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Simple Summary: The aim of the study was to identify the genomic instability in cows with repro-
ductive disorders following infection with the BVD virus. The genomic stability was analyzed using
the sister chromatid exchange, fragile sites, and comet assays. Statistically significant differences
were noted between the groups. Of the three assays, the comet assay proved to be the most sensitive
for identifying DNA damage in the animals.

Abstract: An important factor for dairy cattle farmers is the profitability of cattle rearing, which is
influenced by the animals’ health and reproductive parameters, as well as their genomic stability
and integrity. Bovine viral diarrhea (BVD) negatively affects the health of dairy cattle and causes
reproductive problems. The aim of the study was to identify genomic instability in cows with
reproductive disorders following infection with the BVD virus. The material for analysis was
peripheral blood from Holstein-Friesian cows with reproductive problems, which had tested positive
for BVD, and from healthy cows with no reproductive problems, which had tested negative for BVD.
Three cytogenetic tests were used: the sister chromatid exchange assay, fragile sites assay, and comet
assay. Statistically significant differences were noted between the groups and between the individual
cows in the average frequency of damage. The assays were good biomarkers of genomic stability and
enabled the identification of individuals with an increased frequency of damage to genetic material
that posed a negative impact on their health. The assays can be used to prevent disease during its
course and evaluate the genetic resistance of animals. This is especially important for the breeder,
both for economic and breeding reasons. Of the three assays, the comet assay proved to be the most
sensitive for identifying DNA damage in the animals.

Keywords: dairy cows; Holstein-Friesian; BVD; genome instability; chromosome instability; reproductive
disorders

1. Introduction

An important factor for dairy cattle farmers is the profitability of cattle rearing, which
is dependent on many factors. These include the animal’s health, reproductive parameters,
age, and genetic determinants, but also herd management practices, such as feeding plans,
means of detecting estrus, and the animals’ living environment [1–6]. Any deviations
from these standards can negatively affect milk production [7–9]. Dairy cattle breeding
has long been aimed at a high milk yield, often at the expense of functional traits, the
loss of which may entail health disorders and affect longevity [10–15]. Animals with
high genetic resistance maintain a good production level despite the frequently negative
impact of exogenous factors [16,17]. Breeding programs currently emphasize improving the
resistance, functional traits, and reproductive traits [18,19]. According to Ayane et al. [20]
and Arero [6], a successful reproductive process includes well-functioning ovaries, normal
estrous behavior, mating, the ability to conceive and nourish the embryo, the birth of
viable young, the resumption of the estrous cycle, and the restoration of uterine function
after parturition.
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Some diseases can negatively affect reproduction in dairy cattle. One of these is bovine
viral diarrhea (BVD). The virus inducing this disease belongs to the genus Pestivirus of
the family Flaviviridae. It results in embryo resorption, abortion, the birth of weak calves,
problems rearing them, low weight gain, increased treatment costs, prolonged calving
intervals, and reduced milk yields [21,22]. The subclinical form of BVD is more common
than the clinical form and lasts from 2–3 days to 4 weeks [23]. The symptoms of the clinical
form depend on the strain of the virus and the animal’s immunity [22]. In cows that are
not pregnant, reduced productivity, fever, diarrhea, hemorrhagic changes, pneumonia, and
even fatal mucosal disease have been observed [24–26]. In pregnant cows, this virus can
have teratogenic effects and can adversely affect embryo development and the maintenance
and course of pregnancy [27–29]. Infection with this virus in early pregnancy (40–120 days)
can lead to persistent infection of the calves, which can later result in culling to eliminate
the BVD virus from the herd [8,30,31].

Intensified dairy production has led to a decrease in the genetic resistance of cat-
tle [14,32–34]. Any disturbances of the genome stability and integrity caused by pathogens
or mutagens adversely affect the functioning of the body [17,35]. Bovine viral diarrhea
(BVD) has a cytopathogenic and lymphocytopathogenic course and is incurable. Protection
against BVD is provided by vaccines. They are used prophylactically or when the virus is
active in the herd to prevent the onset of symptoms of the acute form of the disease, reduce
its severity, enrich colostrum with additional antibodies, reduce the number of intrauterine
infections in cows and heifers, and prevent the birth of persistently infected animals. The
vaccines should be given cyclically. They reduce the risk of abortion and fetal infection.
This form of biosecurity is very important due to the high prevalence of the disease, which
causes enormous financial losses [36].

