Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon (Oncorhynchus masou)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Acquisition and Acclimation
2.2. Experimental Design and Sampling Procedure
2.3. Calculations
2.4. Determination of the Plasma Cortisol and Glucose Levels
2.5. Immunoglobulin M and Lysozyme Activity
2.6. Sodium/Potassium-Activated Adenosine Triphosphatase Activity
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Feed Conversion Ratio and Daily Individual Feed Intake
3.3. Red Blood Cell Indices
3.4. Plasma Cortisol and Glucose
3.5. Gill Na+/K+- Adenosine Triphosphatase (ATPase) Activity
3.6. Plasma Immunoglobulin M and Lysozyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moyle, P.B.; Cech, J.J. Fishes: An Introduction to Ichthyology, 5th ed.; Prentice-Hall: Hoboken, NJ, USA, 2014; pp. 83–87. [Google Scholar]
- Brett, J.R.; Shelbourn, J.E.; Shoop, C.T. Growth Rate and Body Composition of Fingerling Sockeye Salmon, Oncorhynchus nerka, in relation to Temperature and Ration Size. J. Fish. Res. Board Can. 1969, 26, 2363–2394. [Google Scholar] [CrossRef]
- Marine, K.R.; Cech, J.J., Jr. Effects of highwater temperature on growth, smoltification, and predator avoidance in juvenile Sacramento River Chinook salmon. N. Am. J. Fish. Manag. 2004, 24, 198–210. [Google Scholar] [CrossRef]
- Steiner, K.; Laroche, O.; Walker, S.P.; Symonds, J.E. Effects of water temperature on the gut microbiome and physiology of Chinook salmon (Oncorhynchus tshawytscha) reared in a freshwater recirculating system. Aquaculture 2022, 560, 738529. [Google Scholar] [CrossRef]
- Koskela, J.; Pirhonen, J.; Jobling, M. Feed intake, growth rate and body composition of juvenile Baltic salmon exposed to different constant temperatures. Aquac. Int. 1997, 5, 351–360. [Google Scholar] [CrossRef]
- Hvas, M.; Folkedal, O.; Imsland, A.; Oppedal, F. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar. J. Exp. Biol. 2017, 220, 2757–2764. [Google Scholar]
- Handeland, S.O.; Imsland, A.K.; Stefansson, S.O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 2008, 283, 36–42. [Google Scholar] [CrossRef]
- Seibel, H.; Baßmann, B.; Rebl, A. Bloog will tell: What hematological analyses can reveal about fish welfare. Front. Vet. Sci. 2021, 8, 616955. [Google Scholar] [CrossRef]
- Ahmed, I.; Reshi, Q.M.; Fazio, F. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: A review. Aquac. Int. 2020, 28, 869–899. [Google Scholar] [CrossRef]
- Houston, A.H.; Cyr, D. Thermoacclimatory variation in the haemoglobin systems of goldfish (Carassius auratus) and rainbow trout (Salmo gairdneri). J. Exp. Biol. 1974, 61, 455–461. [Google Scholar] [CrossRef]
- Martinez, F.J.; Garcia-Riera, M.P.; Canteras, M.; De Costa, J.; Zamora, S. Blood parameters in rainbow trout (Oncorhynchus mykiss): Simultaneous influence of various factors. Comp. Biochem. Physiol. 1994, 107, 95–100. [Google Scholar] [CrossRef]
- Lochmiller, R.L.; Weichman, J.D.; Zale, A.V. Hematological assessment of temperature and oxygen stress in a reservoir population of striped bass (Morone saxatilis). Comp. Biochem. Physiol. 1989, 93, 535–541. [Google Scholar] [CrossRef]
