Combination with Annual Deworming Treatments Does Not Enhance the Effects of PCV2 Vaccination on the Development of TB in Wild Boar Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sampling Procedure
2.4. TB Diagnosis
2.5. PCV2 Assessment
2.6. Parasitological Assessment
2.7. Statistical Analysis
2.7.1. Effect of PCV2 Vaccination and Deworming on M. bovis Infection and TB Severity
2.7.2. Assessing the Effect of Vaccination on PCV2 Viral Load
2.7.3. Effect of Deworming on Parasitic Load
3. Results
3.1. Captures and Hunting Events
3.2. Diagnosis and Severity of TB
3.3. PCV2 Diagnosis
3.4. Parasitological Assessment
3.5. Effect of PCV2 Vaccination and Deworming on TB Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Campos, S.; Smith, N.H.; Boniotti, M.B.; Aranaz, A. Overview and Phylogeny of Mycobacterium Tuberculosis Complex Organisms: Implications for Diagnostics and Legislation of Bovine Tuberculosis. Res. Vet. Sci. 2014, 97, S5–S19. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Agricultura, Pesca y Alimentación. Informe Final Técnico-Inanciero Programa Nacional de la Tuberculosis Bovina Año 2021; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2021. [Google Scholar]
- Ciaravino, G.; Laranjo-González, M.; Casal, J.; Sáez-Llorente, J.L.; Allepuz, A. Most Likely Causes of Infection and Risk Factors for Tuberculosis in Spanish Cattle Herds. Vet. Rec. 2021, 189, e140. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.C.; Ramos, B.; Pereira, A.C.; Cunha, M.V. The Hard Numbers of Tuberculosis Epidemiology in Wildlife: A Meta-Regression and Systematic Review. Transbound. Emerg. Dis. 2021, 68, 3257–3276. [Google Scholar] [CrossRef] [PubMed]
- Gortazar, C.; Diez-Delgado, I.; Barasona, J.A.; Vicente, J.; De La Fuente, J.; Boadella, M. The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Front. Vet. Sci. 2015, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- García-Jiménez, W.L.; Fernández-Llario, P.; Benítez-Medina, J.M.; Cerrato, R.; Cuesta, J.; García-Sánchez, A.; Gonçalves, P.; Martínez, R.; Risco, D.; Salguero, F.J.; et al. Reducing Eurasian Wild Boar (Sus scrofa) Population Density as a Measure for Bovine Tuberculosis Control: Effects in Wild Boar and a Sympatric Fallow Deer (Dama dama) Population in Central Spain. Prev. Vet. Med. 2013, 110, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Díez-Delgado, I.; Sevilla, I.A.; Garrido, J.M.; Romero, B.; Geijo, M.V.; Dominguez, L.; Juste, R.A.; Aranaz, A.; de la Fuente, J.; Gortazar, C. Tuberculosis Vaccination Sequence Effect on Protection in Wild Boar. Comp. Immunol. Microbiol. Infect. Dis. 2019, 66, 101329. [Google Scholar] [CrossRef] [PubMed]
- Buddle, B.M.; Vordermeier, H.M.; Chambers, M.A.; de Klerk-Lorist, L.-M. Efficacy and Safety of BCG Vaccine for Control of Tuberculosis in Domestic Livestock and Wildlife. Front. Vet. Sci. 2018, 5, 259. [Google Scholar] [CrossRef]
- Risco, D.; Martínez, R.; Bravo, M.; Fernández Llario, P.; Cerrato, R.; Garcia-Jiménez, W.L.; Gonçalves, P.; García, A.; Barquero-Pérez, Ó.; Quesada, A.; et al. Nasal Shedding of Mycobacterium tuberculosis in Wild Boar Is Related to Generalised Tuberculosis and Concomitant Infections. Vet. Rec. 2019, 185, 629. [Google Scholar] [CrossRef]
- Risco, D.; Bravo, M.; Martínez, R.; Torres, A.; Gonçalves, P.; Cuesta, J.; García-Jiménez, W.; Cerrato, R.; Iglesias, R.; Galapero, J.; et al. Vaccination Against Porcine Circovirus-2 Reduces Severity of Tuberculosis in Wild Boar. EcoHealth 2018, 15, 388–395. [Google Scholar] [CrossRef]
