The Tibetan Antelope Population Depends on Lakes on the Tibetan Plateau
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Point Transect Survey
2.3. Environmental Data Acquisition
2.4. Vegetation Survey
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blowes, S.A.; Supp, S.R.; Antão, L.H.; Bates, A.; Bruelheide, H.; Chase, J.M.; Moyes, F.; Magurran, A.; McGill, B.; Myers-Smith, I.H.; et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 2019, 366, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Pi, X.; Luo, Q.; Feng, L.; Xu, Y.; Tang, J.; Liang, X.; Ma, E.; Cheng, R.; Fensholt, R.; Brandt, M.; et al. Mapping global lake dynamics reveals the emerging roles of small lakes. Nat. Commun. 2022, 13, 5777. [Google Scholar] [CrossRef] [PubMed]
- Woolway, R.I.; Jennings, E.; Shatwell, T.; Golub, M.; Pierson, D.C.; Maberly, S.C. Lake heatwaves under climate change. Nature 2021, 589, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.R.; Huber, M. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 2010, 463, 653–656. [Google Scholar] [CrossRef]
- Ielpi, A.; Lapôtre, M.G.A.; Gibling, M.R.; Boyce, C.K. The impact of vegetation on meandering rivers. Nat. Rev. Earth Environ. 2022, 3, 165–178. [Google Scholar] [CrossRef]
- Hu, L.; Long, J.; Lin, Y.; Gu, Z.; Su, H.; Dong, X.; Lin, Z.; Xiao, Q.; Batbayar, N.; Bold, B.; et al. Arctic introgression and chromatin regulation facilitated rapid Qinghai-Tibet Plateau colonization by an avian predator. Nat. Commun. 2022, 13, 6413. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Q.; Marchenko, S.S.; Sharkhuu, N. Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafr. Periglac. Process. 2010, 21, 198–207. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The State and Fate of Himalayan Glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef]
- Sha, Y.; Shi, Z.; Liu, X.; An, Z. Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the East Asian monsoon. J. Geophys. Res. Atmos. 2015, 120, 4764–4782. [Google Scholar] [CrossRef]
- Yao, T.; Masson-Delmotte, V.; Gao, J.; Yu, W.; Yang, X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.; He, Y.; et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Piao, S.; Bolch, T.; Xie, H.; Chen, D.; Gao, Y.; O’Reilly, C.M.; Shum, C.K.; Yang, K.; et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Yang, G.; Duan, H.; Jiang, J.; Wang, S.; Feng, X.; Li, A.; Kong, F.; Xue, B.; Wu, J.; et al. China’s lakes at present: Number, area and spatial distribution. Sci. China-Earth Sci. 2011, 54, 283–289. [Google Scholar] [CrossRef]
- Lundgren, E.J.; Ramp, D.; Stromberg, J.C.; Wu, J.; Nieto, N.C.; Sluk, M.; Moeller, K.T.; Wallach, A.D. Equids engineer desert water availability. Science 2021, 372, 491–495. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Chen, B.; Wang, J.; Ye, H.; et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Song, X.; Shen, W.; Wan, H.; Hou, P.; Lin, G. Dynamic monitoring of Tibetan antelope habitat suitability in the Hoh Xil Nature Reserve using remote sensing images. Resour. Sci. 2016, 38, 1434–1442. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 2016. [Google Scholar]
- Buho, H.; Jiang, Z.; Liu, C.; Yoshida, T.; Masuda, R. Preliminary study on migration pattern of the Tibetan antelope (Pantholops hodgsonii) based on satellite tracking. Adv. Space Res. 2011, 48, 43–48. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, S.; Dong, S.; Su, X.; Zhang, X. Study on spatio-temperal change of Tibetan Antelope’s habitat based on vegetation coverage. Acta Ecol. Sin. 2014, 12, 3285–3292. [Google Scholar]
- Xu, A.-C.; Jiang, Z.-G.; Li, C.-W.; Cai, P. Food habits and hunting patterns of Tibetan brown bear during warm seasons in Kekexili region on Qinghai-Tibetan Plateau. Zool. Res. 2010, 31, 670–674. [Google Scholar]
- Schaller, G.B.; Aili, K.; Xinbin, C.A.I.; Yanlin, L. Migratory and calving behavior of Tibetan antelope population. Acta Theriol. Sin. 2006, 26, 105–113. [Google Scholar]
