Effects of Supplementation with Bee Pollen and Propolis on Growth Performance and Serum Metabolites of Rabbits: A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search and Study Selection
2.2. Data Extraction
2.3. Calculations and Statistical Analysis
2.4. Heterogeneity and Publication Bias
2.5. Meta-regression and Subgroup Analysis
3. Results
3.1. Study Attributes and Excluded Studies
3.2. Growth Performance
3.3. Serum Metabolites
3.4. Publication Bias and Meta-Regression
3.5. Subgroup Analysis
4. Discussion
4.1. Growth Performance
4.2. Serum Metabolites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Author | Country | Product | Duration, d | Age 1 | Method of supplementation | Dose, mg/kg BW |
---|---|---|---|---|---|---|
Abdel-Hamid et al. [48] | Egypt | BP | 28 | ≤15 | Aqueous solution orally with a syringe | 268, 321 |
Al-Homidan et al. [18] | Egypt | PRO | 42 | ≤15 | Mixed with a basal diet | 250, 500 |
Attia et al. [69] | Egypt | BP | 70 | >15 | Aqueous solution orally with a syringe | 54, 120, 171, 309, 600, 904 |
Attia et al. [70] | Egypt | BP | 140 | >15 | Aqueous solution orally with a syringe | 52, 114, 156, 335, 674, 1002 |
Attia et al. [2] | Egypt | BP, PRO | 56 | ≤15 | Aqueous solution orally with a syringe | 100, 93 |
Attia et al. [14] | Egypt | BP, PRO | 140 | >15 | Aqueous solution orally with a syringe | 737, 735 |
Attia et al. [20] | Egypt | BP, PRO | 280 | >15 | Oral capsules | 423, 846, 423, 846 |
Dias et al. [71] | Brazil | BP | 82 | ≤15 | Aqueous solution orally with a syringe | 1000 |
El-Hammady et al. [72] | Egypt | BP | 56 | >15 | Orally through drinking water | 500, 1000 |
Hashem et al. [73] | Egypt | PRO | 70 | >15 | Mixed with a basal diet | 30 |
Hashem et al. [1] | Egypt | PRO | 35 | ≤15 | Mixed with a basal diet | 30, 60 |
Hassan et al. [17] | Egypt | BP | 84 | >15 | Orally through drinking water | 636, 1280 |
Piza et al. [74] | Brazil | PRO | 32 | ≤15 | Mixed with a basal diet | 47, 93, 139 |
Sierra-Galicia et al. [19] | Mexico | BP, PRO | 42 | ≤15 | Orally through drinking water | 500, 50 |
Waly et al. [16] | Egypt | PRO | 56 | ≤15 | Mixed with a basal diet | 100, 150, 200 |
Zeedan et al. [15] | Egypt | BP | 70 | ≤15 | Orally through drinking water | 140, 348, 487 |
Parameter | Mean | Median | Minimum | Maximum | SD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dietary features | NC | Control | PRO | Control | PRO | Control | PRO | Control | PRO | Control | PRO |
DM, g/kg DM | 11 | 888.4 | 888.4 | 878.0 | 878.0 | 874.7 | 874.7 | 917.1 | 917.1 | 16.66 | 16.66 |
CP, g/kg DM | 14 | 171.2 | 171.6 | 172.8 | 172.8 | 160.0 | 160.0 | 185.0 | 185.0 | 7.91 | 7.76 |
EE, g/kg DM | 10 | 44.97 | 44.97 | 28.80 | 28.80 | 26.20 | 26.60 | 78.00 | 78.00 | 7.59 | 7.59 |
NDF, g/kg DM | 8 | 320.3 | 320.3 | 316.4 | 316.4 | 314.2 | 314.2 | 331.1 | 331.1 | 7.56 | 7.56 |
ADF, g/kg DM | 8 | 171.8 | 171.8 | 162.2 | 162.2 | 148.1 | 148.1 | 201.2 | 201.2 | 24.97 | 24.97 |
CF, g/kg DM | 12 | 133.1 | 133.1 | 133.5 | 133.5 | 126.7 | 126.7 | 138.5 | 138.5 | 4.24 | 4.24 |
Ash, g/kg DM | 5 | 94.12 | 94.12 | 100.7 | 100.7 | 74.8 | 74.8 | 103.6 | 103.6 | 12.60 | 12.60 |
Ca, g/kg DM | 6 | 6.25 | 6.25 | 6.30 | 6.30 | 5.90 | 5.90 | 6.60 | 6.60 | 0.39 | 0.39 |
P, g/kg DM | 6 | 3.78 | 3.78 | 3.75 | 3.75 | 3.50 | 3.50 | 4.10 | 4.10 | 0.31 | 0.31 |
DE, MJ/kg DM | 13 | 11.00 | 11.00 | 11.22 | 11.22 | 9.40 | 9.40 | 11.22 | 11.22 | 0.51 | 0.51 |
