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Simple Summary: Modern livestock research has focused on the evaluation of feeding strategies
that led to modify the rumen microbiome to achieve optimum productivity without compromising
ruminants’ physiology and health. For this reason, the supplementation of unconventional feedstuffs
is extensively studied. In our study, we investigated the effect of Camelina sativa seeds supplementa-
tion on ewe’s rumen microbiota. Our results suggested that supplementing Camelina sativa seeds,
especially in the highest studied level (160 g·kg−1 of concentrate), resulted in significant alterations
in the relative abundance of the rumen microorganisms, with those reported in methanogens being
considered the most promising.

Abstract: Supplementing ruminant diets with unconventional feedstuffs (Camelina sativa seeds; CS)
rich in bioactive molecules such as polyunsaturated fatty acids, may prove a potential eco-efficient
strategy to manipulate rumen microbiome towards efficiency. Forty-eight ewes were divided into
four homogenous groups (n = 12) according to their fat-corrected milk yield (6%), body weight,
and age, and were fed individually with concentrate, alfalfa hay, and wheat straw. The concentrate
of the control group (CON) had no CS inclusion, whereas the treated groups were supplemented
with CS at 60 (CS6), 110 (CS11), and 160 (CS16) g·kg−1 of concentrate, respectively. Rumen digesta
was collected using an esophageal tube and then liquid and solid particles were separated using
cheesecloth layers. An initial bacteriome screening using next-generation sequencing of 16S was
followed by specific microbes targeting with a RT-qPCR platform, which unveiled the basic changes
of the rumen microbiota under CS supplementation levels. The relative abundances of Archaea and
methanogens were significantly reduced in the solid particles of CS11 and CS16. Furthermore, the
relative abundance of Protozoa was significantly increased in both rumen fluid and solid particles of
the CS6, whereas that of Fungi was significantly reduced in the rumen particle of the CS16. In rumen
fluid, the relative abundance of Fibrobacter succinogens and Ruminobacter amylophilus were significantly
increased in the CS6 and CS11, respectively. In the solid particles of the CS11, the relative abundance
of Ruminococcus flavefaciens was significantly reduced, whereas those of Butyrivibrio proteoclasticus
and Ruminobacter amylophilus were significantly increased. Additionally, the relative abundance
of Selenomonas ruminantium was significantly increased in both CS11 and CS16. Consequently, the
highest CS content in the concentrate reduced the relative abundance of methanogens without
inducing radical changes in rumen microorganisms that could impair ruminal fermentation and
ewes’ performance.
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1. Introduction

Within recent years, terms such as food-feed competition, sustainable resource manage-
ment, protein alternatives, novel crops, and precise livestock are the hot topic of discussion
among animal scientists and industry. Undoubtedly, ruminants appear to be the livestock
sector where the aforementioned terms find sustainable implementation provided that
the complex biochemical procedures of rumen could be processed and manipulated. The
rumen is inhabited by a vastly diverse microbiome that includes both prokaryotic and
eukaryotic species which synergistically promote digestion and utilization of the forage
and other plant materials that non-ruminants cannot digest or utilize [1].

However, as a physiological function of rumen biochemistry; methane (CH4) is formed
through the action of archaea almost all of them being methanogens. Although their role
is crucial for the rumen ecosystem since they balance the hydrogen pressure, they are
also responsible for the production of one of the most important greenhouse gases [1].
Beyond their environmental repercussion, it has been estimated that methane formation is
responsible for energy losses of around 2–15% within the rumen [2].

In parallel, both the global population growth and the development of human living
standards drive animal product demands into an unpreceded increase. Predictions forecast
that the production of major grains, meat, and milk is projected to increase by 29–81% by
2050 compared with today’s levels, due to the aforementioned demands [3]. Within these
demands, nutraceuticals and functional foods with high content of bioactive compounds,
such as omega-3 polyunsaturated fatty acids (PUFA) have received considerable attention
from both consumers and the industry [4]. Nevertheless, it is essential to evaluate mitigation
strategies and advanced precision feeding techniques, considering that methane (CH4)
emissions are expected to rise by 30% by 2050 as a result of meat and milk increasing
demands [5].

Summarizing the aforementioned, the livestock sector is towards exploring and adopt-
ing novel strategies aiming to orchestrate the unbalanced nature of this growth in a sustain-
able and eco-efficient way by manipulating the microbial habitat of the rumen. Towards
this direction, many dietary strategies have been proposed with the dominant being the
effect of feedstuffs rich in bioactive compounds such as PUFA. Oilseeds are a rich source
of PUFA and several plant secondary metabolites. The latter have also been associated
with toxic/inhibitory effects on methanogenic rumen microbes [6]. Up until now, supple-
menting ruminant diets with oilseeds has resulted in different outcomes regarding the
modification of the rumen microorganism population. For instance, rumen bacteriome
were not affected by linseed oil supplementation in goats’ diets, when the total dietary ether
extract content was similar to or lower than the control group [7]. Additionally, linseed
supplementation did not negatively affect Ruminococus albus, which is one of the most vital
cellulolytic bacterial species, in goats’ rumen [8]. Zhang et al. [9] reported that the reduction
in Ruminococcus flavefaciens may be found when the concentration of PUFA is found at high
levels. Conversely, increases in the Ruminococus albus population were found when both
cattle [10] and goat diets [7] were supplemented with PUFA. The different findings can be
attributed to the infused levels of PUFAs in the rumen [8], the specific fatty acids (type and
source) [10–12], their bioavailability, and the animal species [8,10,13].

