientos de Energía Metabolizable Para Mantenimiento y Ganancia de Peso de Llamas y Alpacas Determinados Mediante la Técnica de Sacrificio Comparativo. Rev. Investig. Vet. Perú 2020, 31, e16738. [Google Scholar] [CrossRef]
- Raimundo-Giménez, A. Determinación de Las Necesidades de Mantenimiento En Dos Razas de Ovejas Autóctonas Españolas: Manchega y Guirra. Master’s Thesis, Universitat Politècnica de València, Valencia, Spain, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 21st ed.; Latimer, G.W., Ed.; AOAC: Rockville, MD, USA, 2019; Volume 1, ISBN 9780935584899. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Non-Starch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Cochran, R.C.; Galyean, M.L. Measurement of in Vivo Forage Digestion by Ruminants. In Forage Quality, Evaluation, and Utilization; Fahey, G.C., Jr., Ed.; American Society of Agronomy: Madison, WI, USA, 1994; ISBN 9780891181194. [Google Scholar]
- Fernández, C.; López, M.C.; Lachica, M. Low-Cost Mobile Open-Circuit Hood System for Measuring Gas Exchange in Small Ruminants: From Manual to Automatic Recording. J. Agric. Sci. 2015, 153, 1302–1309. [Google Scholar] [CrossRef]
- Rios Rado, W.M.; Chipa Guillen, P.K.; Huamán Borda, D.; Vélez Marroquín, V.; Gere, J.I.; Antezana Julián, W.O.; Fernández, C. Development of a Mobile Open-Circuit Respiration Head Hood System for Measuring Gas Exchange in Camelids in the Andean Plateau. Animals 2023, 13, 1011. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, E. Report of Sub-Committee on Constants and Factors. In Proceedings of the 3rd Symposium on Energy Metabolism; Blaxter, K.L., Ed.; Academic Press: London, UK, 1965; pp. 441–443. ISBN 0121055507. [Google Scholar]
- Ramin, M.; Huhtanen, P. Development of Equations for Predicting Methane Emissions from Ruminants. J. Dairy Sci. 2013, 96, 2476–2493. [Google Scholar] [CrossRef]
- López, A.; Raggi, A. Requerimientos Nutritivos En Camélidos Sudamericanos: Llamas y Alpacas. Arch. Med. Vet. 1992, 24, 121–130. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10213-1. [Google Scholar]
- Kaps, M.; Lamberson, W.R. Change-over Designs. In Biostatistics for Animal Science; CABI Publishing: Wallingford, UK, 2004; pp. 294–312. [Google Scholar]
- Obregón Cruz, A.B. Consumo y Digestibilidad de Cuatro Raciones Con Diferente Contenido de Fibra En Alpacas (Vicugna pacos). Master’s Thesis, Universidad Nacional Agraria La Molina, Lima, Peru, 2022. [Google Scholar]
- Paredes, G.J.; San Martín, H.F.; Olazábal, L.J.; Ara, G.M. Efecto Del Nivel de Fibra Detergente Neutra Sobre El Consumo En La Alpaca (Vicugna pacos). Rev. Investig. Vet. Perú 2014, 25, 205–212. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, C.; Li, H.; Yang, W.; Jiang, J.; Gao, W.; Pei, C.; Qiao, J. Effects of Feeding Sorghum-Sudan, Alfalfa Hay and Fresh Alfalfa with Concentrate on Intake, First Compartment Stomach Characteristics, Digestibility, Nitrogen Balance and Energy Metabolism in Alpacas (Lama pacos) at Low Altitude. Livest. Sci. 2009, 126, 21–27. [Google Scholar] [CrossRef]
