Identification of Genomic Instability in Cows Infected with BVD Virus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cell Culture
2.3. Sister Chromatid Exchange Assay
2.4. Fragile Sites Assay
2.5. Comet Assay (Single Cell Gel Electrophoresis)
2.6. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucy, M.C. Reproductive loss in high-producing dairy cattle: Where will it end? J. Dairy Sci. 2001, 84, 1277–1293. [Google Scholar] [CrossRef] [PubMed]
- Hudson, C.D.; Bradley, A.J.; Breen, J.E.; Green, M.J. Associations between udder health and reproductive performance in United Kingdom dairy cows. J. Dairy Sci. 2012, 95, 3683–3697. [Google Scholar] [CrossRef] [PubMed]
- Abunna, F.; Merid, B.; Goshu, G.; Waktole, H.; Mammo, G. Assessment of major reproductive health problems, their effect on reproductive performances and association with brucellosis in dairy cows in Bishoftu Town, Ethiopia. J. Dairy Vet. Anim. Res. 2018, 7, 00183. [Google Scholar] [CrossRef]
- Bekara, E.A.; Bareille, N. Quantification by simulation of the effect of herd management practices and cow fertility on the reproductive and economic performance of Holstein dairy herds. J. Dairy Sci. 2019, 102, 9435–9457. [Google Scholar] [CrossRef] [PubMed]
- Niozas, G.; Tsousis, G.; Steinhöfel, I.; Brozos, C.; Römer, A.; Wiedemann, S.; Bollwein, H.; Kaske, M. Extended lactation in high-yielding dairy cows. I. Effects on reproductive measurements. J. Dairy Sci. 2019, 102, 799–810. [Google Scholar] [CrossRef]
- Arero, G.B. Major Reproductive Health Disorders in Dairy Cows. J. Anim. Biol. Vet. Sci. 2022, 2, 1–11. [Google Scholar]
- Gethmann, J.; Homeier, T.; Holsteg, M.; Schirrmeier, H.; Saßerath, M.; Hoffmann, B.; Beer, M.; Conraths, F.J. BVD-2 outbreak leads to high losses in cattle farms in Western Germany. Heliyon 2015, 1, e00019. [Google Scholar] [CrossRef]
- Sozzi, E.; Righi, C.; Boldini, M.; Bazzucchi, M.; Pezzoni, G.; Gradassi, M.; Petrini, S.; Lelli, D.; Ventura, G.; Pierini, I.; et al. Cross-reactivity antibody response after vaccination with modified live and killed bovine viral diarrhoea virus (BVD) vaccines. Vaccines 2020, 8, 374. [Google Scholar] [CrossRef]
- Barrett, D.; Clarke, A.M.; O’Keeffe, K.; Kellegher, P.; Comerford, J.; Lane, E.; Byrne, A.W. BVD seroprevalence in the Irish cattle population as the national BVD programme progresses toward eradication. BMC Vet. Res. 2022, 18, 210. [Google Scholar] [CrossRef]
- Knaus, W. Dairy cows trapped between performance demands and adaptability. J. Sci. Food Agric. 2009, 89, 1107–1114. [Google Scholar] [CrossRef]
- Mäntysaari, P.; Liinamo, A.E.; Mäntysaari, E.A. Energy efficiency and its relationship with milk, body, and intake traits and energy status among primiparous Nordic Red dairy cattle. J. Dairy Sci. 2012, 95, 3200–3211. [Google Scholar] [CrossRef] [PubMed]
- Stiglbauer, K.E.; Cicconi-Hogan, K.M.; Richert, R.; Schukken, Y.H.; Ruegg, P.L.; Gamroth, M. Assessment of herd management on organic and conventional dairy farms in the United States. J. Dairy Sci. 2013, 96, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Bieber, A.; Wallenbeck, A.; Leiber, F.; Fuerst-Waltl, B.; Winckler, C.; Gullstrand, P.; Walczak, J.; Wójcik, P.; Spengler Neff, A. Production level, fertility, health traits, and longevity in local and commercial dairy breeds under organic production conditions in Austria, Switzerland, Poland, and Sweden. J. Dairy Sci. 2019, 102, 5330–5341. [Google Scholar] [CrossRef] [PubMed]
- Sigdel, A.; Abdollahi-Arpanahi, R.; Aguilar, I.; Peñagaricano, F. Whole genome mapping reveals novel genes and pathways involved in milk production under heat stress in US Holstein cows. Front. Genet. 2019, 10, 928. [Google Scholar] [CrossRef] [PubMed]
- Harder, I.; Stamer, E.; Junge, W.; Thaller, G. Estimation of genetic parameters and breeding values for feed intake and energy balance using pedigree relationships or single-step genomic evaluation in Holstein Friesian cows. J. Dairy Sci. 2020, 103, 2498–2513. [Google Scholar] [CrossRef]
- Friggens, N.C.; Blanc, F.; Berry, D.P.; Puillet, L. Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management. Animal 2017, 11, 2237–2251. [Google Scholar] [CrossRef]