- Risco, D.; Serrano, E.; Fernández-Llario, P.; Cuesta, J.M.; Gonçalves, P.; García-Jiménez, W.L.; Martínez, R.; Cerrato, R.; Velarde, R.; Gómez, L.; et al. Severity of Bovine Tuberculosis Is Associated with Co-Infection with Common Pathogens in Wild Boar. PLoS ONE 2014, 9, e110123. [Google Scholar] [CrossRef]
- Babu, S.; Nutman, T.B. Helminth-Tuberculosis Co-Infection: An Immunologic Perspective. Trends Immunol. 2016, 37, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Lello, J.; Gassó, D.; Gonçalves, P.; Risco, D.; Garcia-Jimenez, W.; Segalés, J.; Garrido Amaro, C.; Mentaberre, G.; Torres-Blas, I.; Velarde, R.; et al. Annual Short-Burst Mass Anthelmintic Administration Reduces Tuberculosis Severity but Not Prevalence in a Wildlife Reservoir. Front. Ecol. Evol. 2023, 11, 1186295. [Google Scholar] [CrossRef]
- Wulandari, L.; Amin, M.; Soedarto; Soegiarto, G.; Ishiwata, K. Sequential Co-Infection of Heligmosomoides polygyrus and Mycobacterium tuberculosis Determine Lung Macrophage Polarization and Histopathological Changes. Indian J. Tuberc. 2021, 68, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, C.; Gortázar, C.; Canales, M.; Vicente, J.; Lasagna, A.; Gamarra, J.A.; Carrasco-García, R.; de la Fuente, J. Evaluation of Baits for Oral Vaccination of European Wild Boar Piglets. Res. Vet. Sci. 2009, 86, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Boitani, L.; Mattei, L. Aging Wild Boar (Sus scrofa) by Tooth Eruption. In Ongules/Ungulates 91; SFEPM-IRGM: Paris-Tolouse, France, 1992; pp. 419–421. [Google Scholar]
- Menin, Á.; Fleith, R.; Reck, C.; Marlow, M.; Fernandes, P.; Pilati, C.; Báfica, A. Asymptomatic Cattle Naturally Infected with Mycobacterium bovis Present Exacerbated Tissue Pathology and Bacterial Dissemination. PLoS ONE 2013, 8, e53884. [Google Scholar] [CrossRef] [PubMed]
- Wangoo, A.; Johnson, L.; Gough, J.; Ackbar, R.; Inglut, S.; Hicks, D.; Spencer, Y.; Hewinson, G.; Vordermeier, M. Advanced Granulomatous Lesions in Mycobacterium bovis-Infected Cattle Are Associated with Increased Expression of Type I Procollagen, Gammadelta (WC1+) T Cells and CD 68+ Cells. J. Comp. Pathol. 2005, 133, 223–234. [Google Scholar] [CrossRef] [PubMed]
- García-Jiménez, W.L.; Salguero, F.J.; Fernández-Llario, P.; Martínez, R.; Risco, D.; Gough, J.; Ortiz-Peláez, A.; Hermoso-de-Mendoza, J.; Gómez, L. Immunopathology of Granulomas Produced by Mycobacterium bovis in Naturally Infected Wild Boar. Vet. Immunol. Immunopathol. 2013, 156, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Brunborg, I.M.; Moldal, T.; Jonassen, C.M. Quantitation of Porcine Circovirus Type 2 Isolated from Serum/Plasma and Tissue Samples of Healthy Pigs and Pigs with Postweaning Multisystemic Wasting Syndrome Using a TaqMan-Based Real-Time PCR. J. Virol. Methods 2004, 122, 171–178. [Google Scholar] [CrossRef]
- Toussaint, J.F.; Sailleau, C.; Breard, E.; Zientara, S.; De Clercq, K. Bluetongue Virus Detection by Two Real-Time RT-qPCRs Targeting Two Different Genomic Segments. J. Virol. Methods 2007, 140, 115–123. [Google Scholar] [CrossRef]
- Rosell, C.; Segalés, J.; Plana-Durán, J.; Balasch, M.; Rodríguez-Arrioja, G.M.; Kennedy, S.; Allan, G.M.; McNeilly, F.; Latimer, K.S.; Domingo, M. Pathological, Immunohistochemical, and in-Situ Hybridization Studies of Natural Cases of Postweaning Multisystemic Wasting Syndrome (PMWS) in Pigs. J. Comp. Pathol. 1999, 120, 59–78. [Google Scholar] [CrossRef]