Camelina sativa is a typical example of oilseeds and a rich source of bioactive com-
pounds such as PUFA. It has higher PUFA content compared to other oilseeds [14], the
main fatty acid is α-linolenic acid (~37%) [15], and has several agronomic advantages such
as lower cultivation demands [16]; thus, is considered a sustainable crop. The impact of
the Camelina sativa and its supplementation of by-products on the rumen microbiome has
been studied in the past both in vivo and in vitro, and demonstrated various significant
outcomes in different ruminant species [17–19]. However, considering the abovementioned
peculiarities (different PUFA inclusion levels in diets), it is of paramount importance to
investigate the effect of different levels of Camelina sativa seeds (CS) supplementation in
ewes’ diets on the rumen microbial population that has not been investigated on farm scale
conditions. Considering the above, this is the first study aiming to evaluate the effect of
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the supplementation of three different levels of CS on ewes’ rumen microbiome and key
microbes species related to rumen fermentation processes.

2. Materials and Methods
2.1. Experimental Diets and Experimental Design

This study was conducted respecting the approved protocols by the Ethical Committee
in Research of the Agricultural University of Athens regarding animal handling, housing,
and care (No. 000007/22-01-2017.). Forty-eight dairy Chios breed ewes were divided into
four homogenous groups (n = 12) according to their age (2–4 years old), BW (55 ± 6.5 kg),
fat corrected (6%) milk yield (FCM6%) (1.85 ± 0.3 kg·day−1), and days in milk (67 ± 8 days).
Ewes were kept in a common stall but separated into different groups corresponding to
each dietary treatment. At feeding time, they were trapped in individual pens to achieve
individual feeding. The experimental period lasted 60 days. The ration consisted of
concentrate, alfalfa hay, and wheat straw, and the average amount of each was 1.5, 1.5, and
0.2 kg/ewe/day. Furthermore, the concentrates consisted of maize grain, barley, wheat
middling, sunflower meal, soybean meal, as well as mineral and vitamin premix (Table S1).
Ewes were offered concentrates with the inclusion of three different levels of CS by partially
substituting soybean meal and maize grain. More specifically, the concentrate of the control
group (CON) had no inclusion of CS, whereas in the three following groups (CS6, CS11,
and CS16), CS were included at 60, 110, and 160 g·kg−1 of concentrate. The average daily
feed intake (g/ewe/day) and nutrient intake (g/ewe/day) of the four dietary treatments
are presented in Table 1. The main fatty acid (g/ewe/day) intake is presented in Table 2.
All ewes had free access to fresh water.

Table 1. Average daily feed intake (g/ewe/day) and nutrients intake (g/ewe/day) of the four dietary
treatments (CON, CS6, CS11, CS16) with different levels of Camelina sativa seeds (0, 60, 110, and
160 g·kg−1 of concentrate).

Daily Feed Intake
(g/Ewe/Day as Fed) Dietary Treatments (D)

CON CS6 CS11 CS16

Wheat Straw 200 200 200 200
Alfalfa Hay 1500 1500 1500 1500
Concentrate 1500 1500 1500 1500

Nutrients intake (g/ewe/day) Dietary treatments (D)

CON CS6 CS11 CS16

Dry Matter 2880 2874 2882 2888
Crude Protein 601 600 602 620
Ether Extract 40 80 107 133

Neutral Detergent Fiber 1284 1285 1287 1301
Acid Detergent Fiber 665 711 712 719

CON: dietary treatment with 0 g Camelina sativa seeds·kg−1 of concentrate. CS6: dietary treatment with 60 g
Camelina sativa seeds·kg−1 of concentrate. CS11: dietary treatment with 110 g Camelina sativa seeds·kg−1 of
concentrate. CS16: dietary treatment with 160 g Camelina sativa seeds·kg−1 of concentrate.

2.2. Sample Collection

Rumen samples were collected on the final day of the experiment (60th day). Rumen
digesta was collected from each ewe before feeding using an esophageal tube (flexible
PVG tube of 1.5 mm thickness and 10 mm I.D.) as well as a vacuum pump (MZ2CNT,
Vacuubrand Gmbh & Co Kg, Wertheim, Germany). The stomach tube was inserted at a
120–150 cm depth and during the collection, the tube was moved aiming to sample from
different rumen places to avoid previously reported biases [20]. The first 30 mL of rumen
digesta was discarded to avoid saliva contamination which is usual when stomach tubes
are used [21]. For the separation of the solid particles from the rumen fluid, four layers
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of cheesecloth were used. Following the sample collection, samples were snap-frozen in
liquid nitrogen and then stored at −80 ◦C until the respective analysis.

Table 2. Main fatty acid intake (g/ewe/day) of the four dietary treatments (CON, CS6, CS11, CS16)
with different levels of Camelina sativa seeds (0, 60, 110, and 160 g·kg−1 of concentrate).

Dietary Treatments (D)

Main Fatty Acids Intake
(g/Ewe/Day) of the Total Diet CON CS6 CS11 CS16

C14:0 0.18 0.24 0.27 0.25
C16:0 7.50 9.57 10.74 11.78

C16:1 n-7 0.20 0.23 0.25 0.27
C18:0 1.34 2.14 2.62 3.08

cis-9 C18:1 7.47 13.57 18.35 22.41
cis C18:2 n-6 19.94 29.08 31.74 37.67

C20:0 0.11 0.33 0.51 0.67
C18:3 n-3 2.02 14.40 23.01 30.88
C20:1 n-9 0.21 6.71 11.41 15.63
C20:2 n-6 0.16 0.85 1.38 1.80
C20:3 n-3 0.14 0.24 0.34 0.41

C22:0 0.07 0.13 0.18 0.16
C24:0 0.22 0.26 0.31 0.37

CON: dietary treatment with 0 g Camelina sativa seeds·kg−1 of concentrate. CS6: dietary treatment with 60 g
Camelina sativa seeds·kg−1 of concentrate. CS11: dietary treatment with 110 g Camelina sativa seeds·kg−1 of
concentrate. CS16: dietary treatment with 160 g Camelina sativa seeds·kg−1 of concentrate.