- Rostellato, R.; Promp, J.; Leclerc, H.; Mattalia, S.; Friggens, N.C.; Boichard, D.; Ducrocq, V. Influence of production, reproduction, morphology, and health traits on true and functional longevity in French Holstein cows. J. Dairy Sci. 2021, 104, 12664–12678. [Google Scholar] [CrossRef]
- Komlosi, I.; Wolfova, M.; Wolf, J.; Farkas, B.; Szendrei, Z.; Beri, B. Economic weights of production and functional traits for Holstein-Friesian cattle in Hungary. J. Anim. Breed. Genet. 2010, 127, 143–153. [Google Scholar] [CrossRef]
- Brzáková, M.; Zavadilová, L.; Přibyl, J.; Pešek, P.; Kašná, E.; Kranjčevičová, A. Estimation of genetic parameters for female fertility traits in the Czech Holstein population. Czech J. Anim. Sci. 2019, 64, 199–206. [Google Scholar] [CrossRef]
- Ayane, S.; Berhanu, G.; Ahmed, W. Prevalence of major reproductive disorders of dairy cows in Hawassa City, Ethiopia. J. Reprod. Infertil. 2020, 11, 8–13. [Google Scholar] [CrossRef]
- Khodakaram-Tafti, A.; Farjanikish, G.H. Persistent bovine viral diarrhea virus (BVDV) infection in cattle herds. Iran. J. Vet. Res. 2017, 19, 154–163. [Google Scholar] [CrossRef]
- Hasan, S.D.; Alsaad, K.M. Evaluation of clinical, hematological, blood coagulation and some biochemical parameter changes in clinically infected cattle with bovine viral diarrhea. IOSR J. Agric. Vet. Sci. 2018, 11, 64–70. [Google Scholar] [CrossRef]
- Rodning, S.P.; Givens, M.D.; Marley, M.S.D.; Zhang, Y.; Riddell, K.P.; Galik, P.K.; Hathcock, T.L.; Gard, J.A.; Prevatt, J.W.; Owsley, W.F. Reproductive and economic impact following controlled introduction of cattle persistently infected with bovine viral diarrhea virus into a naive group of heifers. Theriogenology 2012, 78, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, B.W. Bovine viral diarrhea virus infections: Manifestations of infection and recent advances in understanding pathogenesis and control. Vet. Pathol. 2014, 51, 453–464. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.G.; Mechler-Dreibi, M.L.; Almeida, H.M.S.; Gatto, R.H.I. Bovine viral diarrhea virus: Recent findings about its occurrence in pigs. Viruses 2020, 12, 600. [Google Scholar] [CrossRef]
- Villamil, V.V.; Ramírez, G.C.; Vera, V.J.; Jaime, J.A. Primeraevidencia del virus de diarrea viral bovina (VDVB) genotipo 2 encolombia. Rev. Med. Vet. Zoot 2018, 65, 11–26. [Google Scholar] [CrossRef]
- Lanyon, S.R.; Hill, F.I.; Reichel, M.P.; Brownlie, J. Bovine viral diarrhoea: Pathogenesis and diagnosis. Vet. J. 2014, 199, 201–209. [Google Scholar] [CrossRef]
- Wernike, K.; Gethmann, J.; Schirrmeier, H.; Schröder, R.; Conraths, F.J.; Beer, M. Six years (2011–2016) of mandatory nationwide bovine viral diarrhea control in Germany-a success story. Pathogens 2017, 6, 50. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, L.C.; Guzmán-Barragán, B.L.; Ordoñez, D.; Tafur-Gómez, G.A. Cattle seroprevalence and risk factors associated with bovine viral diarrhea in the northeastern of Colombia. Trop. Anim. Health Pro. 2021, 53, 377. [Google Scholar] [CrossRef]
- Mirosław, P.; Polak, M. Increased genetic variation of bovine viral diarrhea virus in dairy cattle in Poland. BMC Vet. Res. 2019, 15, 278. [Google Scholar] [CrossRef]
- Gonzalez-Bautista, E.D.D.; Bulla-Castaneda, D.M.; Lopez-Buitrago, H.A.; Díaz-Anaya, A.M.; Lancheros-Buitrago, D.J.; Garcia-Corredor, D.J.; Torreglosa, J.C.T.; Ortega, D.O.; Pulido-Medellín, M.O. Seroprevalence of bovine viral diarrhea virus (BVDV) in cattle from Sotaquira, Colombia. Vet. Anim. Sci. 2021, 14, 100202. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, I.; Misztal, I.; Tsuruta, S. Short communication: Genetic trends of milk yield under heat stress for US Holsteins. J. Dairy Sci. 2010, 93, 1754–1758. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Biffani, S.; Bernabucci, U.; Vitali, A.; Lacetera, N.; Nardone, A. Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows. J. Dairy Sci. 2016, 99, 5837–5843. [Google Scholar] [CrossRef] [PubMed]