PRO, mg/kg BW | 15 | - | 248 | - | 139 | - | 30 | - | 846 | - | 259.7 |
Duration, days | 50 | 42 | 32 | 140.0 | 27.54 |
References
- Hashem, N.M.; Abd El-Hady, A.M.; Hassan, O.A. Inclusion of phytogenic feed additives comparable to vitamin E in diet of growing rabbits: Effects on metabolism and growth. Ann. Agric. Sci. 2017, 62, 161–167. [Google Scholar] [CrossRef]
- Attia, Y.A.; El-Hanoun, A.M.; Bovera, F.; Monastra, G.; El-Tahawy, W.S.; Habiba, H.I. Growth performance, carcass quality, biochemical and haematological traits and immune response of growing rabbits as affected by different growth promoters. J. Anim. Physiol. Anim. Nutr. 2013, 98, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Cui, X.; Wang, Z.; Xiao, C.; Ji, Q.; Wei, Q.; Huang, Y.; Bao, G.; Liu, Y. Effects of Clostridium butyricum and a bacteriophage cocktail on growth performance, serum biochemistry, digestive enzyme activities, intestinal morphology, immune responses, and the intestinal microbiota in rabbits. Antibiotics 2021, 10, 1347. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Bovera, F.; Abd El-Hamid, A.E.; Calabrò, S.; Mandour, M.A.; Al-Harthi, M.A.; Hassan, S.S. Evaluation of the carryover efect of antibiotic, bee pollen and propolis on growth performance, carcass traits and splenic and hepatic histology of growing rabbits. J. Anim. Physiol. Anim. Nutr. 2019, 103, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Hassanein, E.M.; Simal-Gandara, J. Improving reproductive performance and health of mammals using honeybee products. Antioxidants 2021, 10, 336. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Alagawany, M.; Farag, M.R.; Elnesr, S.S. Beneficial impacts of bee pollen in animal production, reproduction and health. J. Anim. Physiol. Anim. Nutr. 2019, 103, 477–484. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant activity in bee products: A review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef]
- Osés, S.M.; Marcos, P.; Azofra, P.; de Pablo, A.; Fernández-Muíño, M.Á.; Sancho, M.T. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants 2020, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Sadarman, S.; Erwan, E.; Irawan, A.; Sholikin, M.M.; Solfaine, R.; Harahap, R.P.; Irawan, A.C.; Sofyan, A.; Nahrowi, N.; Jayanegara, A. Propolis supplementation affects performance, intestinal morphology, and bacterial population of broiler chickens. S. Afr. J. Anim. Sci. 2021, 51, 477–487. [Google Scholar] [CrossRef]
- Lika, E.; Kostić, M.; Vještica, S.; Milojević, I.; Puvača, N. Honeybee and plant products as natural antimicrobials in enhancement of poultry health and production. Sustainability 2021, 13, 8467. [Google Scholar] [CrossRef]
- AL-Kahtani, S.N.; Alaqil, A.A.; Abbas, A.O. Modulation of antioxidant defense, immune response, and growth performance by inclusion of propolis and bee pollen into broiler diets. Animals 2022, 12, 1658. [Google Scholar] [CrossRef]
- Morsy, A.S.; Soltan, Y.A.; El-Zaiat, H.M.; Alencar, S.M.; Abdalla, A.L. Bee propolis extract as a phytogenic feed additive to enhance diet digestibility, rumen microbial biosynthesis, mitigating methane formation and health status of late pregnant ewes. Anim. Feed Sci. Technol. 2021, 273, 114834. [Google Scholar] [CrossRef]