Genomic stability can be tested using cytogenetic assays, which are highly sensitive
biomarkers. They make it possible to identify damage to genetic material in an animal
at various stages: pre-clinical, clinical during treatment, or after treatment. These tests
include the comet assay, sister chromatid exchange assay (SCE), and fragile sites assay
(FS), which can be used to monitor the level of generated damage. The comet assay (or
single cell gel electrophoresis—SCGE) is a technique that can be used to assess the DNA
integrity of any tissue, including lymphocytes [37]. In the cells subjected to electrophoresis,
fragmented DNA migrates faster through the agarose matrix than intact DNA, creating an
image reminiscent of the tail of a comet [38]. SCGE detects various types of DNA lesions,
such as single-stranded and double-stranded DNA breaks, sites that are unstable in an
alkaline environment, modified bases, incomplete repair sites, and cross-links between the
strands [39].

The other two assays require in vitro cell cultures. The sister chromatid exchange assay
identifies single- and double-strand DNA breaks caused by genotoxic and mutagenic factors
interfering with replication [37,40]. They also have a destructive effect on the functioning
of the checkpoints and DNA repair mechanisms. Unrepaired or incorrectly repaired DNA
strand breaks can lead to destabilization and the rearrangement of genetic information,
disturbing the integrity and stability of the genome and even leading to apoptosis [41–44].
Sister chromatid exchanges occur when DNA damage is not correctly repaired in the S
phase of the cell cycle, which leads to an exchange of DNA duplexes in the sister chromatids
of the dividing chromosome [45,46]. Fragile sites are also the result of erroneous replication
and the mechanisms repairing disturbances in the progression of replication forks [47]. The
ineffectiveness of these cellular mechanisms can result in gaps, breaks, or constrictions
on the metaphase chromosomes under replication stress [48,49]. They are transferred
between the generations of dividing cells, causing genomic instability [49]. They can be
rare (RFS) or common (CFS) in the genome. The chromosome fragility at these sites is
associated with the expansion of dinucleotide or trinucleotide repeats, which can form
secondary DNA structures, affecting DNA replication and transcription [50–53]. They can
also be a normal component of the chromosome structure, encompassing large genomic
regions—even thousands of kilobases [54–57]. Early replicating fragile sites (ERFSs) are
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sensitive sites which colocalize with clusters of genes with a high expression and are
enriched with repeated sequences. The fragility of ERFSs increases in the case of replication
stress and ATR inhibition. They replicate early, are rich in GC pairs, and have a tendency to
form secondary DNA structures, in which DNA is in the form of ssDNA. This arrests DNA
replication and causes a replication–transcription conflict [50,58,59].

The aim of the study was to identify the genomic instability in Holstein-Friesian cows
with reproductive disorders following infection with the BVD virus.

2. Materials and Methods
2.1. Animals

The research material was peripheral blood drawn from the tail vein of 40 female
Holstein-Friesian cows. The age of the cows ranged from 2.5 to 5 years. Group 1 (G1)
comprised cows that had tested positive for BVD during screening tests (20 animals). The
blood from these cows was collected two months after they had been vaccinated against
bovine viral diarrhea. These cows had reproductive problems, such as the inability to
become pregnant after several attempts of artificial insemination or abortion. An ultrasound
examination at 35 days of gestation showed the presence of a fetus, but at 90 days it was
no longer present. Group 2 (control) comprised healthy cows that had tested negative for
BVD and had no reproductive problems (20 cows).

2.2. Cell Culture

The peripheral blood lymphocytes were cultured in vitro in a Lymphogrow growth
medium for 72 h at 38.5 ◦C (5% CO2, with stable humidity). At 69 h of the culture, colchicine
was added (2.5 µg mL−1). At 24 h, BrdU (5-bromodeoxyuridine) was added to the cultures
for the SCE assays (10 µg mL−1), and at 65 h, BrdU was added to the cultures for the FS test
(5 µg mL−1). Potassium chloride (0.65% KCl) was used as a hypotonic solution. The cells
were fixed using Carnoy’s fixative (3:1 methanol-acetic acid). The suspension was spotted
on microscope slides and then used for the detection of damage by the SCE and FS assays.

2.3. Sister Chromatid Exchange Assay

The samples prepared for the detection of the sister chromatid exchanges were digested
with 0.01% RNase for 1 h and then incubated in a solution of 0.5 × SSC with a Hoechst
solution for 1 h. The samples were subjected to irradiation for 30 min, incubation overnight
at 4 ◦C, UV irradiation for 30 min, incubation at 58 ◦C, and Giemsa staining for 1 h. The
stained sister chromatid exchanges were counted in 20 metaphases from each individual.

2.4. Fragile Sites Assay

The microscope slides were incubated in a Hoechst solution with 2 × SSC (1 µg mL−1)
and then subjected to UV irradiation for 1 h, incubation in 2 × SSC at 65 ◦C for 1 h, and
Giemsa staining for 1 h. Chromatid breaks, chromatid gaps and chromosome breaks were
identified. Twenty metaphases from each individual were examined.