- Langston, A.L.R.; Stefansson, R.; Fitzgerald, R.; Wergeland, H.; Mulcahy, M. The effect of temperature on non-specific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus L.). Fish Shellfish. Immunol. 2002, 12, 61–76. [Google Scholar] [CrossRef]
- Sambraus, F.; Olsen, R.E.; Remen, M.; Hansen, T.J.; Torgersen, T.; Fjelldal, P.G. Water temperature and oxygen: The effect of triploidy on performance and metabolism in farmed Atlantic salmon (Salmo salar L.) post-smolts. Aquaculture 2017, 473, 1–12. [Google Scholar] [CrossRef]
- Ashaf-Ud-Doulah, M.; Mamun, A.A.; Rahman, M.L.; Islam, M.M.; Jannat, R.; Reza Hossai, M.A.; Shahjahan, M. High temperature acclimation alters upper thermal limits and growth performance of Indian major carp, rohu, Labeo rohita (Hamilton, 1822). J. Therm. Biol. 2020, 93, 102738. [Google Scholar] [CrossRef]
- Chadwick, J.G.; McCormick, S.D. Upper thermal limits of growth in brook trout and their relationship to stress physiology. J. Exp. Biol. 2017, 220, 3976–3987. [Google Scholar] [CrossRef]
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol. 2021, 98, 1496–1508. [Google Scholar] [CrossRef]
- Sun, L.-T.; Chen, G.-R.; Chang, C.-F. The physiological responses of tilapia exposed to low temperatures. J. Therm. Biol. 1992, 17, 149–153. [Google Scholar] [CrossRef]
- Chadwick, J.G.; Nislow, K.H.; McCormick, S.D. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish. Conserv. Physiol. 2015, 3, cov017. [Google Scholar] [CrossRef]
- Basu, N.; Nakano, T.; Grau, E.G.; Iwama, G.K. The effects of cortisol on heat shock protein levels in two fish species. Gen. Comp. Endocrinol. 2001, 124, 97–105. [Google Scholar] [CrossRef]
- Steinhausen, M.F.; Sandblom, E.; Eliason, E.; Verhille, C.; Farrell, A.P. The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka). J. Exp. Biol. 2008, 211, 3915–3926. [Google Scholar] [CrossRef]
- Madaro, A.; Folkedal, O.; Maiolo, S.; Alvanopoulou, M.; Olsen, R.E. Effects of acclimation temperature on cortisol and oxygen consumption in Atlantic salmon (Salmo salar) post-smolt exposed to acute stress. Aquaculture 2018, 497, 331–335. [Google Scholar] [CrossRef]
- Lee, J.-W.; Baek, H.J. Determination of optimal temperature(s) in juvenile red-spotted grouper Epinephelus akaara (Temminck & Schegel) based on growth performance and stress responses. Aquac. Res. 2018, 49, 3228–3233. [Google Scholar]
- Tromp, J.J.; Jones, P.L.; Brown, M.S.; Donald, J.A.; Biro, P.A.; Alfonso, L.O.B. Chronic exposure to increased water temperature reveals few impacts on stress physiology and growth responses in juvenile Atlantic salmon. Aquaculture 2018, 495, 196–204. [Google Scholar] [CrossRef]
- Metz, J.R.; van den Burg, E.H.; Wendelaar Bonga, S.E.; Flik, G. Regulation of branchial Na+/K+-ATPase in common carp Cyprinus carpio L. acclimated to different temperatures. J. Exp. Biol. 2003, 206, 2273–2280. [Google Scholar] [CrossRef]
- Takei, Y.; McCormick, S.D. Hormonal control of fish euryhalinity. Fish Physiol. 2012, 32, 69–123. [Google Scholar]
- McCormick, S.D.; Bern, H.A. In vitro stimulation of Na+-K+-ATPase activity and ouabain binding by cortisol in coho salmon gill. Am. J. Physiol. 1989, 256, R707–R715. [Google Scholar] [CrossRef]