- Chianini, F.; Majó, N.; Segalés, J.; Domínguez, J.; Domingo, M. Immunohistochemical Characterisation of PCV2 Associate Lesions in Lymphoid and Non-Lymphoid Tissues of Pigs with Natural Postweaning Multisystemic Wasting Syndrome (PMWS). Vet. Immunol. Immunopathol. 2003, 94, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-de-Mera, I.G.; Vicente, J.; Gortazar, C.; Höfle, U.; Fierro, Y. Efficacy of an In-Feed Preparation of Ivermectin against Helminths in the European Wild Boar. Parasitol. Res. 2004, 92, 133–136. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- López-Olvera, J.R.; Höfle, U.; Vicente, J.; Fernández-de-Mera, I.G.; Gortázar, C. Effects of Parasitic Helminths and Ivermectin Treatment on Clinical Parameters in the European Wild Boar (Sus scrofa). Parasitol. Res. 2006, 98, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Aira, N.; Andersson, A.-M.; Singh, S.K.; McKay, D.M.; Blomgran, R. Species Dependent Impact of Helminth-Derived Antigens on Human Macrophages Infected with Mycobacterium tuberculosis: Direct Effect on the Innate Anti-Mycobacterial Response. PLoS Negl. Trop. Dis. 2017, 11, e0005390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, M.; Fan, W.; Sun, S.; Fan, X. The Impact of Mycobacterium tuberculosis Complex in the Environment on One Health Approach. Front. Public Health 2022, 10, 994745. [Google Scholar] [CrossRef] [PubMed]
- Martinez, L.; Verma, R.; Croda, J.; Horsburgh, C.R.J.; Walter, K.S.; Degner, N.; Middelkoop, K.; Koch, A.; Hermans, S.; Warner, D.F.; et al. Detection, Survival and Infectious Potential of Mycobacterium tuberculosis in the Environment: A Review of the Evidence and Epidemiological Implications. Eur. Respir. J. 2019, 53, 1802302. [Google Scholar] [CrossRef]
- Ferreras-Colino, E.; Moreno, I.; Arnal, M.C.; Balseiro, A.; Acevedo, P.; Domínguez, M.; Fernández de Luco, D.; Gortázar, C.; Risalde, M.A. Is Serology a Realistic Approach for Monitoring Red Deer Tuberculosis in the Field? Prev. Vet. Med. 2022, 202, 105612. [Google Scholar] [CrossRef]
- Acevedo, P.; Prieto, M.; Quirós, P.; Merediz, I.; de Juan, L.; Infantes-Lorenzo, J.A.; Triguero-Ocaña, R.; Balseiro, A. Tuberculosis Epidemiology and Badger (Meles meles) Spatial Ecology in a Hot-Spot Area in Atlantic Spain. Pathogens 2019, 8, 292. [Google Scholar] [CrossRef]
- Risco, D.; Salguero, F.J.; Cerrato, R.; Gutierrez-Merino, J.; Lanham-New, S.; Barquero-Pérez, O.; Hermoso de Mendoza, J.; Fernández-Llario, P. Association between Vitamin D Supplementation and Severity of Tuberculosis in Wild Boar and Red Deer. Res. Vet. Sci. 2016, 108, 116–119. [Google Scholar] [CrossRef]
- Bravo, M.; Combes, T.; Martinez, F.O.; Cerrato, R.; Rey, J.; Garcia-Jimenez, W.; Fernandez-Llario, P.; Risco, D.; Gutierrez-Merino, J. Lactobacilli Isolated From Wild Boar (Sus scrofa) Antagonize Mycobacterium bovis Bacille Calmette-Guerin (BCG) in a Species-Dependent Manner. Front. Microbiol. 2019, 10, 1663. [Google Scholar] [CrossRef]
Location | Area (Ha) | Wild Boar Abundance | % of TB Lesions in Wild Boar | Ungulate Sympatric Species | |
---|---|---|---|---|---|
Estate A | 40.009, −5.164 | 1021 | 49 | 30.43% | Red deer |
Estate B | 40.083, −5.232 | 2100 | 37 | 40% | Red deer |
Estate C | 40.125, −5.194 | 510 | 15 | 40% | Red deer, Roe deer |
Estate D | 39.632, −7.178 | 1600 | 35 | 55% | Red deer, Fallow deer |
Estate E | 39.461, −5.619 | 800 | 50 | 70% | Red deer, Roe deer |
MTBC Infection | TB Lesion Pattern | Mean TB Pathological Score | Mean Microscopic Stage | |||
---|---|---|---|---|---|---|