2.3. Fatty Acid Determination

Individual rumen fluid samples (48 samples) were analyzed for FA composition
according to the method of O’Fallon et al. [22]. For the analysis, an Agilent 6890 N gas
chromatograph equipped with an HP-88 capillary column (60 m × 0.25 mm i.d. with
0.20 µm film thickness, Agilent Technologies, Inc., California, United States) and a flame
ionization detector (FID) was used. The setup of the analysis, the conditions, and the
extra standards used for the analysis were previously comprehensively described by
Christodoulou et al. [23].

2.4. DNA Extraction

DNA was extracted from 96 samples (48 rumen fluid and 48 solid fractions) based on
the protocol described by Mavrommatis et al. [24]. Briefly, 1 g of rumen fluid or rumen
solid particles was transferred to a mortar and was ground to a powder using a pestile and
nitrogen fluid. The resulting fine powder was immediately transferred to a Falcon tube into
a preheated lysis buffer followed by incubation at 57 ◦C. RNase A was then added to each
sample, followed by incubation at 37 ◦C. A three-fold extraction was then followed using
chloroform:isoamylalcohol and before precipitation with isopropanol. The following day,
after centrifugation at 7500× g for 15 min at 4 ◦C, the supernatant was discarded, followed
by two ethanol washes. The DNA pellet was resuspended in ultrapure water and purified
through a NucleoSpin® Tissue spin column (Macherey-Nagel GmbH & Co., KG, Düren,
Germany) following the manufacturer’s guidelines. The quality of the extracted DNA from
each sample was tested based on the abundance of the DNA content and the impurities
levels in the 260/230 and 260/280 ratios, using an ND-1000 spectrophotometer (Nanodrop,
Wilmington, DE, USA), and was verified in a 0.7% agarose gel.

2.5. Metagenomic NGS Analysis

DNA samples, (50 ng·uL) from each rumen fluid sample, were pooled for each group
(4 samples were obtained) for the metagenomic NGS bacteriome screening. The 16S rRNA
gene (~1.5 kb) was amplified using a 16S Barcoding kit (SQK-RAB204, Oxford Nanopore
Technologies (ONT), Oxford, UK), and following the manufacturer’s protocol. The sequenc-
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ing library for 16S rRNA gene sequencing was generated from 20 ng of DNA using the
same kit (SQK-RAB204 from Oxford Nanopore Technologies, Oxford, UK) following the
manufacturer’s instructions and loaded into a MinION flow cell (R9.4.1, FLO-MIN106).
The flow cell was placed into a MinION-Mk1B device (Oxford Nanopore Technologies)
for sequencing and controlled using ONT’s MinKNOW software. Raw sequencing data
(FAST5 files) were basecalled with algorithms implemented in GUPPY software (ONT)
and reads were demultiplexed according to the used barcodes. Clean sequences were
obtained after trimming of barcodes, adapter, and primer sequences. Processed reads
(FASTQ files) were uploaded to the EPI2ME cloud-based workflow (Metrichor, Oxford,
UK) for taxonomic classification of bacteria in the following major ranks: Superking-
dom/phylum/class/order/family/genus/species. The analysis was carried out using
NCBI ‘s ‘16S Ribosomal RNA database ‘ (bacterial and archaeal strains) with an identity
threshold of 85% and a minimum quality score of 15.

2.6. RT-qPCR Platform for Selected Rumen Microorganisms

The primer set used for the real-time qPCR, the genomic region of PCR amplification,
the primer efficiency, amplicon size, and the hybridization temperature are presented in
Table S2. A description of the primer design, selection, amplification region, and validation
processes is provided by Mavrommatis et al. [24].

A Step-One Plus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA)
was used for quantitative PCRs, with a reaction volume of 10 µL, 5 µL of SYBRTM Select
Master Mix (Thermo Fisher Scientific), 4 µL of primers (each 0.2 µmol), and 1 µL of DNA (20
ng·uL) as the template. By using dissociation curve analysis, primer specificity and primer
dimer formation were investigated (melt curve). Based on Carberry et al. [25] equation:

relative abundance = e (target)(Ct target microorganism−Ct of bacterial 16S rDNA) (1)

the proportion of total bacterial 16S ribosomal DNA used to indicate the relative abundance
of microbial populations. Provided that comparisons across treatments are limited and no
other taxa are compared, the relative abundance expression of the results is a feasible and
reliable method [26].

2.7. Statistical Analysis

Statistical analysis was carried out using IBM SPSS Statistics for Windows (IBM Corp.
Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY, USA). One-
way ANOVA analysis was carried out to compare the effect of the dietary treatment (CON
vs. CS6 vs. CS11 vs. CS16) on the relative abundance of the targeted microorganisms.

Lavene’s test was used to assess the homogeneity of the dataset and the Shapiro–
Wilk test was used to test the dataset’s normality. For the data that did not violate the
homogeneity and normality tests, post hoc analysis was carried out considering the Tukey
multiple range tests, whereas for the data that violated these criteria, the Games–Howell
test was considered. The significance threshold for these tests was set at 0.05. GraphPad
Prism 8.4.2. was used for the interleaved bars and error bars represent the standard error
mean (SEM).