- Berghof, T.V.L.; Poppe, M.; Mulder, H.A. Opportunities to improve resilience in animal breeding programs. Front. Genet. 2019, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Newcomer, B.W.; Walz, P.H.; Givens, M.D.; Wilson, A.E. Efficacy of bovine viral diarrhea virus vaccination to prevent reproductive disease: A meta-analysis. Theriogenology 2015, 83, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Udroiu, I.; Sgura, A. Cytogenetic tests for animal production: State of the art and perspectives. Anim. Genet. 2017, 48, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Cordelli, E.; Bignami, M.; Pacchierotti, F. Comet assay: A versatile but complex tool in genotoxicity testing. Toxicol. Res. 2021, 10, 68–78. [Google Scholar] [CrossRef]
- Gajski, G.; Žegura, B.; Ladeira, C.; Novak, M.; Sramkova, M.; Pourrut, B.; Del Bo, C.; Milić, M.; Gutzkow, K.B.; Costa, S.; et al. The comet assay in animal models: From bugs to whales—(Part 2 Vertebrates). Mutat. Res. Rev. Mutat. Res. 2019, 781, 130–164. [Google Scholar] [CrossRef]
- Salawu, A.; Wright, K.; Al-Kathiri, A.; Wyld, L.; Reed, M.; Sisley, K. Sister chromatid exchange and genomic instability in soft tissue sarcomas: Potential implications for response to DNA-damaging treatments. Hindawi Sarcoma 2018, 2018, 3082526. [Google Scholar] [CrossRef]
- Khanna, K.K.; Jackson, S.P. DNA double-strand breaks: Signaling, repair and the cancer connection. Nat. Genet. 2001, 27, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Bozzella, M.; Seluanov, A.; Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 2008, 7, 2902–2906. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature 2009, 461, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M.; Thompson, L.H. Molecular mechanisms of sister chromatid exchange. Mutat. Res. 2007, 616, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Mateuca, R.A.; Decordier, I.; Kirsch-Volders, M. Cytogenetic methods in human biomonitoring: Principles and uses. Meth. Mol. Biol. 2012, 817, 305–334. [Google Scholar] [CrossRef]
- Wójcik, E.; Sokół, A. Assessment of chromosome stability in boars. PLoS ONE 2020, 15, e0231928. [Google Scholar] [CrossRef]
- Sutherland, G.R. Heritable fragile sites on human chromosomes II. Distribution, phenotypic effects, and cytogenetics. Am. J. Hum. Genet. 1979, 31, 136–148. [Google Scholar]
- Sarni, D.; Sasaki, T.; Tur-Sinai, M.I.; Miron, K.; Rivera-Mulia, J.C.; Magnuson, B.; Ljungman, M.; Gilbert, D.M.; Kerem, B. 3D genome organization contributes to genome instability at fragile sites. Nat. Commun. 2020, 11, 3613. [Google Scholar] [CrossRef]
- Wu, W.; He, J.N.; Lan, M.; Zhang, P.; Chu, W.K. Transcription-replication collisions and chromosome fragility. Front. Genet. 2021, 12, 804547. [Google Scholar] [CrossRef]
- Durkin, S.G.; Glover, T.W. Chromosome fragile sites. Annu. Rev. Genet. 2007, 41, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Lukusa, T.; Fryns, J.P. Human chromosome fragility. BBA-Gene. Regul. Mech. 2008, 1779, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Łaczmańska, I.; Ślęzak, R. The aetiology and clinical significance of the fragile sites in human chromosomes. J. Diag. Lab. 2010, 46, 81–86. [Google Scholar]
- Zlotorynski, E.; Rahat, A.; Skaug, J.; Ben-Porat, N.; Ozeri, E.; Hershberg, R.; Levi, A.; Scherer, S.W.; Margalit, H.; Kerem, B. Molecular basis for expression of common and rare fragile sites. Mol. Cell. Biol. 2003, 23, 7143–7151. [Google Scholar] [CrossRef] [PubMed]
- Arlt, M.F.; Durkin, S.G.; Ragland, R.L.; Glover, T.W. Common fragile sites as targets for chromosome rearrangements. DNA Repair 2006, 5, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Glover, T.W. Common fragile sites. Cancer Lett. 2006, 232, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Franchitto, A.; Pichierri, P. Understanding the molecular basis of common fragile sites instability: Role of the proteins involved in the recovery of stalled replication forks. Cell Cycle 2011, 10, 4039–4046. [Google Scholar] [CrossRef]
- Mortusewicz, O.; Herr, P.; Helleday, T. Early replication fragile sites: Where replication-transcription collisions cause genetic instability. EMBO J. 2013, 32, 493–495. [Google Scholar] [CrossRef]
- Li, S.; Wu, X. Common fragile sites: Protection and repair. Cell Biosci. 2020, 10, 29. [Google Scholar] [CrossRef]