2.5. Comet Assay (Single Cell Gel Electrophoresis)

DNA damage in the lymphocytes was identified using single cell gel electrophoresis.
The lymphocytes were isolated using Histopaque-10771 (Sigma-Aldrich Co. LLC; Irvine,
UK). The slides coated with a layer of 0.5% NMP (normal melting point) agarose gel were
spotted with the lymphocytes mixed with a 0.5% LMP (low melting point) agarose gel and
then embedded in LMP agarose. The samples prepared in this manner were subjected to
alkaline lysis overnight (2.5 M NaCl, 100 mM Na2EDTA, 0.4 M Tris-HCl, 1% sodium N-
lauroylsarcosinate, 10% Triton X-100, 1% DMSO, pH = 10) to release the DNA from the cell
and remove the proteins. This was followed by alkaline denaturation in an electrophoresis
solution for 30 min, after which the lymphocytes were subjected to electrophoresis (25 V,
300 mA, 20 min). Following electrophoresis, the lymphocytes were neutralized using
Tris-HCl and stained with ethidium bromide. The DNA integrity was determined on the
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basis of the percentage content of the DNA in the tail of the comet (%T DNA). Fifty cells
were analyzed for each animal.

2.6. Analysis

An Olympus BX50 microscope was used for microscopic analysis. The MultiScan
image analysis software (v. 8.08) from Computer Scanning Systems was used to analyze
chromosome damage, identified in the form of sister chromatid exchanges and fragile
sites. The CASP 1.2.2 software was used to analyze degraded DNA in the lymphocytes
identified by the comet assay. The changes observed the in cells were classified according
to Gedik’s scale: N—no DNA damage or less than 5% damage in the comet tail, L—low
level of damage (5–25%), M—intermediate damage (25–40%), H—high level of damage
(40–95%), and T—over 95% DNA damage [60].

The results were subjected to statistical analysis using the Statistica 12.5 MR1 PL
software. The influence of the group and individual on the incidence of chromosomal
instabilities (SCE, FS, and SCGE) was analyzed using a one-way analysis of variance.
Significant differences between the means for a given type of instability within the factors
were assessed using Tukey’s test (p < 0.05). A student’s t-test was used to compare the
means between groups 1 and 2.

3. Results

In the cows selected for cytogenetic testing, damage to the genetic material was
identified using the SCE, FS, and SCGE assays. Figure 1 presents images of the metaphase
chromosomes and nuclei of the lymphocytes subjected to the three assays in the cows
with reproductive problems. Figure 2 presents images of the metaphase chromosomes and
nuclei of the lymphocytes subjected to the three assays in healthy cows.
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Figure 1. Mitotic chromosomes from the cows in group 1 in the metaphase stained by the SCE assay
(A) and FS assay (B), and the cell nuclei of the lymphocytes subjected to the comet assay (C). The
damage is marked with arrows. Scale bar 10 µm.
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Figure 2. Mitotic chromosomes from the cows in group 2 in the metaphase stained by the SCE assay
(A) and FS assay (B), and the cell nuclei of the lymphocytes subjected to the comet assay (C). The
damage is marked with arrows. Scale bar 10 µm.

The average rate of SCE/cell was 6.7 ± 2.3. It was 8.6 ± 1.2 for G1 and 4.7 ± 1.2 for
G2. Statistically significant differences were noted between group 1 and group 2 (p ≤ 0.00).
Differences in the average frequency of SCEs were observed between the cows within each
group, but they were statistically significant only between certain individuals (Table 1). The
highest frequency of SCEs was noted in individual no. 6, and the lowest in no. 10 (group 1).
In the second group, the highest frequency of SCEs was noted in individual no. 36, and
the lowest in no. 27. The average rate of FS/cell was 5.0 ± 2.3 (G1 6.9 ± 1.4; G2 3.1 ± 1.0),
and these differences were statistically significant (p ≤ 0.00). In this assay, differences in
the frequency of damage were observed between the animals within each group, but they
were only statistically significant between certain cows (Table 1). The most FSs were found
in cow no. 6, and the fewest in no. 10 (group 1). In the control group, the highest frequency
of FSs was noted in individual no. 36, and the lowest in no. 27. The average %T DNA in
the cows was 13.1 ± 11.7; it was 22.7 ± 6.0 for G1 and 3.5 ± 7.4 for G2. The differences
observed in the amount of fragmented DNA between group 1 and group 2 were statistically
significant (p ≤ 0.00). Similar to the previous assays, the varying frequency of damage was
identified by the comet assay. The differences were only statistically significant between
certain cows (Table 1). The most damage was observed in individual no. 6, and the least,
similar to the previous assays, in no. 10 (group 1). In group 2, the highest level of damage
was noted in individual no. 29, and the lowest in no. 37 (Table 1). Based on the additional
criterion applied, i.e., Gedik’s scale, the animals were classified as N (16 cows), showing no
DNA damage or less than 5% damage in the comet tail; L (22 cows), with a low level of
damage (5–25%); and M (two cows), with intermediate damage (25–40%). In G1, 18 cows
were classified as L and two cows as M, while no animals were classified as N; H, i.e., with
a high level of damage (40–95%); or T, with over 95% DNA damage. Two levels of damage
were noted in the healthy cows (G2): N in 16 cows and L in four cows. Both of these levels
were associated with a low level of DNA damage.
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Table 1. Number of instabilities identified (SCE, FS, and SCGE) in the cows. The means designated with different letters are significantly different at p < 0.05.

