Complex of Lauric Acid Monoglyceride and Cinnamaldehyde Ameliorated Subclinical Necrotic Enteritis in Yellow-Feathered Broilers by Regulating Gut Morphology, Barrier, Inflammation and Serum Biochemistry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Group Formation and Diets
2.2. Eimeria acervulina and Clostridium perfringens Infection Protocol
2.3. Intestinal Pathological Damage
2.4. Intestinal Tissue Section
2.5. RNA Extraction and cDNA Synthesis
2.6. Quantitative PCR
2.7. Serum Biochemical Indicators
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Intestinal Pathology Score
3.3. Intestinal Tissue Morphology
3.4. Intestinal Mucosal Barrier Function
3.5. Intestinal Mucosal Inflammatory Factors
3.6. Serum Biochemical Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kaldhusdal, M.; Benestad, S.; Lovland, A. Epidemiologic aspects of necrotic enteritis in broiler chickens—Disease occurrence and production performance. Avian Pathol. 2016, 45, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Keyburn, A.L.; Boyce, J.D.; Vaz, P.; Bannam, T.L.; Ford, M.E.; Parker, D.; Di Rubbo, A.; Rood, J.I.; Moore, R.J. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 2008, 4, e26. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.J. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol. 2016, 45, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Marshall, M.; Wei, C.-I. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 1995, 43, 2839–2845. [Google Scholar] [CrossRef]
- Puvača, N.; Stanaćev, V.; Glamočić, D.; Lević, J.; Perić, L.; Milić, D. Beneficial effects of phytoadditives in broiler nutrition. World’s Poult. Sci. J. 2013, 69, 27–34. [Google Scholar] [CrossRef]
- Malayoğlu, H.B.; Baysal; Misirlioğlu, Z.; Polat, M.; Yilmaz, H.; Turan, N. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal diets. Br. Poult. Sci. 2010, 51, 67–80. [Google Scholar] [CrossRef]
- Thormar, H.; E Isaacs, C.; Brown, H.R.; Barshatzky, M.R.; Pessolano, T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 1987, 31, 27–31. [Google Scholar] [CrossRef]
- Su, G.; Wang, L.; Zhou, X.; Wu, X.; Chen, D.; Yu, B.; Huang, Z.; Luo, Y.; Mao, X.; Zheng, P.; et al. Effects of essential oil on growth performance, digestibility, immunity, and intestinal health in broilers. Poult. Sci. 2021, 100, 101242. [Google Scholar] [CrossRef]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Baldissera, M.D.; dos Santos, I.D.; Wagner, R.; Campigotto, G.; Jaguezeski, A.M.; Gris, A.; de Lima, J.L.; et al. Effects of phytogenic feed additive based on thymol, carvacrol and cinnamic aldehyde on body weight, blood parameters and environmental bacteria in broilers chickens. Microb. Pathog. 2018, 125, 168–176. [Google Scholar] [CrossRef]