- Gedik, C.M.; Ewen, S.W.B.; Collins, A.R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int. J. Radiat. Biol. 1992, 62, 313–320. [Google Scholar] [CrossRef]
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Muerho, S.A.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef]
- Yeşilbağ, K.; Alpay, G.; Becher, P. Variability and global distribution of subgenotypes of Bovine Viral Diarrhea Virus. Viruses 2017, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Heuer, C.; Healy, A.; Zerbini, C. Economic effects of exposure to bovine viral diarrhea virus on dairy herds in New Zealand. J. Dairy Sci. 2007, 90, 5428–5438. [Google Scholar] [CrossRef]
- Evans, C.A.; Pinior, B.; Larska, M.; Graham, D.; Schweizer, M.; Guidarini, C.; Decaro, N.; Ridpath, J.; Gates, M.C. Global knowledge gaps in the prevention and control of bovine viral diarrhoea (BVD) virus. Transbound. Emerg. Dis. 2019, 66, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Moennig, V.; Becher, P. Control of bovine viral diarrhea. Pathogens 2018, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Iotti, B.; Valdano, E.; Savini, L.; Candeloro, L.; Giovannini, A.; Rosati, S.; Colizza, V.; Giacobini, M. Farm productive contexts and the dynamics of bovine viral diarrhea (BVD) transmission. Prev. Vet. Med. 2019, 165, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, G.M.; Wentink, G.H.; Bruschke, C.; Westenbrink, F.J.; Brinkhof, J.; de Goey, I. Failure of foetal protection after vaccination against an experimental infection with bovine virus diarrhea virus. Vet. Microbiol. 2002, 8, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Grooms, D.L.; Bolin, S.R.; Coe, P.H.; Borges, R.J.; Coutu, C.E. Fetal protection against continual exposure to bovine viral diarrhea virus following administration of a vaccine containing an inactivated bovine viral diarrhea virus fraction to cattle. Am. J. Vet. Res. 2007, 68, 1417–1422. [Google Scholar] [CrossRef]
- Graham, D.A.; Clegg, T.A.; O’Sullivan, P.; More, S.; O’Sullivan, P.; More, S.J. Influence of the retention of PI calves identified in 2012 during the voluntary phase of the Irish national bovine viral diarrhoea virus (BVDV) eradication programme on herd-level outcomes in 2013. Prev. Vet. Med. 2015, 120, 298–305. [Google Scholar] [CrossRef]
- Quinet, C.; Czaplicki, G.; Dion, E.; Pozzo, F.D.; Kurz, A.; Saegerman, C.; Dal Pozzo, F.; Kurz, A.; Saegerman, C. First results in the use of bovine ear notch tag for bovine viral diarrhoea virus detection and genetic analysis. PLoS ONE 2016, 11, e0164451. [Google Scholar] [CrossRef]
- Byrne, A.W. Spatial and risk factor analysis of bovine viral diarrhoea (BVD) virus after the first-year compulsory phase of BVD eradication programme in Northern Ireland. Prev. Vet. Med. 2018, 157, 34–43. [Google Scholar] [CrossRef]
- Schweizer, M.; Stalder, H.; Haslebacher, A.; Grisiger, M.; Schwermer, H.; Di Labio, E. Eradication of bovine viral diarrhoea (BVD) in cattle in Switzerland: Lessons taught by the complex biology of the virus. Front. Vet. Sci. 2021, 8, 702730. [Google Scholar] [CrossRef] [PubMed]
- Jaśkowski, J.M.; Olechnowicz, J.; Nowak, W. Several reasons for decreasing fertility in dairy cows. Vet. Med. Sci. Pract. 2006, 62, 385–389. [Google Scholar]
- Baimukanov, D.A.; Seidaliyev, N.B.; Alentayev, A.S.; Abugaliyev, S.K.; Semenov, V.G.; Dalibayev, E.K.; Zhamalov, B.S.; Muka, S.B. Improving the reproductive ability of the dairy cattle. J. NAS RK 2019, 324, 20–31. [Google Scholar] [CrossRef]
- Kołacz, R.; Jaśkowski, J.M.; Ciorga, M. Effects of health disorders, genetic modifications and new technologies on the welfare of dairy cattle. Vet. Med. Sci. Pract. 2020, 76, 675–683. [Google Scholar] [CrossRef]
- LeBlanc, S. Monitoring Metabolic Health of Dairy Cattle in the Transition Period. J. Reprod. Develop. 2010, 56, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, E.C.; Bauersachs, S.; Tietze, M.; Simianer, H.; Tetens, J.; Thaller, G.; Reinhardt, F.; Wolf, E.; Konig, S. Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim. Genet. 2011, 42, 251–262. [Google Scholar] [CrossRef]