- Cécere, B.G.O.; Silva, A.S.; Molosse, V.L.; Alba, D.F.; Leal, K.W.; Rosa, G.; Pereira, W.A.B.; Silva, A.D.; Schetinger, M.R.C.; Kempla, A.P.; et al. Addition of propolis to milk improves lactating lamb’s growth: Efect on antimicrobial, antioxidant and immune responses in animals. Small Rumin. Res. 2021, 194, 106265. [Google Scholar] [CrossRef]
- Attia, Y.; Bovera, F.; El-Tahawy, W.; El-Hanoun, A.; Al-Harthi, M.; Habiba, H.I. Productive and reproductive performance of rabbits does as affected by bee pollen and/or propolis, inulin and/or mannan-oligosaccharides. World Rabbit Sci. 2015, 23, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Zeedan, K.; El-Neney, B.A.M.; Aboughaba, A.A.A.A.; El-Kholy, K. Efect of bee pollen at different levels as natural additives on immunity and productive performance in rabbit males. Egypt. Poult. Sci. 2017, 37, 213–231. [Google Scholar]
- Waly, A.H.; El-Azayem, E.H.A.; Younan, G.E.; Zedan, A.H.; El-Komy, H.M.A.; Mohamed, R.A. Effects of propolis supplementation on growth performance, nutrients digestibility, carcass characteristics and meat quality of growing New Zealand rabbits. Egypt. J. Nutr. Feed. 2021, 24, 65–73. [Google Scholar] [CrossRef]
- Hassan, S.S.A.; Shahba, H.A.; Mansour, M.M. Influence of using date palm pollen or bee pollen on some blood biochemical metabolites, semen characteristics and subsequent reproductive performance of v-line male rabbits. J. Rabbit Sci. 2022, 32, 19–39. [Google Scholar] [CrossRef]
- Al-Homidan, I.; Fathi, M.; Abdelsalam, M.; Ebied, T.; Abou-Emera, O.; Mostafa, M.; El-Razik, M.A.; Shehab-El-Deen, M. Effect of propolis supplementation and breed on growth performance, immunity, blood parameters, and cecal microbiota in growing rabbits. Anim. Biosci. 2022, 35, 1606–1615. [Google Scholar] [CrossRef]
- Sierra-Galicia, M.I.; Rodríguez-de Lara, R.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; García-Muñiz, J.G.; Fallas-López, M.; Hernández-García, P.A. Supplying Bee Pollen and Propolis to Growing Rabbits: Effects on Growth Performance, Blood Metabolites, and Meat Quality. Life 2022, 12, 1987. [Google Scholar] [CrossRef]
- Attia, Y.A.; Bovera, F.; Abd Elhamid, A.E.H.; Nagadi, S.A.; Mandour, M.A.; Hassan, S.S. Bee pollen and propolis as dietary supplements for rabbit: Effect on reproductive performance of does and on immunological response of does and their offspring. J. Anim. Physiol. Anim. Nutr. 2019, 103, 959–968. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis, 1st ed.; John Wiley & Sons Inc.: Chichester, UK, 2009; p. 413. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analysis. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Trocino, A.; Garcia, J.; Carabaño, R.; Xiccato, G. A meta-analysis on the role of soluble fibre in diets for growing rabbits. World Rabbit Sci. 2013, 21, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Effects of dietary tannins’ supplementation on growth performance, rumen fermentation, and enteric methane emissions in beef cattle: A meta-analysis. Sustainability 2021, 13, 7410. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Santiago-Figueroa, I. A meta-analysis of essential oils use for beef cattle feed: Rumen fermentation, blood metabolites, meat quality, performance and, environmental and economic impact. Fermentation 2022, 8, 254. [Google Scholar] [CrossRef]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Growth performance, meat quality and antioxidant status of sheep supplemented with tannins: A meta-analysis. Animals 2021, 11, 3184. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley and Sons, Inc.: Chichester, UK, 2019; pp. 143–176. [Google Scholar]