- Zaugg, W.S.; Wagner, H.H. Gill ATPase activity related to parr-smolt transformation and migration in steelhead trout (Salmo gairdneri): Influence of photoperiod and temperature. Comp. Biochem. Physiol. 1973, 45B, 955–965. [Google Scholar] [CrossRef]
- Vargas-Chacoff, L.; Regish, A.M.; Weinstock, A.; McCormick, S.D. Effects of elevated temperature on osmoregulation and stress responses in Atlantic salmon Salmo salar smolts in fresh water and seawater. J. Fish Biol. 2018, 93, 550–559. [Google Scholar] [CrossRef]
- Jobling, M. Temperature and Growth: Modulation of Growth Rate via Temperature Change. In Global Warming: Implication for Freshwater and Marine Fish; Wood, C.M., McDonald, D.G., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 225–253. [Google Scholar]
- Bly, J.E.; Clem, L.W. Temperature and teleost immune functions. Fish Shellfish Immunol. 1992, 2, 159–171. [Google Scholar] [CrossRef]
- Magnadóttir, B.; Jónsdóttir, H.; Helgason, S.; Björnsson, B.; Jørgensen, T.O.; Pilström, L. Humoral immune parameters in Atlantic cod (Gadus morhua L.) I. The effects of environmental temperature. Comp. Biochem. 1999, 122B, 173–180. [Google Scholar] [CrossRef]
- Alcorn, S.W.; Murray, A.L.; Pascho, R.J. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka). Fish Shellfish. Immunol. 2002, 12, 303–334. [Google Scholar] [CrossRef]
- Perez-Casanova, J.C.; Rise, M.L.; Dixon, B.; Afonso, L.O.B.; Hall, J.R.; Johnson, S.C.; Gamperl, A.K. The immune and stress responses of Atlantic cod to long-term increases in water temperature. Fish Shellfish. Immunol. 2008, 24, 600–609. [Google Scholar] [CrossRef]
- Masuda, H.; Amaoka, K.; Araga, C.; Uyeno, T.; Yoshino, T. The Fishes of the Japanese Archipelago; Tokai University Press: Tokyo, Japan, 1984; Volume 1. [Google Scholar]
- Yamamoto, S.; Morita, K.; Kikko, T.; Kawamura, K.; Sato, S.; Gwo, J.-C. Phylogeography of a salmonid fish, masu salmon Oncorhynchus masou subspecies-complex, with disjunct distributions across the temperate northern Pacific. Freshw. Biol. 2020, 65, 698–715. [Google Scholar] [CrossRef]
- Seong, K.B.; Kim, D.H. Effects of feeding frequency on the optimum growth of cherry salmon, Oncorhynchus masou. J. Kor. Fish. 2008, 41, 343–345. [Google Scholar]
- Seong, K.B.; Kim, K.S. Seed production from pond cultured cherry salmon, Oncorhynchus masou (Brevoort). J. Aquac. 2007, 20, 14–18. [Google Scholar]
- Suzuki, S.; Takahashi, E.; Nilsen, T.O.; Kaneko, N.; Urabe, H.; Ugachi, Y.; Yamaha, E.; Shimizu, M. Physiological changes in off-season smolt induced by photoperiod manipulation in masu salmon (Oncoryhynchus masou). Aquaculture 2020, 526, 735353. [Google Scholar] [CrossRef]
- Mayama, H. Studies on the freshwater life and propagation technology of Oncorhynchus masou (Brevoort). Sci. Rep. Hokkaido Salmon Hatch. 1992, 46, 1–156. [Google Scholar]
- Takami, T.; Sato, H. Influence of high-water temperature on feeding responses and thermal death of juvenile masou salmon under aquarium settings. Sci. Rep. Hokkaido Fish Hatch. 1998, 52, 79–82. [Google Scholar]
- Sato, H.; Mitsuhiro, N.; Takami, T.; Yanai, S. Shade effect of riparian forest in controlling summer stream temperatures: Impact on growth of masu salmon juveniles (Oncorhynchus masou Brevoort). J. Jpn. For. Soc. 2001, 83, 22–29. [Google Scholar]