- Zink, V.; Lassen, J.; Stipkova, M. Genetic parameters for female fertility and milk production traits in first parity Czech Holstein cows. Czech J. Anim. Sci. 2012, 57, 108–114. [Google Scholar] [CrossRef]
- Yamazaki, T.; Hagiya, K.; Takeda, H.; Yamaguchi, S.; Osawa, T.; Nagamine, Y. Genetic correlations among female fertility, 305-day milk yield and persistency during the first three lactations of Japanese Holstein cows. Livest. Sci. 2014, 168, 26–31. [Google Scholar] [CrossRef]
- Weigel, K.A.; VanRaden, P.; Norman, H.; Grosu, H.A. 100-Year Review: Methods and impact of genetic selection in dairy cattle-from daughter-dam comparisons to deep learning algorithms. J. Dairy Sci. 2017, 100, 10234–10250. [Google Scholar] [CrossRef]
- Cole, J.; VanRaden, P. Symposium review: Possibilities in an age of genomics: The future of selection indices. J. Dairy Sci. 2018, 101, 3686–3701. [Google Scholar] [CrossRef] [PubMed]
- Lucy, M. Symposium review: Selection for fertility in the modern dairy cow—Current status and future direction for genetic selection. J. Dairy Sci. 2019, 102, 3706–3721. [Google Scholar] [CrossRef] [PubMed]
- Consentini, C.C.E.; Wiltbank, M.C.; Sartori, R.R. Factors that optimize reproductive efficiency in dairy herds with an emphasis on timed artificial insemination programs. Animals 2021, 11, 301. [Google Scholar] [CrossRef]
- Danielak-Czech, B.; Słota, E. Unstable chromosomal regions in subfertile animals. Ann. Anim. Sci. 2002, 2, 4–14. [Google Scholar]
- Nino-Soto, M.I.; King, W.A. Genetic factors that affect normal reproduction and fertility in domestic cattle. In Proceedings of the 23rd WBC Congress, Québec City, QC, Canada, 16 July 2004. [Google Scholar]
- Danielak-Czech, B.; Babicz, M.; Rejduch, B.; Kozubska-Sobocińska, A. Cytogenetic and molecular analysis of chromosome instability in cattle with reproductive problems. Ann. UMCS Sec. EE Zoot. 2012, 30, 18–25. [Google Scholar] [CrossRef]
- Szczerbal, I.; Świtonski, M. Chromosome abnormalities in domestic animals as causes of disorders of sex development or impaired fertility. In Insights from Animal Reproduction; IntechOpen: London, UK, 2016; Volume 9. [Google Scholar] [CrossRef]
- Trukhachev, V.I.; Oleynik, S.A.; Zlydnev, N.Z.; Morozov, V.J.; Selionova, M.I.; Chizhova, L.N.; Skokova, A.V. Chacteristics of the chromosome set of Holstein cows with reproductive disorders in the North-Caucasian cattle population. Cytol. Genet. 2017, 51, 272–277. [Google Scholar] [CrossRef]
- Dzitsiuk, V.V.; Tipilo, H.T. Chromosomal anomalies in dairy cattle as reasons of impaired fertility. Agric. Sci. Pract. 2019, 6, 60–66. [Google Scholar] [CrossRef]
- Gollin, S.M. Mechanisms leading to chromosomal instability. Semin. Cancer. Biol. 2005, 15, 33–42. [Google Scholar] [CrossRef]
- Bayani, J.; Selvarajah, S.; Maire, G.; Vukovic, B.; Al-Romaih, K.; Zielenska, M.; Squire, J.A. Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin. Cancer. Biol. 2007, 17, 5–18. [Google Scholar] [CrossRef]
- Iannuzzi, L. Cytogenetics in animal production. Ital. J. Anim. Sci. 2007, 6, 713–715. [Google Scholar] [CrossRef]
- Kawabata, T.; Luebben, S.W.; Yamaguchi, S.; Ilves, I.; Matise, I.; Buske, T.; Botchan, M.R.; Shima, N. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol. Cell. 2011, 41, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Heng, H.H.; Bremer, S.W.; Stevens, J.B.; Horne, S.D.; Liu, G.; Abdallah, B.Y.; Ye, K.J.; Ye, C.J. Chromosomal instability (CIN): What it is and why it is crucial to cancer evolution. Cancer. Metast. Rev. 2013, 32, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, S.; Natarajan, A.T.; Hande, M.P. Chromosomal instability-mechanisms and consequences. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2015, 793, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Yimer, N. Chromosomal anomalies and infertility in farm animals: A review. Pertanika J. Trop. Agric. Sci. 2014, 37, 1–18. [Google Scholar]
- Peretti, V.; Ciotola, F.; Albarella, S.; Russo, V.; Di Meo, G.P.; Iannuzzi, L.; Roperto, F.; Barbieri, V. Chromosome fragility in cattle with chronic enzootic hematuria. Mutagenesis 2007, 22, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, E.; Andraszek, K.; Ciszewska, M.; Smalec, E. Sister chromatid exchange as an index of chromosome insatbility in chondrodystrophic chickens (Gallus domesticus). Poult. Sci. 2013, 92, 84–89. [Google Scholar] [CrossRef]