- Viechtbauer, W. Conducting meta-analysis in R with the metaphor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Appuhamy, J.R.N.; Strathe, A.B.; Jayasundara, S.; Wagner-Riddle, C.; Dijkstra, J.; France, J.; Kebreab, E. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 2013, 96, 5161–5173. [Google Scholar] [CrossRef] [Green Version]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Statistical Analysis System (SAS). SAS/STAT User’s Guide (Release 6.4); SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- Egger, M.; Smith, G.D.; Altman, D.G. Systematic Reviews in Health Care, 2nd ed.; MBJ Publishing Group: London, UK, 2001; pp. 109–121. [Google Scholar]
- Lean, I.J.; Thompson, J.M.; Dunshea, F.R. A meta-analysis of zilpaterol and ractopamine effects on feedlot performance, carcass traits and shear strength of meat in cattle. PLoS ONE 2014, 9, e115904. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, S.; Tweedie, R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Amer. Statist. Assoc. 2000, 95, 89–98. [Google Scholar] [CrossRef]
- Littell, J.H.; Corcoran, J.; Pillai, V. Systematic Reviews and Meta-Analysis, 1st ed.; Oxford University Press: Oxford, UK, 2008; pp. 111–132. [Google Scholar]
- Saeed, M.; Arain, M.A.; Kamboh, A.A.; Memon, S.A.; Umar, M.; Rashid, M.; Babazadeh, D.; El-Hack, M.E.A.; Alagawany, M. Raw propolis as a promising feed additive in poultry nutrition: Trends and advances. J. Anim. Health Prod. 2017, 5, 132–142. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elashal, M.H.; Yosri, N.; Du, M.; Musharraf, S.G.; Nahar, L.; Sarker, S.D.; Guo, Z.; Cao, W.; Zou, X.; et al. Bee pollen: Current status and therapeutic potential. Nutrients 2021, 13, 1876. [Google Scholar] [CrossRef]
- Braakhuis, A. Evidence on the health benefits of supplemental propolis. Nutrients 2019, 11, 2705. [Google Scholar] [CrossRef] [Green Version]
- Paniagua, M.; Crespo, F.J.; Arís, A.; Devant, M. Effects of flavonoids extracted from Citrus aurantium on performance, behavior, and rumen gene expression in Holstein bulls fed with high-concentrate diets in pellet form. Animals 2021, 11, 1387. [Google Scholar] [CrossRef]
- Paniagua, M.; Crespo, J.F.; Arís, A.; Devant, M. Supplementing Citrus aurantium flavonoid extract in high-fat finishing diets improves animal behavior and rumen health and modifies rumen and duodenum epithelium gene expression in Holstein bulls. Animals 2022, 12, 1972. [Google Scholar] [CrossRef]
- Takay, S.; Yoshida, R.; Shigemura, N.; Ninomiya, Y. Peptide Signaling in Taste Transduction. In Chemosensory Transduction; Zufall, F., Munger, S.D., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 299–317. [Google Scholar] [CrossRef]
- La Sala, M.S.; La Hurtado, M.D.; Brown, A.R.; Bohórquez, D.V.; Liddle, R.A.; Herzog, H.; Zolotukhin, S.; Dotson, C.D. Modulation of taste responsiveness by the satiation hormone peptide YY. FASEB J. 2013, 27, 5022–5033. [Google Scholar] [CrossRef] [Green Version]
- Birolo, M.; Xiccato, G.; Bordignon, F.; Dabbou, S.; Zuffellato, A.; Trocino, A. Growth performance, digestive efficiency, and meat quality of two commercial crossbred rabbits fed diets differing in energy and protein levels. Animals 2022, 12, 2427. [Google Scholar] [CrossRef]