3. Results
3.1. Rumen Fatty Acid Profile

The differences between means of the fatty acid (FA) profile in ewes’ rumen fluid of
the four dietary treatments and the SEM are presented in Table 3. The concentration of
C16:0 in the rumen fluid of the CS6 ewes was significantly increased (p = 0.007) compared
with the CS11 and CS16. The concentration of cis-9 C18:1 and C18:3 n-3 were significantly
increased (p = 0.001 and p = 0.003, respectively) in the CS11 and CS16 compared to the CON
and CS6.
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Table 3. The mean individual fatty acids (FA) (% of total FA) in ewes’ rumen fluid of the four dietary
treatments (CON, CS6, CS11, and CS16) with different levels of Camelina sativa seeds (0, 60, 110, and
160 g·kg−1 of concentrate).

Dietary Treatment

Fatty Acid CON CS6 CS11 CS16 SEM a p

C14:0 1.22 0.91 0.72 0.57 0.11 0.235
C14:1 1.51 1.26 0.88 1.00 0.11 0.180
C15:0 0.86 0.87 1.02 0.94 0.08 0.887
C16:0 24.33 ab 29.32 b 21.09 a 21.84 a 0.10 0.007

C16:1 n-7 0.26 0.04 0.09 0.18 0.04 0.310
C17:0 0.22 0.00 0.04 0.10 0.03 0.138
C18:0 46.37 42.78 45.07 42.18 0.87 0.308

trans C18:1 0.82 1.16 1.68 1.39 0.24 0.644
trans-11 C18:1 5.93 5.32 8.01 7.78 0.50 0.137

cis-9 C18:1 8.03 a 9.02 a 11.84 b 12.40 b 0.49 0.001
trans C18:2 n-6 0.00 0.00 0.06 0.07 0.02 0.622

cis C18:2 n-6 5.91 4.71 4.58 4.73 0.26 0.265
C20:0 0.39 0.50 0.23 0.80 0.14 0.275

C18:3 n-3 0.48 a 0.59 a 1.53 b 1.30 b 0.13 0.003
cis-9, trans-11 C18:2 3.54 3.32 2.55 3.71 0.26 0.395

C20:2 n-6 0.11 0.10 0.05 0.22 0.04 0.413
C20:4 n-6 0.38 0.16 0.56 0.81 0.14 0.445

Means with different superscript letters (a, b) between dietary groups differ significantly at p < 0.05. a SEM:
Standard error of the means. CON: dietary treatment with 0 g Camelina sativa seeds·kg−1 of concentrate (n = 12).
CS6: dietary treatment with 60 g Camelina sativa seeds·kg−1 of concentrate (n = 12). CS11: dietary treatment
with 110 g Camelina sativa seeds·kg−1 of concentrate (n = 12). CS16: dietary treatment with 160 g Camelina sativa
seeds·kg−1 of concentrate (n = 12).

3.2. 16S Amplicon Sequencing

Metagenomic sequencing of DNAs isolated from pooled rumen fluid samples resulted
in the detection of 19, 19, 18, and 15 phyla, 50, 57, 53, and 44 families, and 108, 139, 126, and
86 genera for CON, CS6, CS11, and CS16, respectively considering only OTUs with more
than 7 reads. A minimum similarity threshold of 85% and minimum quality score of 15
were set, and approximately 100,000 reads/sample were assigned to various taxonomic
levels with an average identity score of 90%. Based on the rarefaction curves of the bacterial
population at the genus taxonomic level, samples reached the plateau phase. An additional
increase in the number of sequences could not affect the number of genera revealed. The
dominant rumen fluid phyla were Bacteroidetes, Firmicutes, and Proteobacteria. The
relative abundance of Bacteroidetes was higher in the CS16 (46.6%) compared to the rest
groups (CON: 39.3%; CS6: 35.0%; and CS11: 34.2%, respectively). In contrast, the relative
abundance of Firmicutes was found to be higher in the CS6 (56.4%) compared with the
rest (CON: 51.0%; CS11: 45.7%; and CS16: 37.6%, respectively). Regarding Proteobacteria,
the highest relative abundance was found in the CS11 (18.6%) compared to the rest (CON:
7.7%; CS6: 6.5%; and CS16: 14.2%, respectively). The Firmicutes:Bacteroidetes ratio was
found to be at the lowest level in the CS16 compared to the rest (Table 4).
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Table 4. Relative abundance (%) of the metagenomic sequencing of the genomic DNA of the pooled
rumen fluid samples from the four dietary treatments (CON, CS6, CS11, and CS16) with different
levels of Camelina sativa seeds (0, 60, 110, and 160 g·kg−1 of concentrate).

Dietary
Treatments Phyla (Relative Abundance,%)

Bacteroidetes Firmicutes Proteobacteria Firmicutes:
Bacteroidetes

CON 39.3 51.0 7.7 1.30
CS6 35.0 56.4 6.5 1.61

CS11 34.2 45.7 18.6 1.34
CS16 46.7 37.6 14.2 0.81

CON: dietary treatment with 0 g Camelina sativa seeds·kg−1 of concentrate (n = 1; 12 DNA samples pooled). CS6:
dietary treatment with 60 g Camelina sativa seeds·kg−1 of concentrate (n = 1; 12 DNA samples pooled). CS11:
dietary treatment with 110 g Camelina sativa seeds·kg−1 of concentrate (n = 1; 12 DNA samples pooled). CS16:
dietary treatment with 160 g Camelina sativa s seeds·kg−1 of concentrate (n = 1; 12 DNA samples pooled).

At a family level, Prevotelaceae was the dominant in the four dietary treatments (CON:
37.4%; CS6: 32.8%; CS11: 33.1%; CS16: 44.5%, respectively), followed by Lachnospiraceae in
the CON and CS6, and by Succinivibrioaceae in the CS11 and CS16 (Figure 1).
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Figure 1. Relative abundance (%) of dominant families based on the 16S amplicon sequencing in the
rumen fluid of the four pooled DNA samples representative of the four dietary treatments (CON;
CS6; CS11; and CS16) with four different Camelina sativa seeds supplementation levels (0, 60, 110, and
160 g·kg−1 of concentrate, respectively) at a family level.