- Biuk-Rudan, N.; Cvetnić, S.; Madic, J.; Rudan, D. Prevalence of antibodies to IBR and BVD viruses in dairy cows with reproductive disorders. Theriogenology 1999, 51, 875–881. [Google Scholar] [CrossRef]
- Ahmed, W.M.; Zaher, K.S. A field contribution on the relation between reproductive disorders and bovine viral diarrhea virus infection in buffalo-cows. Am. Eurasian J. Agric. Environ. Sci. 2008, 3, 736–742. [Google Scholar]
- Aono, F.H.; Cooke, R.F.; Alfieri, A.A.; Vasconcelos, J.L.M. Effects of vaccination against reproductive diseases on reproductive performance of beef cows submitted to fixed-timed AI in Brazilian cow-calf operations. Theriogenology 2013, 79, 242–248. [Google Scholar] [CrossRef]
- Pereira, M.H.C.; Cooke, R.F.; Alfieri, A.A.; Vasconcelo, J.L.M. Effects of vaccination against reproductive diseases on reproductive performance of lactating dairy cows submitted to AI. Anim. Reprod. Sci. 2013, 137, 156–162. [Google Scholar] [CrossRef]
- Oguejiofor, C.F.; Thomas, C.; Cheng, Z.; Wathes, D.C. Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Anim. Health Res. Rev. 2019, 20, 72–85. [Google Scholar] [CrossRef]
- Subekti, D.T.; Fatmawati, M.; Khoiriyah, A.; Pramesthi, A.; Fong, S.; Desem, M.I.; Azmi, Z.; Kusumaningtyas, E.; Endrawati, D.; Purwanto, E.S. Seroprevalence of seven reproductive diseases in beef and dairy cows from three provinces in Indonesia. Vet. Med. Int. 2021, 2021, 6492289. [Google Scholar] [CrossRef]
- Biegun, K.; Ścibik, Ł.; Krawczyk, A.; Brzychczy-Włoch, M. The role of HPV CMV and EBV latent viruses in the development of oropharyngeal squamous cell carcinoma (OPSCC). Pol. Otorhino. Rev. 2022, 11, 24–29. [Google Scholar] [CrossRef]
- Nehra, A.; Kundu, R.S.; Ahlawat, S.; Singh, K.P.; Karki, K.; Lather, A.S.; Poonia, K.; Budania, S.; Kumar, V. Current trends in biosensors for the detection of cattle diseases worldwide. Biosens. Bioelectron. 2023, 14, 100355. [Google Scholar] [CrossRef]
- Di Berardino, D.; Iannuzzi, L.; Fregola, A.; Matassino, D. Chromosome instability in a calf affected by congenital malformation. Vet. Rec. 1983, 112, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, J.M.; Lachance, S.; Steffen, D.J. Tibial hemimelia, meningocele, and abdominal hernia in Shorthorn cattle. Vet. Pathol. 2000, 37, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Szczerbal, I.; Stefaniak, T.; Dubiel, A.; Siembieda, J.; Nizanski, W.; Świtoński, M. Chromosome Instability in a Calf with Amelia of Thoracic Limbs. Vet. Pathol. 2006, 43, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, J.; Urbaniak, K.; Antosik, P.; Jaskowski, J.M.; Frackowiak, H.; Świtoński, M. Polymelia associated with frequent chromosome breaks in a heifer. Vet. Rec. 2007, 161, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Peretti, V.; Ciotola, F.; Albarella, S.; Restucci, B.; Meomartino, L.; Ferretti, L.; Barbieri, V.; Iannuzzi, L. Increased SCE levels in Mediterranean Italian buffaloes affected by limb malformation (transversal hemimelia). Cytogenet. Genome Res. 2008, 120, 183–187. [Google Scholar] [CrossRef]
- Albarella, S.; Ciotola, F.; Dario, C.; Iannuzzi, L.; Barbieri, V.; Peretti, V. Chromosome instability in Mediterranean Italian buffaloes affected by limb malformation (transversal hemimelia). Mutagenesis 2009, 24, 471–474. [Google Scholar] [CrossRef]
- Corbera, J.A.; Pulido, M.; Morales, M.; Juste, M.C.; Gutierrez, C. Radiological findings in three cases of paraxial radial hemimelia in goats. J. Vet. Med. Sci. 2002, 64, 843–845. [Google Scholar] [CrossRef]
- Wójcik, E.; Andraszek, K.; Gryzińska, M.; Witkowski, A.; Palyszka, M.; Smalec, E. Sister chromatid exchange in Greenleg Partridge and Polbar hens covered by the gene-pool protection program for farm animals in Poland. Poult. Sci. 2012, 91, 2424–2430. [Google Scholar] [CrossRef]
- Sonoda, E.; Sasaki, S.M.; Morrisom, C.; Yamaguchi-Iwai, Y.; Takata, M.; Takeda, S. Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol. Cell. Biol. 1999, 7, 5166–5169. [Google Scholar] [CrossRef]