Group 1 Group 2

Cow
SCE FS SCGE Cow SCE FS SCGE

Mean ± SD Gedik’s Scale Mean ± SD Gedik’s Scale

1 8.2 abc ± 0.8 6.1 a ± 1.2 19.8 ab ± 5.0 L 21 4.3 abc ± 1.0 2.7 ab ± 0.8 2.8 abc ± 5.3 N
2 9.0 abc ± 1.0 8.0 de ± 1.1 21.8 abc ± 5.7 L 22 5.0 abcd ± 1.1 3.4 bc ± 0.9 4.7 abc ± 10.1 N
3 9.2 bc ± 1.5 8.4 e ± 1.0 26.4 ef ± 5.1 L 23 5.3 bcd ± 1.3 3.4 bc ± 0.8 6.2 c ± 9.9 L
4 8.8 abc ± 1.6 7.5 bcde ± 1.5 21.3 ab ± 4.5 L 24 5.1 abcd ± 1.1 3.2 abc ± 0.7 4.1 abc ± 9.4 N
5 9.0 bc ± 1.2 8.2 e ± 1.4 28.0 fg ± 5.7 M 25 4.8 abcd ± 1.0 3.3 bc ± 0.9 3.3 abc ± 7.6 N
6 9.5 c ± 1.4 8.6 e ± 1.0 30.3 g ± 4.8 M 26 3.9 a ± 1.1 2.5 ab ± 0.8 1.1 a ± 3.2 N
7 8.3 abc ± 1.1 6.4 ab ± 1.0 20.0 ab ± 7.4 L 27 3.9 a ± 1.0 2.3 a ± 0.8 1.0 a ± 3.3 N
8 8.5 abc ± 0.8 6.6 abc ± 1.1 20.8 ab ± 5.4 L 28 5.0 abcd ± 1.2 3.4 bc ± 0.8 4.1 abc ± 7.6 N
9 8.6 abc ± 1.1 6.5 abc ± 1.3 22.6 bc ± 4.6 L 29 5.3 bcd ± 1.1 3.2 abc ± 0.9 6.3 c ± 8.2 L

10 7.7 a ± 1.4 5.7 a ± 1.3 18.6 a ± 4.9 L 30 4.8 abcd ± 1.3 2.9 ab ± 0.6 4.0 abc ± 8.5 N
11 7.9 ab ± 1.3 6.3 ab ± 1.6 19.9 ab ± 5.9 L 31 5.6 cd ± 1.2 3.9 cd ± 1.2 5.9 c ± 7.8 L
12 8.3 abc ± 1.7 6.5 abc ± 0.8 20.8 ab ± 4.4 L 32 4.5 abcd ± 1.0 2.7 ab ± 0.9 3.0 abc ± 6.1 N
13 8.0 ab ± 1.4 5.9 a ± 1.3 20.7 ab ± 4.4 L 33 4.7 abcd ± 1.0 2.9 ab ± 0.8 3.7 abc ± 7.8 N
14 8.8 abc ± 0.9 6.8 abcd ± 1.0 24.5 cde ± 4.9 L 34 4.3 abc ± 1.0 2.7 ab ± 1.1 2.0 ab ± 5.1 N
15 8.6 abc ± 1.0 6.6 abc ± 1.0 22.4 bc ± 4.0 L 35 4.5 abcd ± 1.2 2.9 ab ± 0.7 2.6 abc ± 6.8 N
16 8.4 abc ± 4.0 6.3 ab ± 1.5 22.3 bc ± 4.9 L 36 5.7 d ± 0.9 4.7 d ± 0.7 6.9 c ± 9.8 L
17 8.8 abc ± 1.4 6.7 abcd ± 1.0 22.8 bcd ± 4.9 L 37 4.1 ab ± 1.2 2.7 ab ± 0.8 0.9 a ± 3.2 N
18 8.9 abc ± 1.0 7.8 cde ± 1.0 24.4 cde ± 5.9 L 38 4.6 abcd ± 1.3 3.0 ab ± 0.9 3.3 abc ± 6.6 N
19 8.7 abc ± 1.1 6.8 abcd ± 1.3 21.6 abc ± 4.6 L 39 4.5 abcd ± 1.2 3.1 abc ± 0.9 1.7 ab ± 3.8 N
20 9.1 bc ± 1.1 7.5 bcde ± 1.2 26.2 def ± 6.5 M 40 4.8 abcd ± 1.0 3.0 abc ± 0.8 2.9 abc ± 7.9 N
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4. Discussion