- Timbermont, L.; Lanckriet, A.; Dewulf, J.; Nollet, N.; Schwarzer, K.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol. 2010, 39, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-T.; Chen, P.-F.; Chang, S.-C. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J. Ethnopharmacol. 2001, 77, 123–127. [Google Scholar] [CrossRef]
- Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, Additive, and Antagonistic Effects of Food Mixtures on Total Antioxidant Capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef]
- Kim, S.; Rhee, M. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans -cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157:H7. Food Control 2016, 60, 447–454. [Google Scholar]
- Thompson, D.R.; Parreira, V.R.; Kulkarni, R.R.; Prescott, J.F. Live attenuated vaccine-based control of necrotic enteritis of broiler chickens. Vet. Microbiol. 2006, 113, 25–34. [Google Scholar] [CrossRef]
- Skinner, J.T.; Bauer, S.; Young, V.; Pauling, G.; Wilson, J. An Economic Analysis of the Impact of Subclinical (Mild) Necrotic Enteritis in Broiler Chickens. Avian Dis. Dig. 2010, 5, e39–e40. [Google Scholar] [CrossRef]
- Al-Kassie, G.A. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pak. Vet. J. 2009, 29, 169–173. [Google Scholar]
- Shirzadegan, K. Reactions of Modern Broiler Chickens to Administration of Cinnamon Powder in the Diet. Iran. J. Appl. Anim. Sci. 2014, 4, 367–371. [Google Scholar]
- Devi, P.C.; Samanta, A.; Das, B.; Kalita, G.; Behera, P.S.; Barman, S. Effect of Plant Extracts and Essential Oil Blend as Alternatives to Antibiotic Growth Promoters on Growth Performance, Nutrient Utilization and Carcass Characteristics of Broiler Chicken. Indian J. Anim. Nutr. 2018, 35, 421–427. [Google Scholar] [CrossRef]
- Koochaksaraie, R.; Irani, M.; Gharavysi, S. The effects of cinnamon powder feeding on some blood metabolites in broiler chicks. Braz. J. Poult. Sci. 2011, 13, 197–202. [Google Scholar] [CrossRef]
- Lee, K.W.; Everts, H.; Kappert, H.J.; Frehner, M.; Losa, R.; Beynen, A.C. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef]
- Cross, D.; McDevitt, R.; Hillman, K.; Acamovic, T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br. Poult. Sci. 2007, 48, 496–506. [Google Scholar] [CrossRef]
- Mitsch, P.; Zitterl-Eglseer, K.; Köhler, B.; Gabler, C.; Losa, R.; Zimpernik, I. The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poult. Sci. 2004, 83, 669–675. [Google Scholar] [CrossRef]
- Giannenas, I.; Florou-Paneri, P.; Papazahariadou, M.; Christaki, E.; Botsoglou, N.A.; Spais, A.B. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella. Arch. Tierernahr. 2003, 57, 99–106. [Google Scholar] [PubMed]