- Dezfouli, A.S.M. Sister chromatid exchange analysis in some Holstein bulls. Iran. J. Vet. Res. 2012, 13, 161–163. [Google Scholar]
- Wójcik, E.; Szostek, M. Assessment of genome stability in various breeds of cattle. PLoS ONE 2019, 14, e0217799. [Google Scholar] [CrossRef]
- Goswami, U.; Goswami, S.C. Chromosomal aberrations found in Paracalanus aculeatus (Giesbrecht) at the time of solar eclipse. Mahasagar 1982, 15, 59–62. [Google Scholar]
- Leibenguth, F.; Thiel, G. BRDU- and EMS- dependent sister chromatid exchange and chromosomal breaks in cattle. Arch. Zoot. 1986, 35, 301–330. [Google Scholar]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Ferrara, L.; Gustavsson, I. Sister chromatid exchange in chromosomes of cattle from three different breeds reared under similar conditions. Hereditas 1991, 114, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Vijh, A.K.; Bélanger, G.; Jacques, R. Electrolysis of water on silicides of some transition metals in alkaline solutions. Int. J. Hydrog. Energy 1992, 17, 479–483. [Google Scholar] [CrossRef]
- Rangel-Figueiredo, M.T.; Di Meo, G.P.; Iannuzzi, L. Sister chromatid exchange (SCE) in cattle: A comparison between normal and rob (1;29)-carrying karyotypes. Hereditas 1995, 123, 25–29. [Google Scholar] [CrossRef]
- Ciotola, F.; Peretti, V.; Di Meo, G.P.; Perucatti, A.; Iannuzzi, L.; Barbieri, V. Sister chromatid exchanges (SCE) in the agerolese cattle population. Vet. Res. Commun. 2005, 29, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Ladyka, V.I.; Skliarenko, Y.I.; Pavlenko, Y.M.; Starodub, L.F. Karyotypal variability of Ukrainian brown dairy breed cows. Anim. Breed. Genet. 2022, 64, 110–117. [Google Scholar] [CrossRef]
- Rodriguez, V.; Llambí, S.; Postiglioni, A.; Guevara, K.; Rincón, G.; Fernández, G.; Mernies, B.; Arruga, M.V. Localisation of aphidicolin-induced break points in Holstein-Friesian cattle (Bostaurus) using RBG-banding. Genet. Sel. Evol. 2002, 34, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Danielak-Czech, B.; Słota, E. Mutagen-induced chromosome instability in farm animals. J. Anim. Feed Sci. 2004, 13, 257–267. [Google Scholar] [CrossRef]
- Di Meo, G.P.; Perucatti, A.; Genualdo, V.; Caputi-Jambrenghi, A.; Rasero, R.; Nebbia, C.; Iannuzzi, L. Chromosome fragility in dairy cows exposed to dioxins and dioxin-like PCBs. Mutagenesis 2011, 26, 269–272. [Google Scholar] [CrossRef]
- Genualdo, V.; Perucatti, A.; Iannuzzi, A.; Di Meo, G.P.; Spagnuolo, S.M.; Caputi-Jambrenghi, A.; Coletta, A.; Vonghia, G.; Iannuzzi, L. Chromosome fragility in river buffalo cows exposed to dioxins. J. Appl. Genet. 2012, 53, 221–226. [Google Scholar] [CrossRef]
- Wójcik, E.; Kępka, K.; Skup, M. Effect of selected micro- and macroelements and vitamins on the genome stability of bovine embryo transfer recipients following in vitro fertilization. Animals 2023, 13, 1056. [Google Scholar] [CrossRef]
- Picco, S.J.; De Luca, J.C.; Mattioli, G.; Dulout, F.N. DNA damage induced by copper deficiency in cattle assessed by the Comet assai. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2001, 498, 1–6. [Google Scholar] [CrossRef]
- Picco, S.J.; Abba, M.C.; Mattioli, G.A.; Fazzio, L.E.; Rosa, D.; De Luca, J.C.; Dulout, F.N. Association between copper deficiency and DNA damage in cattle. Mutagenesis 2004, 19, 453–456. [Google Scholar] [CrossRef]
- Zegrean, G.; Ioana, B.; Dulf, F. Evaluation of albendazole genotoxicity administered to dairy cows using the comet assai. Bull. Univ. Agric. Sci. Vet. Med. 2006, 63, 413–419. [Google Scholar] [CrossRef]
- Bissett, W.; Smith, R.; Adams, L.G.; Field, R.; Moyer, W.; Phillips, T.; Scott, H.M.; Thompson, J.A. Geostatistical analysis of biomarkers of genotoxicity in cattle, Bostaurus and Bostaurus × Bosindicus, sentinels near industrial facilities. Ecotoxicology 2009, 18, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Dineshkumar, V.; Logeswari, P.; Nisha, A.R.; Usha, P.T.A. Assessment and evaluation of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) residues and extent of dna damage in cattle of Kasargod district, Northern Kerala, India. Int. J. Pharm. Sci. Res. 2014, 5, 4741–4750. [Google Scholar] [CrossRef]