Negative | Positive | Localised | Generalised | |||
Group C | 19 | 25 | 13 | 12 | 2.45 | 2.66 |
Group D | 36 | 19 | 10 | 9 | 1.95 | 2.78 |
Group V | 8 | 7 | 7 | 0 | 1 | 3.33 |
Group VD | 16 | 19 | 19 | 0 | 1 | 2.21 |
Biological Models | df | AIC | ΔAICc |
---|---|---|---|
Response variable: MTBC infection | |||
Age | 2 | 191.1941 | |
Age + PCV vaccination | 3 | 191.6725 | 0.4784 |
Age + Deworming | 3 | 192.8113 | 1.6172 |
Age + PCV vaccination + Deworming | 4 | 192.8737 | 1.6796 |
Age + PCV vaccination * Deworming | 5 | 194.3952 | 3.2011 |
PCV vaccination + Deworming | 3 | 202.5208 | 11.3267 |
Deworming | 2 | 203.0656 | 11.8715 |
Mo | 1 | 204.1523 | 12.9582 |
PCV vaccination | 2 | 204.6413 | 13.4472 |
Response variable: TB pattern | |||
PCV vaccination | 2 | 64.90601 | |
Age + PCV vaccination | 3 | 66.89164 | 1.98563 |
PCV vaccination + Deworming | 3 | 66.90429 | 1.99828 |
Age + PCV vaccination + Deworming | 4 | 68.88932 | 3.98331 |
Age + PCV vaccination * Deworming | 5 | 70.88932 | 5.98331 |
Mo | 1 | 87.521 | 22.61499 |
Deworming | 2 | 87.94339 | 23.03738 |
Age | 2 | 89.47408 | 24.56807 |
Age + Deworming | 3 | 89.92983 | 25.02382 |
Response variable: TB pathological score | |||
PCV vaccination | 2 | 229.0275 | |
Age + PCV vaccination | 3 | 229.9292 | 0.9017 |
PCV vaccination + Deworming | 3 | 230.8695 | 1.842 |
Age + PCV vaccination + Deworming | 4 | 231.7108 | 2.6833 |
Age + PCV vaccination * Deworming | 5 | 233.645 | 4.6175 |
Deworming | 2 | 242.0272 | 12.9997 |
Mo | 1 | 242.0364 | 13.0089 |
Age + Deworming | 3 | 243.4001 | 14.3726 |
Age | 2 | 243.5965 | 14.569 |
TB lesions microscopic developmental | |||
Age | 3 | 101.9311 | |
Age + Deworming | 4 | 103.4529 | 1.5218 |
Age + PCV vaccination * Deworming | 6 | 103.7277 | 1.7966 |
Age + PCV vaccination | 4 | 103.8936 | 1.9625 |
Age + PCV vaccination + Deworming | 5 | 105.4225 | 3.4914 |
Mo | 2 | 169.0423 | 67.1112 |
Deworming | 3 | 169.8573 | 67.9262 |
PCV vaccination | 3 | 170.5336 | 68.6025 |
PCV vaccination + Deworming | 4 | 171.5226 | 69.5915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galapero, J.; Ramos, A.; Benítez-Medina, J.M.; Martínez, R.; García, A.; Hermoso de Mendoza, J.; Holgado-Martín, R.; Risco, D.; Gómez, L. Combination with Annual Deworming Treatments Does Not Enhance the Effects of PCV2 Vaccination on the Development of TB in Wild Boar Populations. Animals 2023, 13, 3833. https://doi.org/10.3390/ani13243833
Galapero J, Ramos A, Benítez-Medina JM, Martínez R, García A, Hermoso de Mendoza J, Holgado-Martín R, Risco D, Gómez L. Combination with Annual Deworming Treatments Does Not Enhance the Effects of PCV2 Vaccination on the Development of TB in Wild Boar Populations. Animals. 2023; 13(24):3833. https://doi.org/10.3390/ani13243833
Chicago/Turabian StyleGalapero, Javier, Alfonso Ramos, José Manuel Benítez-Medina, Remigio Martínez, Alfredo García, Javier Hermoso de Mendoza, Rocío Holgado-Martín, David Risco, and Luis Gómez. 2023. "Combination with Annual Deworming Treatments Does Not Enhance the Effects of PCV2 Vaccination on the Development of TB in Wild Boar Populations" Animals 13, no. 24: 3833. https://doi.org/10.3390/ani13243833
APA StyleGalapero, J., Ramos, A., Benítez-Medina, J. M., Martínez, R., García, A., Hermoso de Mendoza, J., Holgado-Martín, R., Risco, D., & Gómez, L. (2023). Combination with Annual Deworming Treatments Does Not Enhance the Effects of PCV2 Vaccination on the Development of TB in Wild Boar Populations. Animals, 13(24), 3833. https://doi.org/10.3390/ani13243833