- Morita, K.; Nagasawa, T. Latitudinal variation in the growth and maturation of masu salmon (Oncorhynchus masou) parr. Can. J. Fish. Aquat. Sci. 2010, 67, 955–965. [Google Scholar] [CrossRef]
- Lee, J.-W.; Min, B.H.; Lee, B.; Kim, K.; Yoon, M. Effects of stocking density on stress, hematological responses, and growth of black rockfish Sebastes schlegelii. J. Aquat. Anim. Health 2022, 34, 82–91. [Google Scholar] [CrossRef]
- Lee, J.; Hong, S.; Sun, J.-H.; Moon, J.-K.; Boo, K.-H.; Lee, S.-M.; Lee, J.-W. Toxicity of dietary selenomethionine in juvenile steelhead trout, Oncorhynchus mykiss: Tissue burden, growth performance, body composition, hematological parameters, and liver histopathology. Chemosphere 2019, 226, 755–765. [Google Scholar] [CrossRef]
- McCormick, S.D. Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity. J. Fish. Aquat. Sci. 1993, 50, 656–658. [Google Scholar] [CrossRef]
- Hevrøy, E.M.; Waagbø, R.; Torstensen, B.E.; Takle, H.; Stubhaug, I.; Jørgensen, S.M.; Torgersen, T.; Tvenning, L.; Susort, S.; Breck, O.; et al. Ghrelin is involved in voluntary anorexia in Atlantic salmon raised at elevated sea temperatures. Gen. Comp. Endocrinol. 2012, 175, 118–134. [Google Scholar] [CrossRef]
- Kullgren, A.; Jutfelt, F.; Fontanillas, R.; Sundell, K.; Samuelsson, L.; Wiklander, K.; Kling, P.; Koppe, W.; Larsson, D.G.; Björnsson, B.T.; et al. The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. A 2013, 164, 44–53. [Google Scholar] [CrossRef]
- Somero, G.N.; Hochachka, P.W. Biochemical adaptation to the environment. Am. Zool. 1971, 11, 159–167. [Google Scholar] [CrossRef]
- Elliott, J.M. The effects of temperature and ration size on the growth and energetics of salmonids in captivity. Comp. Biochem. Physiol. 1982, 73B, 81–91. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Davis, G.E. Effects of temperature and ration level on the growth and food conversion efficiency of Salmo gairdneri, Richardson. J. Fish Biol 1977, 11, 87–98. [Google Scholar] [CrossRef]
- McCormick, S.D. Hormonal control of gill Na+/K+-ATPase and chloride cell function. Fish Physiol. 1995, 14, 285–315. [Google Scholar]
- McCormick, S.D. Smolt Physiology and Endocrinology. In Euryhaline Fishes; McCormick, S.D., Farrell, A.P., Brauner, C., Eds.; MA Academic Press: Waltham, MA, USA, 2013; pp. 199–251. [Google Scholar]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Wedemeyer, G.A.; Saunders, R.L.; Clarke, W.C. Environmental factors affecting smoltification and early marine survival of anadromous saralmonids. Mar. Fish. Rev. 1980, 42, 1–14. [Google Scholar]
- Zaugg, W.S.; McLain, L.R. Influence of water temperature on gill sodium, potassium stimulated ATPase activity in juvenile coho salmon (Oncorhynchus kisutch). Comp. Biochem. Physiol. 1976, 54 Pt A, 419–421. [Google Scholar] [CrossRef]
- Ugachi, Y.; Kitade, H.; Takahashi, E.; Suzuki, S.; Hayashi, M.; Yamada, T.; Cui, W.; Shimizu, M. Size-driven parr-smolt transformation in masu salmon (Oncorhynchus masou). Sci. Rep. 2023, 13, 16643. [Google Scholar] [CrossRef]