- Huareccallo Maquera, J.C. Efecto Del Nivel de Consumo Sobre La Digestibilidad y Valor Energético de Concentrado Fibroso En Llamas y Alpacas. Bachelor’s Thesis, Universidad Nacional del Altiplano de Puno, Puno, Peru, 2017. [Google Scholar]
- Bonavia, N.; McGregor, B. Digestion, Faecal Grain Loss and Energy Requirements of Huacaya alpacas Fed Lucerne Chaff, Oat Chaff and Whole Grain Barley Diets. Small Rumin. Res. 2021, 201, 106444. [Google Scholar] [CrossRef]
- Hoffman, E.; Fowler, M.E. The Alpaca Book: Management, Medicine, Biology, and Fiber; Clay Press Inc.: Herald, CA, USA, 1995. [Google Scholar]
- Meyer, K.; Hummel, J.; Clauss, M. The Relationship between Forage Cell Wall Content and Voluntary Food Intake in Mammalian Herbivores. Mammal Rev. 2010, 40, 221–245. [Google Scholar] [CrossRef]
- Van Saun, R.J. Nutrient Requirements of South American Camelids: A Factorial Approach. Small Rumin. Res. 2006, 61, 165–186. [Google Scholar] [CrossRef]
- López, A.; Maiztegui, J.; Cabrera, R. Voluntary Intake and Digestibility of Forages with Different Nutritional Quality in Alpacas (Lama pacos). Small Rumin. Res. 1998, 29, 295–301. [Google Scholar] [CrossRef]
- Rübsamen, K.; Engelhardt, W. Water Metabolism in the Llama. Comp. Biochem. Physiol. Part A Physiol. 1975, 52, 595–598. [Google Scholar] [CrossRef]
- Mertens, D.R. Kinetics of Cell Wall Digestion and Passage in Ruminants. In Forage Cell Wall Structure and Digestibility; Jung, H.G., Buxton, D.R., Hatfield, R.D., Ralph, J., Eds.; American Society of Agronomy: Madison, WI, USA, 1993; pp. 535–570. [Google Scholar]
- Colucci, P.; MacLeod, G.; Grovum, W.; Cahill, L.; McMillan, I. Comparative Digestion in Sheep and Cattle Fed Different Forage to Concentrate Ratios at High and Low Intakes. J. Dairy Sci. 1989, 72, 1774–1785. [Google Scholar] [CrossRef]
- Dias, R.S.; Patino, H.O.; López, S.; Prates, E.; Swanson, K.C.; France, J. Relationships between Chewing Behavior, Digestibility, and Digesta Passage Kinetics in Steers Fed Oat Hay at Restricted and Ad Libitum Intakes. J. Anim. Sci. 2011, 89, 1873–1880. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A. Animal Nutrition, 5th ed.; Longman Scientific and Technical: Essex, UK, 1995; ISBN 9780582219274. [Google Scholar]
- Wang, C.; Tas, B.; Glindemann, T.; Rave, G.; Schmidt, L.; Weißbach, F.; Susenbeth, A. Fecal Crude Protein Content as an Estimate for the Digestibility of Forage in Grazing Sheep. Anim. Feed. Sci. Technol. 2009, 149, 199–208. [Google Scholar] [CrossRef]