- Li, C.; Sun, H.; Wang, Y.; Cao, H.; Yin, H.; Zhou, M.; Zhu, T. Estimation of grassland net primary productivity in permafrost of Qinghai-Tibet Plateau based on machine learning. Chin. J. Ecol. 2020, 39, 1734–1744. [Google Scholar]
- Zhang, X.; Jia, J.; Chen, L.; Chu, H.; He, J.-S.; Zhang, Y.; Feng, X. Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands. Soil Biol. Biochem. 2021, 156, 108213. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, X.; Wang, Q.; Wang, C.; Zhan, Z.; Chen, L.; Yan, J.; Qu, R. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 2013, 444, 356–362. [Google Scholar] [CrossRef]
- Hopcraft, J.G.C.; Sinclair, A.R.E.; Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 2005, 74, 559–566. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Chen, X.; You, Q. Effect of Indian Ocean SST on the Tibetan Plateau precipitation in the early rainy season. J. Clim. 2017, 30, 8973–8985. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Liu, L.; Wu, J.; Wang, Z.; Li, S.; Zhang, H.; Zu, J.; Ding, M.; Paudel, B. Spatiotemporal Patterns of Vegetation Greenness Change and Associated Climatic and Anthropogenic Drivers on the Tibetan Plateau during 2000–2015. Remote Sens. 2018, 10, 1525. [Google Scholar] [CrossRef]
- Qiu, L.; Feng, Z. Effects of traffic during daytime and other human activities on the migration of Tibetan Antelope along the Qinghai-Tibet high-way, Qinghai-Tibet Plateau. Acta Zool. Sin. 2004, 50, 669–674. [Google Scholar]
- Fu, Y.; Tan, M.; Gong, Y.; Zhao, G.; Ge, J.; Yang, H.; Feng, L. Wild Boar Survives in a Landscape That Prohibits Anthropogenic Persecution. Front. Ecol. Evol. 2022, 10, 820915. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, G.; Gao, S.; Feng, L.; Guo, Q.; Yang, H. LiDAR Reveals the Process of Vision-Mediated Predator—Prey Relationships. Remote Sens. 2022, 14, 3730. [Google Scholar] [CrossRef]
- Wang, P.; Xie, D.; Song, J.; Zhang, J.; Zhu, Q. Simulation for NPP of grassland ecosystem in Qinghai-Tibetan Plateau based on the process model. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3307–3310. [Google Scholar]
- Wang, X.; Wang, Y.; Li, Q.; Tseng, Z.J.; Takeuchi, G.T.; Deng, T.; Xie, G.; Chang, M.-m.; Wang, N. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res. 2015, 27, 1335–1354. [Google Scholar] [CrossRef]
- Gandiwa, E. Top-down and bottom-up control of large herbivore populations: A review of natural and human-induced influences. Trop. Conserv. Sci. 2013, 6, 493–505. [Google Scholar] [CrossRef]
- Wang, X.; Lei, X.; Zhang, C.; He, P.; Zhong, J.; Bai, S.; Li, D.; Deng, X.; Lin, H. Physiological and molecular responses of Phalaris arundinacea under salt stress on the Tibet plateau. J. Plant Physiol. 2022, 274, 153715. [Google Scholar] [CrossRef] [PubMed]
- Lecigne, B.; Eitel, J.U.H.; Rachlow, J.L. viewshed3d: An r package for quantifying 3D visibility using terrestrial lidar data. Methods Ecol. Evol. 2020, 11, 733–738. [Google Scholar] [CrossRef]
- Fu, Y.; Xu, G.; Li, Y.; Gao, S.; Guo, Q.; Yang, H. Technological innovation facilitates the practice of “three-dimensional ecology”. iScience 2023, 26, 105767. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yan, L.; Kou, X.; Ouyang, Z. The Tibetan Antelope Population Depends on Lakes on the Tibetan Plateau. Animals 2023, 13, 3614. https://doi.org/10.3390/ani13233614
Zhang L, Yan L, Kou X, Ouyang Z. The Tibetan Antelope Population Depends on Lakes on the Tibetan Plateau. Animals. 2023; 13(23):3614. https://doi.org/10.3390/ani13233614
Chicago/Turabian StyleZhang, Li, Lingyan Yan, Xiaojun Kou, and Zhiyun Ouyang. 2023. "The Tibetan Antelope Population Depends on Lakes on the Tibetan Plateau" Animals 13, no. 23: 3614. https://doi.org/10.3390/ani13233614
APA StyleZhang, L., Yan, L., Kou, X., & Ouyang, Z. (2023). The Tibetan Antelope Population Depends on Lakes on the Tibetan Plateau. Animals, 13(23), 3614. https://doi.org/10.3390/ani13233614