The International Committee on Taxonomy of Viruses has identified 11 species of
pestiviruses, designated A through K, and additionally divided into subgroups (subgeno-
types) [8,61,62]. One of these is the BVD virus, which adversely affects animal health
and reproduction. Bovine viral diarrhea is regarded as a disease with a moderate to high
risk of spreading around the world [63,64]. One of the preferred methods for combating
this disease is vaccination, which is relatively inexpensive and effective. The most impor-
tant effect of BVD vaccination is the protection of heifers and cows against transplacental
infection, which results in persistently infected animals. Calves are also vaccinated to
protect them against clinical infection and minimize the risk of infection [8]. Systematic
vaccination prevents new infections, reduces shedding of the virus, and produces herd
immunity [30,65,66]. According to Sozzi et al. [8], however, vaccination does not provide
sufficient protection against BVD, which would explain why the disease spreads so rapidly
despite vaccination. Zimmer et al. [67] and Grooms et al. [68] also claimed that vaccination
with a predefined strain of BVD may not provide adequate protection against other strains
of the virus. Many European countries have introduced compulsory programs for the
control of every animal in the cattle population in order to eradicate the virus [9,28,69–72].
Unfortunately, the negative effects of the virus include problems with fertility, damage to
the developing fetus, and the birth of weak calves or calves with congenital defects. They
can also lead to the death of the fetus or to mummification and abortion, which prolongs the
calving interval and is often the cause of culling. These consequences entail economic losses
for dairy cattle farmers. Due to their low immunity, the infected animals are vulnerable
to other diseases as well. For this reason, it is important that the animals should have a
high level of genome integrity and stability. This enables rapid defense against infection
and correct cellular responses to DNA damage arising during replication and transcription.
Maintaining the animals’ health is crucial for dairy cattle farmers [6].

Fertility problems are one of the most common causes of culling in dairy cattle herds.
The most common reproductive disorders include a prolonged calving-to-first-estrus inter-
val and calving-to-first-service interval, less pronounced external signs of estrus, ovulation
and luteolysis disorders during the estrous cycles, reduced conception rates, abortions,
prolonged estrous cycles, deterioration of the oocyte quality, and dystocia [19,73–75]. Cows
have been bred for milk yield over many years at the expense of reproductive traits. A
negative correlation between reproductive traits and milk production traits has been re-
ported by numerous researchers, such as LeBlanc [76], Pimentel et al. [77], Zink et al. [78],
Yamazaki et al. [79], and Weigel et al. [80]. In recent years, many breeders have emphasized
not only high production, but functional and reproductive traits as well [81–83].

Genetic tests, especially cytogenetic assays, are helpful tools for assessing genomic
stability and integrity. Many chromosome instabilities reduce fertility in cows [84–89],
and structural and numerical mutations are among the instabilities which cause repro-
ductive problems [89–92]. Scientists are increasingly assessing the genomic stability using
cytogenetic assays, which identify chromosome instability arising as a result of malfunc-
tioning cellular mechanisms, such as replication, transcription, damage repair, and check-
points [93–95]. These errors also adversely affect reproduction and can lead to economic
losses [96]. Cytogenetic assays are highly sensitive and useful tools for detecting damage
to genetic material [97]. The assays used in our study provided information on the level of
susceptibility of the DNA and chromosomes to harmful exogenous and endogenous factors
and on the functionality of replication, transcription, and control and repair mechanisms.
These biomarkers can be used successfully to prevent disease during its course and assess
animals’ genetic resistance [98].