- Agricultural and Food Research Council (AFRC). Energy and Protein Requirements of Ruminants; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Goopy, J.P.; Donaldson, A.; Hegarty, R.; Vercoe, P.E.; Haynes, F.; Barnett, M.; Oddy, V.H. Low-Methane Yield Sheep Have Smaller Rumens and Shorter Rumen Retention Time. Br. J. Nutr. 2014, 111, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Pinares-Patiño, C.S.; Ulyatt, M.J.; Lassey, K.R.; Barry, T.N.; Holmes, C.W. Rumen Function and Digestion Parameters Associated with Differences between Sheep in Methane Emissions When Fed Chaffed Lucerne Hay. J. Agric. Sci. 2003, 140, 205–214. [Google Scholar] [CrossRef]
- Okine, E.K.; Mathison, G.W.; Hardin, R.T. Effects of Changes in Frequency of Reticular Contractions on Fluid and Particulate Passage Rates in Cattle. J. Anim. Sci. 1989, 67, 3388–3396. [Google Scholar] [CrossRef]
- Dittmann, M.T.; Runge, U.; Lang, R.A.; Moser, D.; Galeffi, C.; Kreuzer, M.; Clauss, M. Methane Emission by Camelids. PLoS ONE 2014, 9, e94363. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Ulyatt, M.J.; Waghorn, G.C.; Lassey, K.R.; Barry, T.N.; Holmes, C.W.; Johnson, D.E. Methane Emission by Alpaca and Sheep Fed on Lucerne Hay or Grazed on Pastures of Perennial Ryegrass/White Clover or Birdsfoot Trefoil. J. Agric. Sci. 2003, 140, 215–226. [Google Scholar] [CrossRef]
- Carmalt, J.L. Protein-Energy Malnutrition in Alpacas. Compend. Contin. Educ. Pract. Vet. 2000, 22, 441–443. [Google Scholar]
- Huasasquiche, A. Balance Del Nitrógeno y Digestibilidad En Alpacas y Ovinos. Bachelor’s Thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru, 1974. [Google Scholar]
- Davies, H.; Robinson, T.; Roeder, B.; Sharp, M.; Johnston, N.; Christensen, A.; Schaalje, G. Digestibility, Nitrogen Balance, and Blood Metabolites in Llama (Lama glama) and Alpaca (Lama pacos) Fed Barley or Barley Alfalfa Diets. Small Rumin. Res. 2007, 73, 1–7. [Google Scholar] [CrossRef]
- Condori Apaza, E.R. Efecto Del Nivel de Concentrado Fibroso Sobre La Retención de Nitrógeno En Llamas y Alpacas. Bachelor’s Thesis, Universidad Nacional del Altiplano de Puno, Puno, Peru, 2017. [Google Scholar]
- Curo Calsin, R. Pérdidas de Nitrógeno Metabólico Fecal, Endógeno Urinario y Dérmico En Alpacas Hembra de Cuatro Años de Edad. Bachelor’s Thesis, Universidad Nacional del Altiplano de Puno, Puno, Peru, 2017. [Google Scholar]
- Flores Mamani, R. Efecto Del Contenido de Proteína Cruda de La Dieta y de La Edad En Los Niveles de Urea y Ácido Úrico En Orina de Alpacas. Bachelor’s Thesis, Universidad Nacional del Altiplano de Puno, Puno, Peru, 2018. [Google Scholar]
Nutrient | Oat Hay | Alfalfa Pellets | Diet 1 |
---|---|---|---|
Dry matter | 854 | 891 | 865 |
Ash | 82.4 | 89.2 | 84.4 |
Crude protein | 107 | 170 | 126 |