- Kishawy, A.T.; A Amer, S.; El-Hack, M.E.A.; Saadeldin, I.M.; A Swelum, A. The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents. Asian-Australasian J. Anim. Sci. 2019, 32, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Barbarestani, S.Y.; Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Toghyani, M. Effects of dietary lavender essential oil on growth performance, intestinal function, and antioxidant status of broiler chickens. Livest. Sci. 2020, 233, 103958. [Google Scholar] [CrossRef]
- Donaldson, J.; Świątkiewicz, S.; Arczewka-Włosek, A.; Muszyński, S.; Szymańczyk, S.; Arciszewski, M.; Siembida, A.; Kras, K.; Piedra, J.; Schwarz, T.; et al. Modern Hybrid Rye, as an Alternative Energy Source for Broiler Chickens, Improves the Absorption Surface of the Small Intestine Depending on the Intestinal Part and Xylanase Supplementation. Animals 2021, 11, 1349. [Google Scholar] [CrossRef] [PubMed]
- Madara, J.L. Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am. J. Physiol. Physiol. 1987, 253, C171–C175. [Google Scholar] [CrossRef]
- Dokladny, K.; Zuhl, M.N.; Moseley, P.L. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Appl. Physiol. 2016, 120, 692–701. [Google Scholar] [CrossRef]
- Liu, S.; Song, M.; Yun, W.; Lee, J.; Lee, C.; Kwak, W.; Han, N.; Kim, H.; Cho, J. Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1257–1265. [Google Scholar] [CrossRef]
- Simard, A.; Di Pietro, E.; Ryan, A.K. Gene expression pattern of Claudin-1 during chick embryogenesis. Gene Expr. Patterns 2005, 5, 553–560. [Google Scholar] [CrossRef]
- Aytekin, I.; Aksit, H.; Sait, A.; Kaya, F.; Aksit, D.; Gokmen, M.; Baca, A.U. Evaluation of oxidative stress via total antioxidant status, sialic acid, malondialdehyde and RT-PCR findings in sheep affected with bluetongue. Vet. Rec. Open 2015, 2, e000054. [Google Scholar] [CrossRef]
- Shirani, V.; Jazi, V.; Toghyani, M.; Ashayerizadeh, A.; Sharifi, F.; Barekatain, R. Pulicaria gnaphalodes powder in broiler diets: Consequences for performance, gut health, antioxidant enzyme activity, and fatty acid profile. Poult. Sci. 2019, 98, 2577–2587. [Google Scholar] [CrossRef]
- Mohebodini, H.; Jazi, V.; Ashayerizadeh, A.; Toghyani, M.; Tellez-Isaias, G. Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poult. Sci. 2020, 100, 100922. [Google Scholar] [CrossRef]
- Su, L.; Yin, J.-J.; Charles, D.; Zhou, K.; Moore, J.; Yu, L.L. Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem. 2007, 100, 990–997. [Google Scholar] [CrossRef]
- Prasad, K.N.; Yang, B.; Dong, X.; Jiang, G.; Zhang, H.; Xie, H.; Jiang, Y. Flavonoid contents and antioxidant activities from Cinnamomum species. Innov. Food Sci. Emerg. Technol. 2009, 10, 627–632. [Google Scholar] [CrossRef]