Bacteria of the genus Prevotella were the main representatives of the Prevotelaceae
family in the four dietary treatments. The highest percentage was found in the CS16
(43.1%) compared with the CON (36.0%), CS6 (31.9%), and CS11 (32.3%). The predominant
species of this genus was Prevotella ruminocola for the four dietary groups. In addition,
the genus Butyrivibrio was the second most dominant in the CON, whereas Ruminococcus,
Ruminobacter, and Selenomonas followed in the CS6, CS11, and CS16, respectively (Figure 2).
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Figure 2. Relative abundance (%) of dominant genera based on the 16S amplicon sequencing in the
rumen fluid of the four pooled DNA samples representative of the four dietary treatments (CON;
CS6; CS11; and CS16) with four different Camelina sativa seeds supplementation levels (0, 60, 110, and
160 g·kg−1 of concentrate, respectively) at a genus level.

3.3. Relative Abundance of Selected Microorganisms in the Rumen Fluid Samples Using a
RT-qPCR Platform

The relative abundance of Bacteroidetes and Firmicutes did not significantly differ
among the four dietary groups. The Firmicutes:Bacteroidetes ratio was numerically in-
creased in the CS6 and CS11 (Figure 3, Table S3). The relative abundance of Protozoa was
significantly (p < 0.001) increased in the CS6 by 61.25, 66.25, and 45%, compared to the
CON, CS11, and CS16, respectively (Figure 3, Table S3). A significant increase (p < 0.001)
was also observed in the relative abundance of Entodinium in the CS6 (Figure 3, Table S3).
Additionally, the relative abundance of Archaea tended to increase in the same dietary
treatment compared to the CS11 (Figure 3, Table S3). Although a numerical decrease was
observed in the relative abundance of the Methanogens in the CS11 and CS16, it was not
statistically significant (Figure 3, Table S3). In addition, the relative abundance of Rumi-
nobacter amylophilus was significantly increased (p = 0.002) in the CS11, whereas that of
Fibrobacter succinogenes was significantly increased (p < 0.001) in the CS6 (Figure 3, Table S3).

3.4. Relative Abundance of Selected Microorganisms in the Rumen Solid Particle Using
RT-qPCR Platform

The relative abundance of Bacteroidetes and Firmicutes did not differ significantly
among the four dietary treatments (Figure 4, Table S4). In contrast, the ratio in the relative
abundance of Firmicutes:Bacteroidetes was found to be numerically reduced in the CS11
and CS16 compared with the CS6 (Figure 4, Table S4). The relative abundance of Protozoa
increased significantly (p = 0.010) in the CS6 by 87.5, 114.3, and 66.7%, compared with the
CON, CS11, and CS16, respectively (Figure 4, Table S4). A downward trend was observed in
the relative abundance of Neocallimastigales in the group with the highest inclusion level of
CS (CS16) compared to the CON (Figure 4, Table S4). Furthermore, the relative abundances
of Archaea (p < 0.001) and total Methanogens (p = 0.025) were significantly decreased in
the CS11 and CS16 compared with the CON and CS6 (Figure 4, Table S4). The relative
abundance of Ruminococcus flavefaciens was significantly reduced (p = 0.022) in the CS11
and CS16 compared with the CON. The relative abundance of Ruminobacter amylophilus
was significantly increased (p < 0.001) in the CS11, whereas the relative abundance of
Ruminococcus albus tended towards a significant increase in the CS6 compared with the
CS16 (Figure 4, Table S4). Moreover, the relative abundance of Butyrivibrio fibrisolvens was
significantly decreased in the CS16 (p = 0.006), whereas Butyrivibrio Proteoclasticus was
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significantly increased in the CS11 (p = 0.001) (Figure 4, Table S4). Finally, the relative
abundance of Fibrobacter succinogenes tended to significantly increase in the CS6, whereas
that of Selenomonas ruminantium was significantly increased (p = 0.001) in the CS11 and
CS16 compared with the CON and CS6 (Figure 4, Table S4).
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Figure 3. Column bar plots (±Standard error) of the average changes (n = 12/group) of target
microorganisms as a proportion of the total rumen bacterial 16S rDNA in the rumen fluid of ewes-fed
diets (CON, CS6, CS11, and CS16) with different levels of Camelina sativa seeds supplementation
(0, 60, 110, and 160 g·kg−1 of concentrate, respectively). Superscript letters (a, b) in bars indicate
significant differences (p < 0.05) between the dietary treatments, and t is referred to values between
0.05 and 0.100. Analysis was conducted using one-way ANOVA and when appropriate post hoc
analysis was carried out using Tukey’s multiple-range test.
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Figure 4. Column bar plots (±Standard error) of the average changes (n = 12/group) of target
microorganisms as a proportion of the total rumen bacterial 16S rDNA in the rumen solid particles
of ewes-fed diets (CON, CS6, CS11, and CS16) with different levels of Camelina sativa seeds supple-
mentation (0, 60, 110, and 160 g·kg−1 of concentrate, respectively). Superscript letters (a, b) in bars
indicate significant differences (p < 0.05) between the dietary treatments, and t is referred to values
between 0.05 and 0.100. Analysis was conducted using one-way ANOVA and when appropriate post
hoc analysis was carried out using Tukey multiple range test.