Neutral detergent fiber 2 (aNDF) | 625 | 446 | 571 |
C | 436 | 452 | 441 |
N | 17.1 | 27.2 | 20.1 |
C-N ratio | 25.5 | 16.6 | 21.9 |
Gross energy, MJ/kg DM | 18.1 | 18.6 | 18.3 |
Est. Metabolizable Energy 3, MJ/kg DM | 10.3 | 8.91 | 9.88 |
Item | Maintenance | Ad libitum | ||||||
---|---|---|---|---|---|---|---|---|
Mean | s.d. | Minimum | Maximum | Mean | s.d. | Minimum | Maximum | |
Feed intake, g/d | ||||||||
Oat hay | 572 | 62.3 | 435 | 677 | 599 | 101 | 461 | 814 |
Alfalfa pellets | 277 | 22.6 | 246 | 310 | 322 | 76.3 | 129 | 395 |
Total DMI | 850 | 82.0 | 681 | 987 | 921 | 154 | 699 | 1210 |
DMI as a % of BW | 1.32 | 0.068 | 1.21 | 1.44 | 1.41 | 0.166 | 1.10 | 1.60 |
DMI per-kg of BW0.75 | 37.4 | 1.83 | 34.2 | 39.8 | 40.0 | 4.89 | 31.1 | 47.2 |
OM | 778 | 75.1 | 623 | 903 | 843 | 141 | 640 | 1107 |
CP | 109 | 10.1 | 89 | 125 | 119 | 20.7 | 83 | 155 |
aNDF | 481 | 47.6 | 382 | 561 | 518 | 85.4 | 396 | 685 |
GE, MJ/d | 14.7 | 1.41 | 11.8 | 17.0 | 15.9 | 2.68 | 12.0 | 20.9 |
Selectivity 1, % | ||||||||
Oat hay | 91.2 | 6.10 | 79.3 | 99.3 | 75.5 | 8.95 | 58.5 | 92.1 |
Alfalfa pellets | 98.9 | 2.52 | 90.2 | 100.0 | 90.7 | 19.6 | 36.9 | 100 |
Water consumption | ||||||||
mL/d | 2174 | 389 | 1210 | 3215 | 2746 | 683 | 1675 | 3920 |
as a % of BW | 3.42 | 0.73 | 1.65 | 5.10 | 4.22 | 1.01 | 2.45 | 6.13 |
mL/kg of BW0.75 | 96.5 | 19.4 | 48.2 | 144 | 120 | 28.2 | 70.4 | 173 |
BW, kg | ||||||||
Initial | 64.4 | 6.50 | 54.0 | 73.5 | 65.3 | 6.85 | 55.0 | 75.5 |
Final | 63.9 | 6.10 | 54.0 | 72.0 | 66.0 | 6.68 | 56.0 | 76.0 |
Average daily gain 2, g/d | −100 | 122 | −300 | 0.0 | 140 | 54.8 | 100 | 200 |
Item | Maintenance | Ad libitum | ||||||
---|---|---|---|---|---|---|---|---|
Mean | s.d. | Minimum | Maximum | Mean | s.d. | Minimum | Maximum | |
Fecal output, g/d | ||||||||
Fresh basis | 877 | 161 | 614 | 1200 | 1037 | 292 | 650 | 1922 |
DM | 288 | 45.7 | 188 | 380 | 328 | 78.4 | 213 | 558 |
OM | 256 | 43.8 | 163 | 331 | 293 | 76.7 | 184 | 522 |
CP | 27.5 | 4.30 | 18.4 | 38.1 | 32.3 | 6.76 | 22.2 | 52.9 |
aNDF | 210 | 35.5 | 140 | 263 | 241 | 62.9 | 150 | 427 |
Urine production | ||||||||
Total, mL/d | 429 | 119 | 244 | 604 | 445 | 174 | 160 | 700 |
As % of water cons. | 20.8 | 7.33 | 10.3 | 37.7 | 17.7 | 8.72 | 4.82 | 35.2 |
Digestibility 1, g/kg | ||||||||
DM | 659 | 59.8 | 546 | 755 | 645 | 49.9 | 497 | 725 |
OM | 669 | 56.6 | 576 | 772 | 655 | 51.1 | 486 | 725 |
CP | 746 | 45.7 | 647 | 809 | 728 | 35.8 | 633 | 799 |
aNDF | 561 | 80.6 | 420 | 705 | 538 | 70.8 | 314 | 635 |
GE | 664 | 58.9 | 556 | 761 | 650 | 49.1 | 509 | 732 |
Item | Maintenance | Ad libitum | ||||||
---|---|---|---|---|---|---|---|---|
Mean | s.d. | Minimum | Maximum | Mean | s.d. | Minimum | Maximum | |
GE intake, kJ/kg of BW0.75 | 646 | 31.1 | 592 | 687 | 693 | 85.4 | 534 | 816 |