- Yanishlieva, N.V.; Marinova, E.M.; Gordon, M.H.; Raneva, V.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999, 64, 59–66. [Google Scholar] [CrossRef]
- Bozkurt, M.; Tüzün, A.E. Application of aromatic plants and their extracts in diets of turkeys. In Feed Additives; Academic Press: Cambridge, MA, USA, 2020; pp. 205–226. [Google Scholar]
- Choi, K.-C.; Son, Y.-O.; Hwang, J.-M.; Kim, B.-T.; Chae, M.; Lee, J.-C. Antioxidant, anti-inflammatory and anti-septic potential of phenolic acids and flavonoid fractions isolated from Lolium multiflorum. Pharm. Biol. 2016, 55, 611–619. [Google Scholar] [CrossRef]
- Krauze, M.; Cendrowska-Pinkosz, M.; Matuseviĉius, P.; Stępniowska, A.; Jurczak, P.; Ognik, K. The Effect of Administration of a Phytobiotic Containing Cinnamon Oil and Citric Acid on the Metabolism, Immunity, and Growth Performance of Broiler Chickens. Animals 2021, 11, 399. [Google Scholar] [CrossRef]
- Amadbr, A.; Zentek, K. Effects of a phytogenic feed additive on growth performance, selected blood<br>criteria and jejunal morphology in broiler chickens. Emir. J. Food Agric. 2013, 25, 549–554. [Google Scholar]
- Ghazalah, A.; Ali, A. Rosemary Leaves as a Dietary Supplement for Growth in Broiler Chickens. Int. J. Poult. Sci. 2008, 7, 234–239. [Google Scholar] [CrossRef]
- Huntingford, J.L.; Kirn, B.N.; Cramer, K.; Mann, S.; Wakshlag, J.J. Evaluation of a performance enhancing supplement in American Foxhounds during eventing. J. Nutr. Sci. 2014, 3, e24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Feed Ingredients | % | Nutrient Composition | % |
---|---|---|---|
Corn | 61.91 | ME (kcal/kg) | 2934.95 |
Bean pulp | 26.00 | Crude protein | 20.31 |
Soybean meal | 3.00 | Calcium | 0.87 |
Corn gluten meal | 3.00 | Phosphorus | 0.66 |
Soybean oil | 1.50 | Available phosphate | 0.41 |
Limestone | 2.00 | Lysine | 1.01 |
DL-Methionine | 0.44 | ||
Dicalcium | 1.65 | Methionine and Cysteine | 0.75 |
Salt | 0.35 | Threonine | 0.73 |
Mineral premix | 0.2 | ||
Phytase | 0.02 | ||
Vitamin premix | 0.03 | ||
Choline chloride | 0.12 | ||
Lysine-HCL | 0.08 | ||
DL-Methionine | 0.14 | ||
Total | 100 |
Gene | Sequence (5′–3′) | Ta °C |
---|---|---|
MUC-2 | F: TTCATGATGCCTGCTCTTGTG | 57.92 |
R: CCTGAGCCTTGGTACATTCTTGT | ||
ZO-2 | F: AGTGGCCACCATTGTTGTGA | 55.58 |
R: ACTGTAGCCACTTCGAGCAC | ||
ZO-1 | F: CTTCAGGTGTTTCTCTTCCTCCTC | 56.61 |
R: CTGTGGTTTCATGGCTGGATC | ||
Claudin-3 | F: CGGGATTTCTACAACCCGCT | 57.65 |
R: GAGTAAGCCACCTTGCTGGG | ||
Occludin | F: CGGAGCCCAGACTACCAAAG | 55.84 |
R: TTACACAGCTTCAGCCTTACA | ||
IL-6 | F: CAGGACGAGATGTGCAAGAA | 56.75 |
R: TAGCACAGAGACTCGACGTT | ||
IL-17A | F: GAAGGTGATACGGCCAGGAC | 56.78 |
R: TGGGTTAGGCATCCAGCATC | ||