4. Discussion

In our previous work, it was concluded that Camelina sativa seeds dietary supplemen-
tation did not affect ewes’ milk yield; however, it significantly reduced milk fat in the group
with the highest supplemented level (160 g·kg−1 of concentrate, CS16) [23].

Up until now, the effect of Camelina sativa and its by-products supplementation on
altering the rumen microbiome focused mainly on in vitro trials. However, to our knowl-
edge, this is the first in vivo study to investigate the effect of supplementing different levels
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of CS on ewes’ rumen microbiome and more precisely in specific microorganisms that
are crucial in the feed degradation as well as methane formation, in both fluid and solid
particles of the rumen by simultaneously exploiting outcomes from both NGS and qPCR
approaches. In our previous work [24], the initial screening of rumen bacteriome using an
Ion Torrent 16S sequencing followed by individual RT-qPCR validation encouraged the
in-depth understanding of alterations in the rumen habitat of goats fed also with PUFA-rich
diets. In the present study, the advent of rapid and robust long-read sequencing by Oxford
Nanopore was also used aiming to holistically assess the effect of CS supplementation in
ewes providing us with a preliminary screening of rumen bacteriome. Moreover, Nanopore
sequencing (Oxford Nanopore Technologies) is the most used technique for long-read
sequencing, made microbial genome sequencing more accessible, and involves the facility
to sequence whole genomes or specific genomic regions, whereas there have been consid-
erable advances in accuracy [27]. After the initial bacteriome cataloging, selective rumen
microorganisms’ relative abundance was assessed using a well-assessed RT-qPCR platform.

Although there were no controversial outcomes between NGS and RT-qPCR results,
some numerical discrepancies were observed; e.g., the relative abundances of Prevotella
and Butyrivibrio in the rumen fluid. These fluctuations may be attributed to the different
analytical workflows (pooled DNA samples on NGS vs. individual samples on RT-qPCR)
and the disparate amplification region within the 16S rRNA (long-read sequencing in NGS
vs. short amplicon targeting in RT-qPCR).

4.1. The Effect of Camelina Sativa Seeds Supplementation in Rumen Fatty Acids Profile

A PUFA-rich diet can result in the inhibition of rumen biohydrogenation leading
to severe milk fat depression (MFD). Although in the milk of the CS16 group fat was
significantly reduced, milk concentration of C18:0 was increased [23]; thus, we can assume
that rumen biohydrogenation was not severely impaired. However, stearic acid was
numerically suppressed, whereas vaccenic acid slightly accumulated in the rumen fluid of
CS16 ewes indicating a linkage between a minor inhibition of rumen biohydrogenation and
MFD in CS16. The increase in the concentration of cis-9 C18:1 and C18:3 n-3 in the rumen
fluid of the CS11 and CS16 ewes was due to the higher intake of these FA from the diets.
Furthermore, the pattern of the C18:1 and C18:2 isomers formed during biohydrogenation
in ruminants is highly dependent on the dietary fatty acid profile [28]. More specifically,
the dietary inclusion of canola in dairy cows (35 g·kg−1 DM) increased the concentration of
the C18:1 trans isomers compared with cows fed soy or both soy and canola [28].

4.2. The Camelina Sativa Seeds Supplementation Demonstrated Important Findings in the
Modification of the Rumen Microorganisms

As expected, through the NGS technique, Bacteroidetes, Firmicutes, and Proteobacteria
were the phyla that dominated ewes’ rumen bacteriome [29,30]. Considering the RT-qPCR
analysis, the Firmicutes:Bacteroidetes ratio was found numerically increased in the CS6
and CS11 compared to the CON and CS16. The significant decrease in milk fat content
of the CS16 ewes may be justified by the results of the Firmicutes:Bacteroidetes ratio.
Similar results were also found through a DHA-rich microalgae supplementation in goats’
diets [24] and by Jami et al. [30], who demonstrated a positive correlation between the ratio
of Firmicutes:Bacteroidetes and cows’ milk fat content. On the other hand, the inclusion of
camelina oil in the rumen fluid of buffaloes (in vitro) increased the Firmicutes:Bacteroidetes
ratio [18]. However, it is crucial to point out that the dynamic host–microbiome interplay is
overlooked in the in vitro trials; thus, the results between in vivo and in vitro experiments
may be controversial.

Noteworthy the highest inclusion levels of CS in ewes’ diets (CS11 and CS16), nu-
merically decreased the relative abundance of methanogens in ewe’s rumen fluid and
significantly reduced them in the solid particles, which can be considered a key topic for
further investigation as it unveils important findings linked to the livestock’s environmental
footprint. Our results comply with the finding of Ebeid et al. [18], who also reported a
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significant reduction in the buffaloes’ rumen methanogens when Camelina oil was ingested
in vitro. In contrast, ingesting Camelina oil directly through the rumen cannula in dairy
cattle did not significantly affect the total number of methanogens [17]. The discrepancies
amongst studies may be attributed to the different Camelina sativa dietary supplementation
types (seeds vs. oil), different dietary strategies (altering forage to concentrate ratio), ad-
ministration route (diet, cannula, in vitro), as well as animal species. Another important
factor generating inconsistencies between studies may lie in the methanogens’ determi-
nation method since the selected amplicon region could lead to diverse outcomes. In our
study, Methanogens were targeted for amplification in the methyl coenzyme-M reductase
subunit A (MCRA) aiming to reflect their metabolic mark through their DNA footprint.
This enzyme complex is distinct and ubiquitous in methanogens; thus, it is an efficient tool
for their sole detection [31].