E Feces | 217 | 37.7 | 149 | 273 | 243 | 49.2 | 166 | 369 |
E Urine | 52.5 | 15.5 | 26.8 | 78.0 | 52.9 | 21.3 | 19.2 | 91.9 |
Est. CH4 energy 1 | 29.6 | 1.41 | 27.9 | 32.5 | 30.3 | 1.84 | 27.6 | 33.7 |
ME intake | 347 | 52.0 | 238 | 419 | 366 | 70.4 | 245 | 505 |
Estimated CH4 emissions | ||||||||
Total 2, g/d | 17.0 | 0.67 | 15.6 | 18.1 | 17.6 | 1.27 | 15.7 | 19.9 |
Ym 3, % of GEI | 4.59 | 0.270 | 4.19 | 5.22 | 4.42 | 0.424 | 3.77 | 5.16 |
CH4/DNDFI 4, g/kg | 90.6 | 16.9 | 69.4 | 136 | 91.0 | 14.4 | 68.0 | 137 |
C balance 5, g/kg BW0.75 | ||||||||
C intake | 16.5 | 0.80 | 15.1 | 17.5 | 17.7 | 2.17 | 13.7 | 20.8 |
C feces | 5.55 | 0.97 | 3.75 | 6.85 | 6.23 | 1.30 | 4.20 | 9.55 |
C urine | 0.327 | 0.097 | 0.174 | 0.486 | 0.344 | 0.137 | 0.125 | 0.566 |
N balance, g/kg BW0.75 | ||||||||
N intake | 0.765 | 0.033 | 0.702 | 0.808 | 0.828 | 0.110 | 0.593 | 0.967 |
N feces | 0.194 | 0.033 | 0.142 | 0.259 | 0.225 | 0.040 | 0.158 | 0.330 |
N absorbed | 0.571 | 0.047 | 0.476 | 0.637 | 0.603 | 0.089 | 0.425 | 0.727 |
N urine | 0.132 | 0.043 | 0.053 | 0.212 | 0.130 | 0.066 | 0.037 | 0.240 |
N retained | 0.439 | 0.060 | 0.301 | 0.548 | 0.473 | 0.124 | 0.234 | 0.669 |
C:N ratios | ||||||||
C:N intake | 21.6 | 0.14 | 21.2 | 21.7 | 21.4 | 0.57 | 20.6 | 23.1 |
C:N feces | 28.5 | 1.51 | 26.5 | 30.9 | 27.6 | 1.36 | 25.6 | 29.0 |
C:N urine | 2.63 | 0.90 | 1.99 | 4.35 | 2.97 | 1.33 | 2.08 | 5.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chipa Guillen, P.K.; Antezana Julián, W.O.; Rios Rado, W.M.; Moscoso-Muñoz, J.E.; Cabezas-Garcia, E.H. Diet Digestibility and Partitioning of Nutrients in Adult Male Alpacas Fed a Blend of Oat Hay and Alfalfa Pellets at Two Levels of Intake. Animals 2023, 13, 3613. https://doi.org/10.3390/ani13233613
Chipa Guillen PK, Antezana Julián WO, Rios Rado WM, Moscoso-Muñoz JE, Cabezas-Garcia EH. Diet Digestibility and Partitioning of Nutrients in Adult Male Alpacas Fed a Blend of Oat Hay and Alfalfa Pellets at Two Levels of Intake. Animals. 2023; 13(23):3613. https://doi.org/10.3390/ani13233613
Chicago/Turabian StyleChipa Guillen, Paola Katherine, Walter Orestes Antezana Julián, Wilfredo Manuel Rios Rado, Juan Elmer Moscoso-Muñoz, and Edward H. Cabezas-Garcia. 2023. "Diet Digestibility and Partitioning of Nutrients in Adult Male Alpacas Fed a Blend of Oat Hay and Alfalfa Pellets at Two Levels of Intake" Animals 13, no. 23: 3613. https://doi.org/10.3390/ani13233613
APA StyleChipa Guillen, P. K., Antezana Julián, W. O., Rios Rado, W. M., Moscoso-Muñoz, J. E., & Cabezas-Garcia, E. H. (2023). Diet Digestibility and Partitioning of Nutrients in Adult Male Alpacas Fed a Blend of Oat Hay and Alfalfa Pellets at Two Levels of Intake. Animals, 13(23), 3613. https://doi.org/10.3390/ani13233613