Unfortunately, there are no reports on the identification of genomic instability in ani-
mals infected with BVD. Many researchers have linked the presence of this virus to repro-
ductive problems, such as disruptions in the development of egg cells, infertility, reduced
conception rates, reduced rates of successful artificial insemination, or abortion [99–102].
These researchers noted a loss of pregnancies in the early stage of gestation (10 to 90 days).
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Similar observations have been reported by Oguejiofor et al. [103] and Subekti et al. [104],
who found that the BVD virus kills egg cells, embryos, and fetuses. It is highly likely
that during meiosis in egg cells, as well as in the cell cycle of fetal somatic cells, excessive
damage of various types is generated in genetic material, which is a teratogenic effect of
the virus. The most severe complications in the systems and organs are observed in the
first days of pregnancy and result in early abortion. Many viruses use two strategies for
infecting the host, known as ‘hit and run’ and ‘hit and stay’. The BVD virus behaves this
way as well. This results in the impairment of innate and acquired immunity [72]. The
lethal effects of the virus manifest when the immune system is impaired. When the virus
penetrates the cells in a state of immunosuppression, it causes the formation of new virions,
which attack further cells, thereby impairing DNA synthesis and dysregulating the cell
mechanisms that ensure normal cell division, such as checkpoints and DNA repair mech-
anisms. This results in accumulated damage which becomes established in the M phase.
Immune deficiencies are linked to disorders in the repair of DNA strand breaks, leading to
disturbances in the integrity and stability [105]. According to Nehra et al. [106], the rapid
spread of viral diseases in cattle should be addressed by implementing various methods,
technologies, and procedures to prevent the expansion of viruses and minimize negative
health consequences. Hence, our study is a valuable contribution to the dissemination of
information on the detection of latent genomic instability in cows with BVD. Abnormalities
in the course of cell division and the absence of effective mechanisms minimizing errors
result in various anomalies in animals.

An increased frequency of chromosome instability has been observed in Bovidae
with hemimelia, amelia, or polymelia [107–112], in goats with hemimelia [113], and in
chickens with chondrodystrophy [114]. According to Sonoda et al. [115], Wójcik et al. [98],
and Dezfouli [116], the level of damage generated should not exceed 10 lesions per cell.
According to Wilson and Thompson [45], the frequency of damage in healthy animals
should be no more than three lesions per cell, and deviations from this standard are
indicative of pathological changes in the body [98]. These numbers are species-dependent,
as SCEs and FSs are conserved traits in the species. The observed frequency in the present
study in the cows with reproductive problems was 7.7 to 9.2 SCE/cell, with a predominant
frequency above 8.5, and 5.7 to 8.6 FSs, with a predominant frequency above 6.5 (average:
SCE 8.6, FS 6.9). These frequencies were twice as high as in the control group (average:
SCE 4.7, FS 3.1). Wójcik and Szostek [117] reported a frequency of 6.4 SCEs and 4.2 FSs per
cell in healthy HF cows. These frequencies were lower than those in the present study in
the cows from group 1, which may indicate that the BVD virus may have increased the
frequency of this type of damage. In the control group, consisting of healthy cows, we
observed a low frequency of instability in comparison to group 1.

Various researchers have obtained varying results, ranging from two to eight FSs/
cell [116,118–124]. These values may have been influenced by a variety of factors, such as
the animals’ breed or living environment. Similarly, the frequency of FSs in cattle reported
by different authors varied from 0.2 to 4.5/cell [97,107,125–128]. Low instability rates
were observed by Wójcik et al. [129] in pregnant recipient cows taking part in OPU/IVP
in vitro fertilization: 5.0 SCEs, 3.2 FSs, and 3.8% T DNA. That study was one of the few
reports of the use of the SCGE assay to identify spontaneous genomic instability in HF
cows. In the present study, the mean level of %T DNA was 22.7 in the cows from group
1, which was significantly higher than the level in the control group (3.5) and the results
presented by Wójcik et al. [129], which may indicate that the BVD virus negatively affected
the DNA integrity. Other researchers have used the SCGE assay to assess the degree of
genotoxicity and mutagenicity of the physical and chemical factors and observed a high
frequency of DNA damage [39,130–135]. This assay has also been used to assess the degree
of DNA fragmentation resulting from the clastogenic effect of the papilloma virus Bovine
papillomavirus [136], and it revealed an increased level of damage to genetic material. In an
investigation of apoptosis in the lymphocytes and neutrophilsin cattle with lymphosarcoma,
this assay revealed a decrease in apoptotic cells in sick animals compared to healthy ones,
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which may indicate the “immortality” of cancer cells [137]. The SCGE assay has also been
used to estimate the degree of DNA fragmentation in the lymphocytes of cows affected
with acute mastitis [138]. The researchers reported an accelerated rate of DNA damage in
sick animals in comparison with healthy cows. Thus, according to many researchers, the
comet assay is a very useful genetic tool for assessing DNA integrity. In the present study, it
proved to be the most sensitive biomarker, providing highly reliable results and indicating
the state of the animal’s health, which was influenced by the level of DNA damage.

The lack of any information pertaining to the cytogenetic assessment of the genome of
cows infected with the BVD virus and its pathogenic effect on reproduction prompted us to
undertake this research. The present study is a pilot study. It would be very interesting to
assess seronegative and seropositive animals with and without reproductive problems. The
results would enable more in-depth research into the pathogenicity of the BVD virus, which
is responsible for cosmopolitan diseases in cattle, with subclinical and clinical symptoms,
and has a significant impact on animal production and the economy. Although it will be
time consuming, the research will be continued in the future in order to provide more
complete information on the negative impact of BVD on reproduction in cows.