The research on rumen methanogens has attracted great interest mainly because
ruminant CH4 emissions contribute to greenhouse gas emissions and represent a loss of
nutritional energy [32]. It has been proven that feeding ruminants with feedstuffs rich
in total fat reduce CH4 emissions [33,34]. Moreover, MCFA and PUFA may result in a
reduction in the abundance of metabolic activities of the rumen methanogens and may
cause modifications in the species composition [33,35,36]. The cell membrane can be
broken down by MCFA and PUFA, eliminating its selective permeability which is essential
for the survival and growth of methanogens and other microorganisms. [11]. Another
explanation for methanogen’s suppression may lie in unsaturated fatty acids’ toxic action
against the biofilm formation in Gram-positive bacteria [37]. Therefore, if the biofilm is
dispersed, rumen bacteria populations may switch back to a planktonic state, rendering
them more vulnerable to abiotic influences. Although there is ample evidence about the
involvement of methanogens in rumen formation, their abundance is not strictly correlated
with the methane emissions per se since it has been reported that the composition of
the rumen methanogens, rather than their absolute abundance, is closely related to CH4
production [38]. Considering not only that in vivo and in vitro outcomes may differ, but
also that methanogens’ absolute abundance is not strictly correlated with the ruminants’
methane emission, future studies should combine the assessment of rumen archaeome and
daily methane emissions aiming to bridge the aforementioned scientific gap.

Notwithstanding, methanogens coexist in symbiotic interactions not only with proto-
zoa [39] but also, were recently reported to be associated with anaerobic fungi as well [40].
Current concerns about the impact of livestock on greenhouse gas emissions led researchers
to evaluate nutritional strategies for the manipulation of the rumen protozoa, to reduce
CH4 production. It has been reported that a high content of fat may be a solid strategy for
the neutralization of rumen protozoa [41]. The antiprotozoal effect of lipids depends on the
composition of the FA with MCFA being more effective than PUFA in controlling protozoal
numbers [42]. However, so far, no reliable and applicable method has been developed for
the control of rumen protozoa, however, a series of plant extracts capable of controlling if
not completely causing defaunation has been reported [43]. There is a linear relationship
between protozoa concentration and CH4 emissions [42] and it has been estimated that
up to 37% of CH4 production by ruminants can be attributed to methanogens associated
with rumen protozoa [44,45]. However, it is important to mention that the majority of
non-specific strategies for defaunation, holistically impair the rumen microbiome and con-
sequently rumen fermentation potential. Hence, methane mitigation based on such dietary
strategies is majorly a plasmatic observation that is attributed to the general suppression
of rumen degradative potential. Additionally, supporting the aforementioned and the
degradative importance of protozoa, a meta-analysis by Newbold et al. [43] indicated that
in defaunation trials, rumen organic matter digestibility and specifically NDF and ADF
digestibility were significantly decreased (−7%, −20%, and −16%, respectively) due to
the loss of protozoal fibrolytic activity. In our study, the relative abundance of Protozoa
was significantly increased, both in rumen fluid and solid particles of the CS6 ewes, and,
consequently, this increase was also reported in the Entodinium. Supplementing cow diets
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with Camelina oil did not affect the total number of protozoa [17], whereas ingesting buf-
faloes’ rumen fluid with Camelina oil in different forage-to-concentrate ratios significantly
decreased rumen protozoa populations in vitro [18]. Interestingly, supplementing oilseeds
with high content of linoleic and a-linolenic acids in cow diets, reduced the overall popula-
tion of protozoa in their rumen fluid [10]. Similarly, feeding crushed sunflower seeds and
crushed canola seeds significantly decreased the rumen protozoa population in cows [46].

Furthermore, there is an interdependence between Archaea/methanogens and Fungi,
as Archaea naturally attach to anaerobic fungi increasing their activity [47]. Anaerobic fungi
can influence the rest of the microbial population as they produce H2 during the initial
degradation of cell walls, which can be used as a substrate for the degradation mechanisms
of other populations [48]. Investigating the effect of different feeding strategies on both
the rumen fluid and solid particles is important for the detection of fungal species as while
most fungi associated with celluloses and hemicelluloses are retained in the solid phase,
the fluid phase may also contain smaller particles to which fungi may be attached [48]. In
our study, the relative abundance of Fungi was significantly reduced in the solid but not in
the fluid phase of the CS16 rumen samples. Maia et al. [49] reported that PUFA have also
toxicity effects against rumen anaerobic fungi in vitro; thus, their reduction could be partly
justified. Their inconsistency between rumen fluid and solid fraction could be attributed to
the source of PUFA in our study (seeds). More specifically, the inclusion of PUFA-rich seeds
may be related to slower PUFA release after fibrolytic species action in the seeds’ cell wall.
Since the fibrolytic activity is majorly taking place in the feed particle fraction of rumen
digesta, the released PUFA may severely affect fungi species also adhered to feed particles.