- Small, B.C.; Bilodeau, A.L. Effects of cortisol and stress on channel catfish (Ictalurus punctatus) pathogen susceptibility and lysozyme activity following exposure to Edwardsiella ictaluri. Gen. Comp. Endocrinol. 2005, 142, 256–262. [Google Scholar] [CrossRef]
- Demers, N.E.; Bayne, C.J. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol. 1997, 21, 363–373. [Google Scholar] [CrossRef]
- Low, K.W.; Sin, Y.M. Effects of mercuric chloride and sodium selenite on some immune responses of blue gourami, Trichogaster trichopterus (Pallus). Sci. Total Environ. 1998, 214, 153–164. [Google Scholar] [CrossRef]
- Secombes, C.J.; Tahir, A.; Stagg, R. Immunocompetence in Flatfish as a Measure of the Biological Effects of Exposure to Sewage Sludge or Hydrocarbon Contaminated Sediments. In Ecotoxicology: Response, Biomarkers and Risk Assessment, an OECD Workshop; SOS Publications: Fair Haven, NJ, USA, 1997; pp. 281–292. [Google Scholar]
- Kim, J.-H.; Kang, J.-C. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to different waterborne selenium concentrations. Chemosphere 2015, 135, 46–52. [Google Scholar] [CrossRef]
- Barton, B.A.; Schreck, C.B. Influence of acclimation temperature on interrenal and carbohydrate stress responses in juvenile Chinook salmon (Oncorhynchus tshawytscha). Aquaculture 1987, 62, 299–310. [Google Scholar] [CrossRef]
Parameter | Treatment | |||
---|---|---|---|---|
10 °C | 14 °C | 18 °C | 22 °C | |
Water temperature (°C) | 10.30 ± 0.05 | 14.15 ± 0.04 | 18.11 ± 0.05 | 21.97 ± 0.04 |
Photoperiod (L:D) Dissolved oxygen (mg/L) | 14:10 10.66 ± 0.11 | 14:10 9.34 ± 0.08 | 14:10 8.00 ± 0.09 | 14:10 7.98 ± 0.08 |
pH | 7.72 ± 0.02 | 7.66 ± 0.01 | 7.61 ± 0.02 | 7.69 ± 0.02 |
Conductivity (mS/cm) | 710.17 ± 7.35 | 733.50 ± 8.29 | 758.26 ± 9.72 | 755.3 ± 8.67 |
Ammonia (mg/L) † | Not detected | Not detected | Not detected | Not detected |
Nitrite (mg/L) ‡ | Not detected | Not detected | Not detected | Not detected |
Nitrate (mg/L) | 13.25 ± 0.75 | 16.56 ± 1.48 | 16.32 ± 1.41 | 15.36 ± 1.31 |
FL (cm) | BW (g) | SFG (%BW/d) | %WG | CF | HSI | FCR | FI (g/d) | ||
---|---|---|---|---|---|---|---|---|---|
Initial | 13.44 ± 0.05 | 29.11 ± 0.19 | 1.19 ± 0.01 | 1.78 ± 0.09 | |||||
Week 4 | 10 °C | 14.95 ± 0.18 d | 37.66 ± 1.43 b | 0.93 ± 0.04 c | 29.73 ± 1.53 cd | 1.12 ± 0.01 a | 1.84 ± 0.17 | 1.10 ± 0.05 a | 0.34 ± 0.004 a |
14 °C | 14.80 ± 0.15 cd | 38.87 ± 1.22 b | 0.96 ± 0.02 c | 30.76 ± 0.76 d | 1.19 ± 0.01 bc | 1.56 ± 0.07 | 1.07 ± 0.03 a | 0.35 ± 0.002 a | |
18 °C | 14.18 ± 0.19 b | 35.18 ± 1.44 a | 0.76 ± 0.07 b | 23.74 ± 2.57 bc | 1.22 ± 0.02 cd | 1.66 ± 0.05 | 1.42 ± 0.15 b | 0.34 ± 0.005 a | |
22 °C | 13.81 ± 0.18 a | 33.74 ± 1.96 a | 0.52 ± 0.02 a | 15.69 ± 0.63 a | 1.25 ± 0.03 cd | 1.82 ± 0.02 | 2.11 ± 0.08 d | 0.34 ± 0.004 a | |
Week 8 | 10 °C | 16.55 ± 0.14 e | 52.41 ± 1.58 d | 1.03 ± 0.06 c | 50.80 ± 3.72 e | 1.14 ± 0.01 ab | 1.56 ± 0.05 | 1.00 ± 0.08 a | 0.48 ± 0.02 d |
14 °C | 16.08 ± 0.19 e | 51.24 ± 2.09 d | 0.99 ± 0.04 c | 48.91 ± 1.85 e | 1.21 ± 0.01 c | 1.48 ± 0.03 | 1.05 ± 0.04 a | 0.50 ± 0.001 d | |
18 °C | 15.02 ± 0.21 d | 42.77 ± 1.96 c | 0.60 ± 0.04 a | 26.32 ± 1.45 bcd | 1.23 ± 0.01 cd | 1.65 ± 0.25 | 1.79 ± 0.11 c | 0.44 ± 0.009 c | |