- Marty, J.; Vernay, M. Absorption and metabolism of the volatile fatty acids in the hind-gut of the rabbit. Br. J. Nutr. 1984, 51, 265–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Hamid, T.M.; El-Tarabany, M.S. Effect of bee pollen on growth performance, carcass traits, blood parameters, and the levels of metabolic hormones in New Zealand White and Rex rabbits. Trop. Anim. Health Prod. 2019, 51, 2421–2429. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, F.C. Effect of dietary methionine on growth performance and insulin-like growth factor-I mRNA expression of growing meat rabbits. J. Anim. Physiol. Anim. Nutr. 2010, 94, 803–809. [Google Scholar] [CrossRef]
- North, M.K.; Dalle Zotte, A.; Hoffman, L.C. Effect of quercetin supplementation on the growth, feed efficiency and serum hormone levels of New Zealand White rabbits. S. Afr. J. Anim. Sci. 2018, 48, 1128–1139. [Google Scholar] [CrossRef] [Green Version]
- North, M.K.; Dalle Zotte, A.; Hoffman, L. Composition of rabbit caecal microbiota and the effects of dietary quercetin supplementation and sex thereupon. World Rabbit Sci. 2019, 27, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Hokamp, J.A.; Nabity, M.B. Renal biomarkers in domestic species. Vet. Clin. Pathol. 2016, 45, 28–56. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, H.P. Renal Function Testing. In Nephrology and Urology of Small Animals; Wiley-Blackwell: Hoboken, NJ, USA, 2011; ISBN 978-0-8138-1717-0. [Google Scholar]
- Melillo, A. Rabbit clinical pathology. J. Exot. Pet Med. 2007, 16, 135–145. [Google Scholar] [CrossRef]
- Marín-García, P.J.; del López-Luján, M.C.; Ródenas, L.; Martínez-Paredes, E.M.; Blas, E.; Pascual, J.J. Plasma urea nitrogen as an indicator of amino acid imbalance in rabbit diets. World Rabbit Sci. 2020, 28, 63–72. [Google Scholar] [CrossRef]
- Rzepecka-Stojko, A.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Kabała-Dzik, A.; Kubina, R.; Moździerz, A.; Buszman, E. Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity. Molecules 2015, 20, 21732–21749. [Google Scholar] [CrossRef] [Green Version]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2014, 19, 78–101. [Google Scholar] [CrossRef]
- Zeka, K.; Ruparelia, K.; Arroo, R.R.J.; Budriesi, R.; Micucci, M. Flavonoids and their metabolites: Prevention in cardiovascular diseases and diabetes. Diseases 2017, 5, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, M.L.; West, K.L. Mechanisms by which dietary fatty acids modulate plasma lipids. J. Nutr. 2005, 135, 2075–2078. [Google Scholar] [CrossRef] [Green Version]
- Tothova, C.; Nagy, O.; Kovac, G. Serum proteins and their diagnostic utility in veterinary medicine: A review. Veterinární Med. 2016, 61, 475–496. [Google Scholar] [CrossRef] [Green Version]
- Krithika, R.; Verma, R.J. Solanum nigrum confers protection against CCl4-induced experimental hepatotoxicity by increasing hepatic protein synthesis and regulation of energy metabolism. Clin. Phytoscience 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Dawod, A.; Fathalla, S.; El-Seedi, H.R.; Hammad, M.A.; Osman, N.; Abosheriba, N.; Anis, A.; Shehata, A.A.; Elkhatam, A. Efficacy of Ficus sycomorus (Sycamore Fig) extract on intestinal coccidiosis in experimentally infected rabbits. Life 2022, 12, 917. [Google Scholar] [CrossRef]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Cmaj 2005, 172, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Fraser, C.M. Merck Veterinary Manual, 6th ed.; Ocean: Barcelona, Spain, 2007; p. 1314. [Google Scholar]