The main bacterial species with the strongest cellulolytic processes are the Fibrobacter
succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens [50]. More specifically, Fi-
brobacter succinogenes and Ruminococcus albus are the two bacterial species that compared to
the rest cellulolytic species degrade and break down cellulose faster and to a greater ex-
tent [8,51]. However, due to PUFA toxicity, the relative abundance of such bacterial species
may decrease [49,52,53]. More specifically, the administration of oilseeds, due to their PUFA
content, has been shown to reduce bacterial species with cellulolytic activity [8,19]. In this
study, the relative abundance of Ruminococcus flavefaciens was significantly decreased in
the rumen solid particles of the ewes of the CS11 and CS16, which agrees with the work of
Dai et al. [19], who reported a reduced abundance of Ruminococcus spp., Fibrobacter spp.,
and Butyriviprio spp. in vitro due to CS supplementation. In compliance with our findings,
supplementing the whole linseed in goat diets at 10 and 20% significantly reduced the
populations of Fibrobacter succinogenes and Ruminococcus flavefaciens but not Ruminococcus
albus [8]. On the contrary, a significant increase was observed in the relative abundance of
Fibrobacter succinogenes in the rumen fluid of the group with the lowest supplementation
level of CS (CS6). In addition, Bayat et al. [17] did not report any significant alteration
when dairy cow diets were supplemented with Camelina oil. In contrast, although in dairy
cows’ rumen fluid, the administration of oilseeds especially rich in linoleic acid decreased
the population of Fibrobacter succinogenes, it increased those of Ruminococcus albus and Ru-
minococcus flavefaciens [10]. Authors suggested that the measured cellulolytic bacteria were
at the expense of other bacterial populations [10]. Although the three dominant bacterial
species with prominent fibrolytic activity showed a decreasing trend in the solid fraction of
ewes’ rumen with the inclusion of CS, no significant alterations were observed for animal
performance [23] or health status [23,54]. However, further studies should be carried out
assessing the impact of CS in rumen enzymatic degradative potential and apparent total
tract digestibility indices aiming to clarify if the aforementioned microbes’ fluctuations
could cause functional consequences.

Moreover, there are non-cellulolytic bacteria such as Treponema bryantii [55] and Pre-
votella ruminicola [56] that are important for cellulose degradation, since they can activate
cellulolytic bacteria through the “cross-feeding” interaction [57] and cooperate with cellu-
lolytic bacteria to improve cellulose digestion. Interspecies H2 transport and metabolite
removal and/or exchange are factors thought to contribute to such synergy [57]. One
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of the most important non-cellulolytic bacterial species that are involved in cellulolytic
processes is Selenomonas ruminantium. It improves cellulose digestion when co-cultured
with Ruminococcus flavefaciens by converting succinic acid, a metabolite of Ruminococcus
flavefaciens, to propionate [58]. A similar relationship was hypothesized for the combination
of Selenomonas ruminantium and Fibrobacter succinogenes [59], and it was found that their
combination resulted in a synergistic increase in propionate production [60]. Evaluating
this synergy is necessary to maximize cellulose digestion in the rumen as Fibrobacter succino-
genes, as previously mentioned, is considered the most important cellulolytic species in this
direction [51]. Notably, supplementing CS at the two highest inclusion levels (CS11 and
CS16) significantly increased the relative abundance of Selenomonas ruminantium, which
agrees with an in vitro study of a dual-flow continuous culture system that evaluated
two different levels of CS supplementation [19]. These results lead to the conclusion that
supplementing CS in ewes; diets may balance the population of bacterial species involved
in cellulose degradation and digestion. Therefore, the inverse modifications observed in the
relative abundance of Ruminococcus flavefaciens, Selenomonas ruminantium, and Fibrobacter
succinogenes in both rumen fluid and solid particles of the four dietary treatments may
indicate balance in bacterial populations involved in cellulolytic processes.

Furthermore, there are bacterial species responsible for the degradation of non-
structural polysaccharides or starch (amylolytic) and proteins (proteolytic). Ruminobacter
amylophilus, Butyrivibrio fibrisolvens, and Streptococcus bovis are involved in both degradation
processes, whereas Prevotella sp. and Megasphaera elsdenii demonstrate strong proteolytic
ability [61]. Interestingly, the relative abundance of species of the genus Prevotella was not
significantly affected in our study. As previously mentioned, the relative abundance of
Ruminobacter amylophilus was significantly increased in the rumen fluid of the CS11. The
NGS analysis confirmed this finding, showing a greater abundance in the same group.
Butyrivibrio fibrisolvens is also considered responsible for the biohydrogenation and is in-
volved in its initial stages in which PUFA are biohydrogenated to trans C18:1. On the other
hand, Butyrivibrio proteoclasticus biohydrogenates trans C18:1 to C18:0. The supplementation
of CS did not significantly affect the relative abundance of the aforementioned bacterial
species in the rumen fluid; however, in the solid particles, it caused a decrease in the
relative abundance of the Butyrivibrio fibrisolvens in the CS16, which may be attributed to
the highest inclusion level PUFA toxicity [24], and an increase in the relative abundance of
the Butyrivibrio proteoclasticus in the CS11. However, these alterations did not affect at this
pattern the rumen’s FA profile.

5. Conclusions

Although the initial screening was carried out using NGS technology followed by
specific microbes targeting unveiled important changes in the rumen microbiota under
CS supplementation levels, in the era of omics techniques, more information is needed in
order to deeply understand the impact of CS and dietary PUFA on rumen biochemistry
by screening numerous taxa and their functional reflection. The dietary supplementation
with 160 g·kg−1 CS in ewes’ concentrates induced favourable changes in methanogen
populations, whereas changes in bacterial species related to degradation processes in the
rumen might not affect animal performance but are accombinied by a reduction in milk
fat content.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ani13030377/s1, Table S1: Concentrate ingredients of the
four dietary treatments (CON, CS6, CS11, CS16) with different levels of Camelina sativa seeds (0, 60,
110, and 160 g·kg−1 of concentrate); Table S2: Sequences of primers used for RT-PCRs, genomic re-
gions of PCR amplification, primer efficiency, amplicon size, and hybridization temperature; Table S3:
Relative abundance of the microorganisms in ewes’ rumen fluid of the four dietary treatments (CON,
CS6, CS11, CS16) with different levels of Camelina sativa seeds (0, 60, 110, and 160 g·kg−1 of concen-
trate); Table S4: Relative abundance of the microorganisms in ewes’ rumen solid of the four dietary
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treatments (CON, CS6, CS11, CS16) with different levels of Camelina sativa seeds (0, 60, 110, and
160 g·kg−1 of concentrate).
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