- Schnabel, K.; Schmitz, R.; Frahm, J.; Meyer, U.; Breves, G.; Dänicke, S. Functionality and DNA-damage properties of blood cells in lactating cows exposed to glyphosate contaminated feed at different feed energy levels. Arch. Anim. Nutr. 2020, 74, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Araldi, R.P.; Melo, T.C.; Diniz, N.; Mazzuchelli-de-Souza, J.; Carvalho, R.F.; Beçak, W.; Stocco, R.C. Bovine papillomavirus clastogenic effect analyzed in comet assay. Biomed. Res. Int. 2013, 2013, 630683. [Google Scholar] [CrossRef]
- Mohamed, T.; Endoh, D.; Oikawa, S. DNA damage of blood lymphocytes and neutrophils in cattle with lymphosarcoma. Vet. Med. Czech. 2011, 56, 504–509. [Google Scholar] [CrossRef]
- Tharwat, M. Accelerated neutrophil apoptosis in cows affected with acute mastitis. J. Agric. Vet. Sci. 2011, 4, 125–134. [Google Scholar]
Group 1 | Group 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cow | SCE | FS | SCGE | Cow | SCE | FS | SCGE | ||
Mean ± SD | Gedik’s Scale | Mean ± SD | Gedik’s Scale | ||||||
1 | 8.2 abc ± 0.8 | 6.1 a ± 1.2 | 19.8 ab ± 5.0 | L | 21 | 4.3 abc ± 1.0 | 2.7 ab ± 0.8 | 2.8 abc ± 5.3 | N |
2 | 9.0 abc ± 1.0 | 8.0 de ± 1.1 | 21.8 abc ± 5.7 | L | 22 | 5.0 abcd ± 1.1 | 3.4 bc ± 0.9 | 4.7 abc ± 10.1 | N |
3 | 9.2 bc ± 1.5 | 8.4 e ± 1.0 | 26.4 ef ± 5.1 | L | 23 | 5.3 bcd ± 1.3 | 3.4 bc ± 0.8 | 6.2 c ± 9.9 | L |
4 | 8.8 abc ± 1.6 | 7.5 bcde ± 1.5 | 21.3 ab ± 4.5 | L | 24 | 5.1 abcd ± 1.1 | 3.2 abc ± 0.7 | 4.1 abc ± 9.4 | N |
5 | 9.0 bc ± 1.2 | 8.2 e ± 1.4 | 28.0 fg ± 5.7 | M | 25 | 4.8 abcd ± 1.0 | 3.3 bc ± 0.9 | 3.3 abc ± 7.6 | N |
6 | 9.5 c ± 1.4 | 8.6 e ± 1.0 | 30.3 g ± 4.8 | M | 26 | 3.9 a ± 1.1 | 2.5 ab ± 0.8 | 1.1 a ± 3.2 | N |
7 | 8.3 abc ± 1.1 | 6.4 ab ± 1.0 | 20.0 ab ± 7.4 | L | 27 | 3.9 a ± 1.0 | 2.3 a ± 0.8 | 1.0 a ± 3.3 | N |
8 | 8.5 abc ± 0.8 | 6.6 abc ± 1.1 | 20.8 ab ± 5.4 | L | 28 | 5.0 abcd ± 1.2 | 3.4 bc ± 0.8 | 4.1 abc ± 7.6 | N |
9 | 8.6 abc ± 1.1 | 6.5 abc ± 1.3 | 22.6 bc ± 4.6 | L | 29 | 5.3 bcd ± 1.1 | 3.2 abc ± 0.9 | 6.3 c ± 8.2 | L |
10 | 7.7 a ± 1.4 | 5.7 a ± 1.3 | 18.6 a ± 4.9 | L | 30 | 4.8 abcd ± 1.3 | 2.9 ab ± 0.6 | 4.0 abc ± 8.5 | N |
11 | 7.9 ab ± 1.3 | 6.3 ab ± 1.6 | 19.9 ab ± 5.9 | L | 31 | 5.6 cd ± 1.2 | 3.9 cd ± 1.2 | 5.9 c ± 7.8 | L |
12 | 8.3 abc ± 1.7 | 6.5 abc ± 0.8 | 20.8 ab ± 4.4 | L | 32 | 4.5 abcd ± 1.0 | 2.7 ab ± 0.9 | 3.0 abc ± 6.1 | N |
13 | 8.0 ab ± 1.4 | 5.9 a ± 1.3 | 20.7 ab ± 4.4 | L | 33 | 4.7 abcd ± 1.0 | 2.9 ab ± 0.8 | 3.7 abc ± 7.8 | N |
14 | 8.8 abc ± 0.9 | 6.8 abcd ± 1.0 | 24.5 cde ± 4.9 | L | 34 | 4.3 abc ± 1.0 | 2.7 ab ± 1.1 | 2.0 ab ± 5.1 | N |
15 | 8.6 abc ± 1.0 | 6.6 abc ± 1.0 | 22.4 bc ± 4.0 | L | 35 | 4.5 abcd ± 1.2 | 2.9 ab ± 0.7 | 2.6 abc ± 6.8 | N |
16 | 8.4 abc ± 4.0 | 6.3 ab ± 1.5 | 22.3 bc ± 4.9 | L | 36 | 5.7 d ± 0.9 | 4.7 d ± 0.7 | 6.9 c ± 9.8 | L |
17 | 8.8 abc ± 1.4 | 6.7 abcd ± 1.0 | 22.8 bcd ± 4.9 | L | 37 | 4.1 ab ± 1.2 | 2.7 ab ± 0.8 | 0.9 a ± 3.2 | N |
18 | 8.9 abc ± 1.0 | 7.8 cde ± 1.0 | 24.4 cde ± 5.9 | L | 38 | 4.6 abcd ± 1.3 | 3.0 ab ± 0.9 | 3.3 abc ± 6.6 | N |
19 | 8.7 abc ± 1.1 | 6.8 abcd ± 1.3 | 21.6 abc ± 4.6 | L | 39 | 4.5 abcd ± 1.2 | 3.1 abc ± 0.9 | 1.7 ab ± 3.8 | N |
20 | 9.1 bc ± 1.1 | 7.5 bcde ± 1.2 | 26.2 def ± 6.5 | M | 40 | 4.8 abcd ± 1.0 | 3.0 abc ± 0.8 | 2.9 abc ± 7.9 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kępka, K.; Wójcik, E.; Wysokińska, A. Identification of Genomic Instability in Cows Infected with BVD Virus. Animals 2023, 13, 3800. https://doi.org/10.3390/ani13243800
Kępka K, Wójcik E, Wysokińska A. Identification of Genomic Instability in Cows Infected with BVD Virus. Animals. 2023; 13(24):3800. https://doi.org/10.3390/ani13243800
Chicago/Turabian StyleKępka, Katarzyna, Ewa Wójcik, and Anna Wysokińska. 2023. "Identification of Genomic Instability in Cows Infected with BVD Virus" Animals 13, no. 24: 3800. https://doi.org/10.3390/ani13243800
APA StyleKępka, K., Wójcik, E., & Wysokińska, A. (2023). Identification of Genomic Instability in Cows Infected with BVD Virus. Animals, 13(24), 3800. https://doi.org/10.3390/ani13243800