IL-22 | F: GCCCTACATCAGGAATCGCA | 57.87 |
R: TCTGAGAGCCTGGCCATTTC | ||
TNF-α | F: TGTGTATGTGCAGCAACCCGTAGT | 57.94 |
R: GGCATTGCAATTTGGACAGAAGT | ||
IFN-β | F: TGCAACCATCTTCGTCACCA | 56.68 |
R: GGAGGTGGAGCCGTATTCTG | ||
IFN-γ | F: ACACTGACAAGTCAAAGCCGC | 58.66 |
R: AGTCGTTCATCGGGAGCTTG |
Item | CON | CPE A | CPE-CML350 | CPE-CML500 | SEM | p Value |
---|---|---|---|---|---|---|
BW, g | ||||||
1d | 39.20 ± 0.15 | 39.39 ± 0.13 | 39.22 ± 0.11 | 39.19 ± 0.19 | 0.04 | 0.35 |
21d | 378.57 ± 7.14 a | 242.86 ± 7.14 c | 269.05 ± 23.24 b | 277.86 ± 3.71 b | 15.86 | <0.01 |
28d | 635.19 ± 6.41 a | 484.82 ± 4.49 c | 514.82 ± 8.48 b | 521.48 ± 5.7 b | 17.31 | <0.01 |
ADFI, g/d | ||||||
1 to 21d | 25.79 ± 0.56 a | 23.05 ± 0.83 c | 24.29 ± 0.47 b | 23.32 ± 0.51 bc | 0.36 | <0.01 |
21 to 28d | 62.11 ± 0.47 b | 68.77 ± 1.5 a | 60.42 ± 2.63 b | 62.45 ± 2.11 b | 1.06 | <0.01 |
1 to 28d | 35.02 ± 0.71 a | 34.9 ± 0.99 ab | 33.66 ± 0.58 bc | 33.47 ± 0.33 c | 0.27 | 0.04 |
ADG, g/d | ||||||
1 to 21d | 16.97 ± 0.35 a | 10.17 ± 0.35 c | 11.49 ± 1.16 b | 11.95 ± 0.18 b | 0.79 | <0.01 |
21 to 28d | 36.66 ± 1.37 | 34.57 ± 1.66 | 35.11 ± 3.84 | 34.8 ± 0.34 | 0.60 | 0.66 |
1 to 28d | 22.07 ± 0.24 a | 16.49 ± 0.17 c | 17.61 ± 0.32 b | 17.87 ± 0.21 b | 0.64 | <0.01 |
F:G, g/g | ||||||
1 to 21d | 1.53 ± 0 c | 2.27 ± 0.07 a | 2.13 ± 0.19 ab | 1.95 ± 0.02 b | 0.09 | <0.01 |
21 to 28d | 1.70 ± 0.05 b | 1.99 ± 0.11 a | 1.74 ± 0.22 b | 1.79 ± 0.06 ab | 0.05 | 0.09 |
1 to 28d | 1.59 ± 0.02 c | 2.12 ± 0.07 a | 1.91 ± 0.07 b | 1.87 ± 0.02 b | 0.06 | <0.01 |
Item | CON | CPEA | CPE-CML350 | CPE-CML500 | SEM | p Value |
---|---|---|---|---|---|---|
21d jejunum | ||||||
MUC-2 | 1.00 ± 0 a | 0.46 ± 0.3 b | 0.65 ± 0.07 ab | 0.7 ± 0.41 ab | 0.08 | 0.07 |
ZO-2 | 1.00 ± 0 a | 0.52 ± 0.25 b | 0.68 ± 0.22 b | 0.56 ± 0.07 b | 0.06 | <0.01 |
ZO-1 | 1.00 ± 0 a | 0.49 ± 0.42 b | 0.52 ± 0.31 b | 0.72 ± 0.08 ab | 0.08 | 0.06 |
Claudin-3 | 1.00 ± 0 a | 0.46 ± 0.25 c | 0.89 ± 0.22 ab | 0.63 ± 0.17 bc | 0.07 | <0.01 |
Occludin | 1.00 ± 0 a | 0.33 ± 0.28 b | 0.59 ± 0.23 b | 0.51 ± 0.22 b | 0.08 | <0.01 |
21d ileum | ||||||
MUC-2 | 1.00 ± 0 ab | 0.41 ± 0.12 b | 1.12 ± 0.59 ab | 1.66 ± 1.2 a | 0.15 | 0.01 |
ZO-2 | 1.00 ± 0 | 1.25 ± 0.98 | 1.63 ± 1.01 | 1.49 ± 0.97 | 0.18 | 0.59 |
ZO-1 | 1.00 ± 0 | 0.98 ± 0.86 | 1.44 ± 0.47 | 1.45 ± 0.23 | 0.11 | 0.24 |
Cl audin-3 | 1.00 ± 0 b | 0.95 ± 0.4 b | 1.07 ± 0.27 b | 1.76 ± 0.46 a | 0.09 | <0.01 |
Occludin | 1.00 ± 0 b | 0.86 ± 0.3 b | 0.98 ± 0.27 b | 1.84 ± 0.31 a | 0.10 | <0.01 |
28d jejunum | ||||||
MUC-2 | 1.00 ± 0 a | 0.52 ± 0.32 b | 0.71 ± 0.39 ab | 0.61 ± 0.27 b | 0.07 | 0.05 |
ZO-2 | 1.00 ± 0 | 0.91 ± 0.29 | 1.01 ± 0.51 | 0.65 ± 0.26 | 0.07 | 0.25 |