22 °C | 14.55 ± 0.16 bc | 40.53 ± 1.82 b | 0.51 ± 0.02 a | 20.3 ± 0.91 ab | 1.28 ± 0.01 d | 1.90 ± 0.20 | 2.06 ± 0.15 cd | 0.41 ± 0.030 b |
Plasma Osmolality (mOsmol/kg) | Plasma Na+ Level (mM) | Hematocrit (%) | RBC Count (× 106 mm−3) | Hemoglobin (g/dL) | MCV (fL) | MCH (pg) | MCHC (g/dL) | ||
---|---|---|---|---|---|---|---|---|---|
Initial | 37.96 ± 1.29 | 2.26 ± 0.13 | 9.80 ± 0.22 | 172.18 ± 10.05 | 44.69 ± 2.89 | 25.91 ± 0.34 | |||
Week 4 | 10 °C | 307.0 ± 2.59 | NA | 40.87 ± 1.61 b | 2.43 ± 0.12 abc | 10.48 ± 0.31 | 169.57 ± 5.84 bc | 43.65 ± 1.73 a | 25.75 ± 0.57 |
14 °C | 307.8 ± 3.26 | NA | 37.38 ± 0.88 ab | 2.41 ± 0.09 abc | 10.27 ± 0.16 | 156.24 ± 3.89 ab | 43.27 ± 2.11 a | 27.63 ± 0.93 | |
18 °C | 302.4 ± 2.06 | NA | 37.10 ± 0.98 ab | 2.43 ± 0.15 abc | 10.38 ± 0.25 | 156.05 ± 7.15 ab | 43.57 ± 1.66 a | 28.02 ± 0.38 | |
22 °C | 308.0 ± 3.65 | NA | 35.59 ± 1.37 a | 2.13 ± 0.17 ab | 10.38 ± 0.31 | 174.4 ± 12.73 bc | 51.27 ± 4.26 b | 29.27 ± 0.54 | |
Week 8 | 10 °C | 308.3 ± 2.00 | 155.9 ± 0.80 | 37.48 ± 1.52 ab | 2.75 ± 0.11 c | 10.31 ± 0.27 | 136.75 ± 3.35 a | 37.77 ± 0.98 a | 27.67 ± 0.58 |
14 °C | 304.0 ± 4.30 | 152.8 ± 0.87 | 36.06 ± 1.02 a | 2.61 ± 0.16 bc | 10.18 ± 0.24 | 140.64 ± 5.31 a | 39.72 ± 1.46 a | 28.27 ± 0.28 | |
18 °C | 306.8 ± 2.29 | 153.3 ± 1.86 | 37.98 ± 1.40 ab | 2.51 ± 0.14 bc | 10.43 ± 0.27 | 153.09 ± 6.10 ab | 42.2 ± 1.77 a | 27.67 ± 1.00 | |
22 °C | 310.3 ± 3.75 | 154.3 ± 1.11 | 35.13 ± 1.44 a | 1.98 ± 0.14 a | 9.86 ± 0.27 | 182.38 ± 10.23 c | 51.67 ± 3.53 b | 28.22 ± 0.62 |
Cortisol (ng/mL) | Glucose (mg/dL) | Na+/K+-ATPase Activity (μmoles ADP/mg Protein/hour) | Immunoglobulin M (mg/mL) | Lysozyme (ng/mL) | ||
---|---|---|---|---|---|---|
Week 4 | 10 °C | 2.26 ± 0.71 b | 76.99 ± 4.46 | NA | 6.32 ± 1.56 | 97.53 ± 16.33 a |
14 °C | 1.00 ± 0.19 ab | 64.41 ± 2.20 | NA | 7.44 ± 1.68 | 97.47 ± 15.93 a | |
18 °C | 0.49 ± 0.18 ab | 70.74 ± 1.43 | NA | 5.72 ± 1.39 | 104.58 ± 15.48 a | |
22 °C | 0.33 ± 0.11 a | 66.69 ± 1.74 | NA | 5.59 ± 0.84 | 175.93 ± 10.34 b | |
Week 8 | 10 °C | 4.45 ± 1.25 c | 72.91 ± 2.21 | 2.11 ± 0.29 a | 7.75 ± 1.60 | 100.00 ± 16.42 a |
14 °C | 2.61 ± 0.95 bc | 68.18 ± 2.70 | 1.39 ± 0.16 b | 4.62 ± 1.19 | 105.31 ± 11.03 a | |
18 °C | 1.04 ± 0.46 ab | 73.52 ± 2.44 | 1.35 ± 0.11 b | 9.74 ± 1.63 | 105.20 ± 12.08 a | |
22 °C | 0.67 ± 0.15 ab | 75.59 ± 2.24 | 0.73 ± 0.12 c | 11.51 ± 2.18 | 182.82 ± 9.26 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-W.; Balasubramanian, B. Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon (Oncorhynchus masou). Animals 2023, 13, 3870. https://doi.org/10.3390/ani13243870
Lee J-W, Balasubramanian B. Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon (Oncorhynchus masou). Animals. 2023; 13(24):3870. https://doi.org/10.3390/ani13243870
Chicago/Turabian StyleLee, Jang-Won, and Balamuralikrishnan Balasubramanian. 2023. "Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon (Oncorhynchus masou)" Animals 13, no. 24: 3870. https://doi.org/10.3390/ani13243870
APA StyleLee, J. -W., & Balasubramanian, B. (2023). Impacts of Temperature on the Growth, Feed Utilization, Stress, and Hemato-Immune Responses of Cherry Salmon (Oncorhynchus masou). Animals, 13(24), 3870. https://doi.org/10.3390/ani13243870