- Jenkins, J.R. Rabbit diagnostic testing. J. Exot. Pet Med. 2008, 17, 4–15. [Google Scholar] [CrossRef]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef]
- Nielsen, F.; Mikkelsen, B.B.; Nielsen, J.B.; Andersen, H.R.; Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin. Chem. 1997, 43, 1209–1214. [Google Scholar] [CrossRef] [Green Version]
- Gessner, D.K.; Ringseis, R.; Eder, K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 2017, 101, 605–628. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Hanoun, A.; Bovera, F. Effect of different levels of bee pollen on performance and blood profile of New Zealand White bucks and growth performance of their offspring during summer and winter months. J. Anim. Physiol. Anim. Nutr. 2011, 95, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Al-Hanoun, A.; Tag El-Din, A.E.; Bovera, F.; Shewika, Y.E. Effect of bee pollen levels on productive, reproductive and blood traits of NZW rabbits. J. Anim. Physiol. Anim. Nutr. 2011, 95, 294–303. [Google Scholar] [CrossRef]
- Días, D.M.B.; de Oliveira, M.M.; da Silva, D.M.; Bonifácio, N.P.; Claro, D.C.; Marchesin, W.A. Bee pollen supplementation in diets for rabbit does and growing rabbits. Acta Sci. Anim. Sci. 2013, 35, 425–430. [Google Scholar] [CrossRef]
- El-Hammady, H.; Abuoghaba, A.; El-Fattah, A.; El-Rahman, A. Semen physical characteristics, blood parameters and some physiological estimates of rabbit bucks administered with bee pollen under Upper Egypt climatic conditions. Egyp. J. Rabbit Sci. 2017, 27, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Hashem, N.M.; El-Hady, A.A.; Hassan, O. Effect of vitamin E or propolis supplementation on semen quality, oxidative status and hemato-biochemical changes of rabbit bucks during hot season. Livest. Sci. 2013, 157, 520–526. [Google Scholar] [CrossRef]
- Piza, P.C.; Moreira, B.L.; Silva, N.C.; Sodré, P.I.; Fonseca, L.S.; Leite, R.F. Effect of crude propolis on the performance and feed digestibility of New Zealand White rabbits. Acta Sci. 2021, 43, e52593. [Google Scholar] [CrossRef]
Parameter | Mean | Median | Minimum | Maximum | SD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dietary features | NC | Control | BP | Control | BP | Control | BP | Control | BP | Control | BP |
DM, g/kg DM | 9 | 901.0 | 901.1 | 903.2 | 903.2 | 874.7 | 874.7 | 917.1 | 917.1 | 11.81 | 11.81 |
CP, g/kg DM | 27 | 177.8 | 177.8 | 180.0 | 180.0 | 170.0 | 170.0 | 184.0 | 184.0 | 5.49 | 5.49 |
EE, g/kg DM | 12 | 29.93 | 29.93 | 27.75 | 27.75 | 26.20 | 26.20 | 51.40 | 51.40 | 6.89 | 6.89 |
NDF, g/kg DM | 5 | 324.1 | 324.1 | 326.9 | 326.9 | 316.4 | 316.4 | 331.1 | 331.1 | 7.21 | 7.21 |
ADF, g/kg DM | 5 | 154.2 | 154.2 | 149.2 | 149.2 | 148.1 | 148.1 | 163.4 | 163.4 | 7.36 | 7.36 |
CF, g/kg DM | 24 | 131.8 | 131.8 | 130.0 | 130.0 | 126.0 | 126.0 | 150.0 | 150.0 | 6.39 | 6.39 |
Ash, g/kg DM | 7 | 94.43 | 94.43 | 95.20 | 95.20 | 74.8 | 74.8 | 103.6 | 103.6 | 10.30 | 10.30 |
Ca, g/kg DM | 3 | 0.95 | 0.95 | 0.87 | 0.87 | 0.87 | 0.87 | 1.11 | 1.11 | 0.13 | 0.13 |
P, g/kg DM | 3 | 0.53 | 0.53 | 0.41 | 0.41 | 0.41 | 0.41 | 0.77 | 0.77 | 0.20 | 0.20 |
DE, MJ/kg DM | 26 | 10.60 | 10.60 | 10.47 | 10.47 | 9.2 | 9.2 | 12.15 | 12.15 | 0.69 | 0.69 |
BP, mg/kg BW | 27 | - | 374.0 | - | 335.0 | - | 100 | - | 1000 | - | 195.9 |
Duration, days | 85.0 | 70.0 | 28.0 | 140.0 | 37.68 |