5. Conclusions

The identified genomic instability may be indicative of an animal’s health status and
its response to the BVD virus as a mutagenic factor, as we observed a lower frequency
of gene instability in healthy individuals. There is a need for further research enabling
a thorough assessment of the pathogenic effects of the BVD virus on the genomes of
animals. The cytogenetic assays used to assess the stability and integrity of the cows’ genetic
material showed great potential, especially the comet assay. Unfortunately, the changes
in the chromosomes not only caused changes in the gene expression, but also affected the
topology and dynamics of the genome. This is crucial for maintaining the animal’s health
and reproductive capacity, which are the factors that determine the productivity of cows, as
their resistance largely depends on a stabile genome. The assessment of genomic stability
and integrity would significantly supplement and broaden genome selection protocols
and could become one of the tools for practical selection. Given the negative impact of
chromosomal abnormalities on the reproductive capacity of animals, cytogenetic assays
could be used as a diagnostic tool in breeding and reproduction.
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62. Yeşilbağ, K.; Alpay, G.; Becher, P. Variability and global distribution of subgenotypes of Bovine Viral Diarrhea Virus. Viruses 2017,
9, 128. [CrossRef] [PubMed]

63. Heuer, C.; Healy, A.; Zerbini, C. Economic effects of exposure to bovine viral diarrhea virus on dairy herds in New Zealand.
J. Dairy Sci. 2007, 90, 5428–5438. [CrossRef]

64. Evans, C.A.; Pinior, B.; Larska, M.; Graham, D.; Schweizer, M.; Guidarini, C.; Decaro, N.; Ridpath, J.; Gates, M.C. Global
knowledge gaps in the prevention and control of bovine viral diarrhoea (BVD) virus. Transbound. Emerg. Dis. 2019, 66, 640–652.
[CrossRef] [PubMed]

65. Moennig, V.; Becher, P. Control of bovine viral diarrhea. Pathogens 2018, 7, 29. [CrossRef] [PubMed]
66. Iotti, B.; Valdano, E.; Savini, L.; Candeloro, L.; Giovannini, A.; Rosati, S.; Colizza, V.; Giacobini, M. Farm productive contexts and

the dynamics of bovine viral diarrhea (BVD) transmission. Prev. Vet. Med. 2019, 165, 23–33. [CrossRef] [PubMed]
67. Zimmer, G.M.; Wentink, G.H.; Bruschke, C.; Westenbrink, F.J.; Brinkhof, J.; de Goey, I. Failure of foetal protection after vaccination

against an experimental infection with bovine virus diarrhea virus. Vet. Microbiol. 2002, 8, 255–265. [CrossRef] [PubMed]
68. Grooms, D.L.; Bolin, S.R.; Coe, P.H.; Borges, R.J.; Coutu, C.E. Fetal protection against continual exposure to bovine viral diarrhea

virus following administration of a vaccine containing an inactivated bovine viral diarrhea virus fraction to cattle. Am. J. Vet. Res.
2007, 68, 1417–1422. [CrossRef]

69. Graham, D.A.; Clegg, T.A.; O’Sullivan, P.; More, S.; O’Sullivan, P.; More, S.J. Influence of the retention of PI calves identified in
2012 during the voluntary phase of the Irish national bovine viral diarrhoea virus (BVDV) eradication programme on herd-level
outcomes in 2013. Prev. Vet. Med. 2015, 120, 298–305. [CrossRef]

70. Quinet, C.; Czaplicki, G.; Dion, E.; Pozzo, F.D.; Kurz, A.; Saegerman, C.; Dal Pozzo, F.; Kurz, A.; Saegerman, C. First results in
the use of bovine ear notch tag for bovine viral diarrhoea virus detection and genetic analysis. PLoS ONE 2016, 11, e0164451.
[CrossRef]

71. Byrne, A.W. Spatial and risk factor analysis of bovine viral diarrhoea (BVD) virus after the first-year compulsory phase of BVD
eradication programme in Northern Ireland. Prev. Vet. Med. 2018, 157, 34–43. [CrossRef]

72. Schweizer, M.; Stalder, H.; Haslebacher, A.; Grisiger, M.; Schwermer, H.; Di Labio, E. Eradication of bovine viral diarrhoea (BVD)
in cattle in Switzerland: Lessons taught by the complex biology of the virus. Front. Vet. Sci. 2021, 8, 702730. [CrossRef] [PubMed]
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75. Kołacz, R.; Jaśkowski, J.M.; Ciorga, M. Effects of health disorders, genetic modifications and new technologies on the welfare of
dairy cattle. Vet. Med. Sci. Pract. 2020, 76, 675–683. [CrossRef]

76. LeBlanc, S. Monitoring Metabolic Health of Dairy Cattle in the Transition Period. J. Reprod. Develop. 2010, 56, 29–35. [CrossRef]
[PubMed]

77. Pimentel, E.C.; Bauersachs, S.; Tietze, M.; Simianer, H.; Tetens, J.; Thaller, G.; Reinhardt, F.; Wolf, E.; Konig, S. Exploration of
relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived
by expression profiling. Anim. Genet. 2011, 42, 251–262. [CrossRef]

78. Zink, V.; Lassen, J.; Stipkova, M. Genetic parameters for female fertility and milk production traits in first parity Czech Holstein
cows. Czech J. Anim. Sci. 2012, 57, 108–114. [CrossRef]

79. Yamazaki, T.; Hagiya, K.; Takeda, H.; Yamaguchi, S.; Osawa, T.; Nagamine, Y. Genetic correlations among female fertility, 305-day
milk yield and persistency during the first three lactations of Japanese Holstein cows. Livest. Sci. 2014, 168, 26–31. [CrossRef]

80. Weigel, K.A.; VanRaden, P.; Norman, H.; Grosu, H.A. 100-Year Review: Methods and impact of genetic selection in dairy
cattle-from daughter-dam comparisons to deep learning algorithms. J. Dairy Sci. 2017, 100, 10234–10250. [CrossRef]

81. Cole, J.; VanRaden, P. Symposium review: Possibilities in an age of genomics: The future of selection indices. J. Dairy Sci. 2018,
101, 3686–3701. [CrossRef] [PubMed]

https://doi.org/10.1016/j.dnarep.2006.05.010
https://www.ncbi.nlm.nih.gov/pubmed/16807141
https://doi.org/10.1016/j.canlet.2005.08.032
https://www.ncbi.nlm.nih.gov/pubmed/16229941
https://doi.org/10.4161/cc.10.23.18409
https://doi.org/10.1038/emboj.2013.20
https://doi.org/10.1186/s13578-020-00392-5
https://doi.org/10.1080/09553009214552161
https://doi.org/10.1099/jgv.0.000873
https://doi.org/10.3390/v9060128
https://www.ncbi.nlm.nih.gov/pubmed/28587150
https://doi.org/10.3168/jds.2007-0258
https://doi.org/10.1111/tbed.13068
https://www.ncbi.nlm.nih.gov/pubmed/30415496
https://doi.org/10.3390/pathogens7010029
https://www.ncbi.nlm.nih.gov/pubmed/29518049
https://doi.org/10.1016/j.prevetmed.2019.02.001
https://www.ncbi.nlm.nih.gov/pubmed/30851924
https://doi.org/10.1016/S0378-1135(02)00203-1
https://www.ncbi.nlm.nih.gov/pubmed/12383635
https://doi.org/10.2460/ajvr.68.12.1417
https://doi.org/10.1016/j.prevetmed.2015.04.019
https://doi.org/10.1371/journal.pone.0164451
https://doi.org/10.1016/j.prevetmed.2018.05.011
https://doi.org/10.3389/fvets.2021.702730
https://www.ncbi.nlm.nih.gov/pubmed/34557540
https://doi.org/10.32014/2019.2518-1483.33
https://doi.org/10.21521/mw.6468
https://doi.org/10.1262/jrd.1056S29
https://www.ncbi.nlm.nih.gov/pubmed/20629214
https://doi.org/10.1111/j.1365-2052.2010.02148.x
https://doi.org/10.17221/5562-CJAS
https://doi.org/10.1016/j.livsci.2014.08.005
https://doi.org/10.3168/jds.2017-12954
https://doi.org/10.3168/jds.2017-13335
https://www.ncbi.nlm.nih.gov/pubmed/29103719


Animals 2023, 13, 3800 13 of 15

82. Lucy, M. Symposium review: Selection for fertility in the modern dairy cow—Current status and future direction for genetic
selection. J. Dairy Sci. 2019, 102, 3706–3721. [CrossRef] [PubMed]

83. Consentini, C.C.E.; Wiltbank, M.C.; Sartori, R.R. Factors that optimize reproductive efficiency in dairy herds with an emphasis on
timed artificial insemination programs. Animals 2021, 11, 301. [CrossRef]

84. Danielak-Czech, B.; Słota, E. Unstable chromosomal regions in subfertile animals. Ann. Anim. Sci. 2002, 2, 4–14.
85. Nino-Soto, M.I.; King, W.A. Genetic factors that affect normal reproduction and fertility in domestic cattle. In Proceedings of the

23rd WBC Congress, Québec City, QC, Canada, 16 July 2004.
86. Danielak-Czech, B.; Babicz, M.; Rejduch, B.; Kozubska-Sobocińska, A. Cytogenetic and molecular analysis of chromosome
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