Item | N (NC) | Heterogeneity | Egger Test 1 | |||||
---|---|---|---|---|---|---|---|---|
Control means (SD) | WMD (95 % CI) | p-Value | p-Value | I2 (%) | p-Value | |||
ADG, g/d | 11 (27) | 21.38 (7.33) | 1.309 (0.802; 1.816) | <0.001 | <0.001 | 87.91 | 0.182 | |
DFI, g/d | 10 (25) | 149.4 (62.9) | −0.935 (−1.343; −0.527) | <0.001 | <0.001 | 81.96 | 0.061 | |
FCR, DMI/ADG | 8 (19) | 4.49 (1.00) | −0.708 (−1.021; −0.395) | <0.001 | <0.001 | 99.45 | 0.353 | |
HCY, % | 4 (7) | 53.68 (4.53) | 2.723 (1.155; 4.290) | <0.001 | <0.001 | 93.10 | NA |
Item | N (NC) | Heterogeneity | Egger Test 1 | |||||
---|---|---|---|---|---|---|---|---|
Control means (SD) | WMD (95 % CI) | p-Value | p-Value | I2 (%) | p-Value | |||
ADG, g/d | 8 (15) | 29.53 (6.06) | 1.035 (0.441; 1.628) | <0.001 | <0.001 | 76.27 | 0.117 | |
DFI, g/d | 8 (15) | 109.44 (26.25) | −0.427 (−0.837; −0.018) | 0.041 | 0.004 | 55.94 | 0.196 | |
FCR, DMI/ADG | 7 (14) | 3.15 (0.87) | −0.442 (−0.560; −0.324) | <0.001 | <0.001 | 81.03 | 0.095 | |
HCY, % | 5 (8) | 55.55 (5.63) | 3.504 (1.052; 5.957) | 0.005 | <0.001 | 90.63 | NA |
Item | N (NC) | Heterogeneity | Egger Test 1 | ||||
---|---|---|---|---|---|---|---|
Control means (SD) | WMD (95 % CI) | p-Value | p-Value | I2 (%) | p-Value | ||
Urea, mg/dL | 9 (20) | 31.38 (8.94) | −4.023 (−6.827; −1.219) | 0.005 | <0.001 | 99.64 | 0.266 |
Creatinine, mg/dL | 9 (18) | 1.17 (0.33) | −0.152 (−0.303; −0.001) | 0.049 | <0.001 | 98.95 | 0.968 |
Glucose, mg/dL | 10 (20) | 88.28 (19.24) | 13.759 (7.641; 19.876) | <0.001 | <0.001 | 99.69 | 0.121 |
Cholesterol, mg/dL | 9 (18) | 118.80 (56.1) | −11.607 (−13.347; −9.868) | <0.001 | <0.001 | 99.95 | 0.063 |
Albumin, mg/dL | 10 (20) | 3.08 (0.46) | 0.268 (0.138; 0.397) | <0.001 | <0.001 | 97.68 | 0.480 |
Globulin, mg/dL | 10 (20) | 2.79 (0.67) | 0.196 (0.039; 0.353) | 0.015 | <0.001 | 94.78 | 0.728 |
Total protein, mg/dL | 10 (20) | 5.87 (0.92) | 0.490 (0.238; 0.742) | <0.001 | <0.001 | 96.58 | 0.567 |
AST, UI/dL | 8 (17) | 50.88 (12.26) | −6.074 (−8.068; −4.080) | <0.001 | <0.001 | 84.99 | 0.083 |
ALT, UI/dL | 7 (16) | 61.91 (13.29) | −6.429 (−8.505; −4.353) | <0.001 | <0.001 | 90.94 | 0.460 |
TAC, mmol/L | 4 (7) | 3.88 (1.22) | 0.716 (0.273; 1.159) | 0.002 | <0.001 | 99.74 | NA |
MDA, nmol/mL | 3 (6) | 6.33 (3.70) | −0.774 (−1.368; −0.180) | 0.011 | <0.001 | 89.17 | NA |
Item | N (NC) | Heterogeneity | Egger Test 1 | |||||
---|---|---|---|---|---|---|---|---|
Control means (SD) | WMD (95 % CI) | p-Value | p-Value | I2 (%) | p-Value | |||
Urea, mg/dL | 3 (5) | 30.20 (7.59) | −0.842 (−13.942; 12.259) | 0.900 | <0.001 | 99.89 | NA | |
Creatinine, mg/dL | 3 (5) | 0.88 (0.28) | 0.151 (−0.121; 0.424) | 0.277 | <0.001 | 92.66 | NA | |
Glucose, mg/dL | 5 (7) | 95.07 (24.56) | 7.905 (−5.451; 21.262) | 0.246 | <0.001 | 98.16 | NA | |
Cholesterol, mg/dL | 5 (7) | 107.60 (39.6) | −8.012 (−14.000; −2.024) | 0.009 | 0.030 | 59.51 | NA | |
Albumin, mg/dL | 6 (9) | 3.15 (0.52) | 0.202 (0.001; 0.404) | 0.049 | <0.001 | 82.99 | NA | |
Globulin, mg/dL | 6 (9) | 2.63 (0.86) | 0.275 (0.077; 0.473) | 0.006 | <0.001 | 72.13 | NA | |
Total protein, mg/dL | 6 (9) | 5.78 (1.05) | 0.419 (0.072; 0.766) | 0.018 | <0.001 | 88.62 | NA | |
AST, UI/dL | 5 (7) | 50.31 (16.13) | −5.539 (−9.246; 1.543) | 0.006 | <0.001 | 81.39 | NA | |
ALT, UI/dL | 4 (6) | 57.32 (17.71) | −5.571 (−10.333; −0.810) | 0.022 | <0.001 | 93.32 | NA | |
TAC, mmol/L | 5 (8) | 2.47 (1.62) | 0.210 (0.036; 0.385) | 0.018 | <0.001 | 90.74 | NA | |
MDA, nmol/mL | 4 (7) | 1.62 (0.58) | −0.213 (−0.294; −0.132) | <0.001 | 0.045 | 55.4 | NA |
Parameter | Covariates | QM | Df | p-Value | R2 (%) | |
---|---|---|---|---|---|---|
Average daily gain (ADG) | Bee pollen dose | 0.351 | 1 | 0.554 | 0.0 | |
Supplementation period | 0.259 | 1 | 0.611 | 0.0 | ||
Rabbit´s age | 1.287 | 1 | 0.257 | 0.0 | ||
Supplementation method | 2.919 | 2 | 0.232 | 0.0 | ||
Sex | 4.093 | 3 | 0.252 | 0.0 | ||
Rabbit strain | 1.327 | 2 | 0.515 | 0.0 | ||
Daily feed intake (DFI) | Bee pollen dose | 0.419 | 1 | 0.517 | 0.0 | |
Supplementation period | 0.005 | 1 | 0.942 | 0.0 | ||
Rabbit´s age | 0.136 | 1 | 0.713 | 0.0 | ||
Supplementation method | 7.729 | 2 | 0.021 | 20.38 | ||
Sex | 6.102 | 3 | 0.107 | 0.0 | ||
Rabbit strain | 4.295 | 2 | 0.117 | 5.27 | ||
Glucose | Bee pollen dose | 0.001 | 1 | 0.975 | 0.0 | |
Supplementation period | 0.502 | 1 | 0.479 | 0.0 | ||
Rabbit´s age | 0.036 | 1 | 0.850 | 0.0 | ||
Supplementation method | 1.961 | 2 | 0.375 | 0.86 | ||
Sex | 2.824 | 2 | 0.244 | 6.72 | ||
Rabbit strain | 0.147 | 2 | 0.929 | 2.40 | ||
Albumin | Bee pollen dose | 4.971 | 1 | 0.026 | 27.46 | |
Supplementation period | 8.465 | 1 | 0.004 | 30.01 | ||
Rabbit´s age | 13.467 | 1 | 0.036 | 21.83 | ||
Supplementation method | 7.471 | 2 | 0.024 | 19.70 | ||
Sex | 7.205 | 2 | 0.127 | 0.0 | ||
Rabbit strain | 0.538 | 2 | 0.764 | 0.0 | ||
Globulin | Bee pollen dose | 0.420 | 1 | 0.517 | 0.0 | |
Supplementation period | 5.680 | 1 | 0.017 | 27.57 | ||
Rabbit´s age | 0.008 | 1 | 0.928 | 0.0 | ||
Supplementation method | 3.086 | 2 | 0.214 | 7.46 | ||
Sex | 6.056 | 2 | 0.114 | 2.18 | ||
Rabbit strain | 0.150 | 2 | 0.928 | 0.0 | ||
Total protein | Bee pollen dose | 2.345 | 1 | 0.126 | 5.49 | |
Supplementation period | 10.458 | 1 | 0.001 | 45.80 | ||
Rabbit´s age | 0.003 | 1 | 0.960 | 0.0 | ||
Supplementation method | 5.909 | 2 | 0.062 | 10.74 | ||
Sex | 6.269 | 2 | 0.061 | 5.76 | ||
Rabbit strain | 0.291 | 2 | 0.865 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra-Galicia, M.I.; Rodríguez-de Lara, R.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Ramírez-Valverde, R.; Fallas-López, M. Effects of Supplementation with Bee Pollen and Propolis on Growth Performance and Serum Metabolites of Rabbits: A Meta-Analysis. Animals 2023, 13, 439. https://doi.org/10.3390/ani13030439
Sierra-Galicia MI, Rodríguez-de Lara R, Orzuna-Orzuna JF, Lara-Bueno A, Ramírez-Valverde R, Fallas-López M. Effects of Supplementation with Bee Pollen and Propolis on Growth Performance and Serum Metabolites of Rabbits: A Meta-Analysis. Animals. 2023; 13(3):439. https://doi.org/10.3390/ani13030439
Chicago/Turabian StyleSierra-Galicia, María Inés, Raymundo Rodríguez-de Lara, José Felipe Orzuna-Orzuna, Alejandro Lara-Bueno, Rodolfo Ramírez-Valverde, and Marianela Fallas-López. 2023. "Effects of Supplementation with Bee Pollen and Propolis on Growth Performance and Serum Metabolites of Rabbits: A Meta-Analysis" Animals 13, no. 3: 439. https://doi.org/10.3390/ani13030439
APA StyleSierra-Galicia, M. I., Rodríguez-de Lara, R., Orzuna-Orzuna, J. F., Lara-Bueno, A., Ramírez-Valverde, R., & Fallas-López, M. (2023). Effects of Supplementation with Bee Pollen and Propolis on Growth Performance and Serum Metabolites of Rabbits: A Meta-Analysis. Animals, 13(3), 439. https://doi.org/10.3390/ani13030439