ZO-1 | 1.00 ± 0 a | 0.55 ± 0.25 b | 1.16 ± 0.51 a | 0.97 ± 0.35 a | 0.08 | 0.03 |
Claudin-3 | 1.00 ± 0 a | 0.57 ± 0.29 b | 0.99 ± 0.22 a | 0.58 ± 0.29 b | 0.06 | <0.01 |
Occludin | 1.00 ± 0 | 0.55 ± 0.58 | 0.64 ± 0.43 | 0.74 ± 0.37 | 0.08 | 0.27 |
28d ileum | ||||||
MUC-2 | 1.00 ± 0 a | 0.62 ± 0.23 b | 0.96 ± 0.37 a | 0.55 ± 0.31 b | 0.07 | 0.02 |
ZO-2 | 1.00 ± 0 a | 0.53 ± 0.05 b | 0.85 ± 0.07 a | 0.93 ± 0.34 a | 0.05 | <0.01 |
ZO-1 | 1.00 ± 0 b | 0.98 ± 0.45 b | 1.69 ± 0.34 a | 1.41 ± 0.39 ab | 0.10 | <0.01 |
Claudin-3 | 1.00 ± 0 ab | 0.45 ± 0.18 b | 1.14 ± 0.14 a | 1.43 ± 1.01 a | 0.12 | 0.03 |
Occludin | 1.00 ± 0 b | 0.42 ± 0.28 b | 1.60 ± 0.84 a | 0.86 ± 0.06 b | 0.13 | <0.01 |
Item | CON | CPEA | CPE-CML350 | CPE-CML500 | SEM | p Value |
---|---|---|---|---|---|---|
21d jejunum | ||||||
IL-6 | 1.00 ± 0 b | 2.23 ± 0.46 a | 1.84 ± 0.7 ab | 1.66 ± 0.63 ab | 0.16 | 0.04 |
IL-17 | 1.00 ± 0 b | 2.25 ± 0.68 a | 1.26 ± 0.3 b | 1.81 ± 0.58 ab | 0.18 | 0.02 |
IL-22 | 1.00 ± 0 ab | 0.70 ± 0.19 b | 1.14 ± 0.49 a | 0.75 ± 0.11 ab | 0.08 | 0.10 |
TNF-α | 1.00 ± 0 b | 2.10 ± 0.74 a | 1.19 ± 0.38 b | 1.22 ± 0.33 b | 0.15 | 0.02 |
IFN-β | 1.00 ± 0 | 1.13 ± 0.58 | 1.24 ± 0.83 | 0.97 ± 0.41 | 0.13 | 0.89 |
IFN-γ | 1.00 ± 0 | 1.62 ± 0.8 | 1.65 ± 0.8 | 1.49 ± 0.61 | 0.16 | 0.47 |
21d ileum | ||||||
IL-6 | 1.00 ± 0 b | 5.73 ± 1.02 a | 1.3 ± 1.42 b | 1.38 ± 0.69 b | 0.44 | <0.01 |
IL-17 | 1.00 ± 0 c | 4.04 ± 1.26 a | 1.52 ± 0.19 bc | 2.06 ± 0.41 b | 0.29 | <0.01 |
IL-22 | 1.00 ± 0 c | 1.69 ± 0.33 b | 2.82 ± 0.08 a | 2.58 ± 0.57 a | 0.19 | <0.01 |
TNF-α | 1.00 ± 0 | 1.71 ± 0.65 | 1.76 ± 0.7 | 1.47 ± 0.53 | 0.14 | 0.22 |
IFN-β | 1.00 ± 0 | 2.03 ± 0.34 | 0.96 ± 1.27 | 2.09 ± 1.28 | 0.25 | 0.19 |
IFN-γ | 1.00 ± 0 b | 2.54 ± 0.66 a | 1.45 ± 0.58 ab | 1.92 ± 1.1 ab | 0.22 | 0.05 |
28d jejunum | ||||||
IL-6 | 1.00 ± 0 c | 3.82 ± 0.96 a | 2.21 ± 0.6 b | 1.35 ± 0.87 bc | 0.32 | <0.01 |
IL-17 | 1.00 ± 0 b | 2.34 ± 0.32 a | 2.04 ± 0.94 ab | 1.41 ± 1.22 ab | 0.22 | 0.10 |
IL-22 | 1.00 ± 0 b | 2.44 ± 0.67 a | 2.38 ± 0.73 a | 1.59 ± 1.46 ab | 0.25 | 0.09 |
TNF-α | 1.00 ± 0 ab | 2.57 ± 0.36 a | 0.64 ± 0.35 b | 0.81 ± 0.34 b | 0.17 | <0.01 |
IFN-β | 1.00 ± 0 ab | 0.45 ± 0.38 b | 0.98 ± 0.35 ab | 1.66 ± 1.18 a | 0.15 | 0.04 |
IFN-γ | 1.00 ± 0 | 1.22 ± 0.89 | 0.88 ± 0.54 | 0.89 ± 0.62 | 0.14 | 0.86 |
28d ileum | ||||||
IL-6 | 1.00 ± 0 b | 3.92 ± 1.51 a | 1.60 ± 0.87 b | 1.23 ± 0.87 b | 0.32 | <0.01 |
IL-17 | 1.00 ± 0 | 1.72 ± 0.62 | 1.24 ± 0.65 | 1.02 ± 0.68 | 0.14 | 0.20 |
IL-22 | 1.00 ± 0 | 1.41 ± 0.76 | 1.75 ± 0.43 | 2.07 ± 1.25 | 0.17 | 0.22 |
TNF-α | 1.00 ± 0 b | 1.94 ± 0.37 a | 1.30 ± 0.42 ab | 1.45 ± 0.85 ab | 0.13 | 0.04 |
IFN-β | 1.00 ± 0 b | 0.87 ± 0.72 b | 1.19 ± 0.17 b | 2.51 ± 1.69 a | 0.24 | 0.04 |
Item | CON | CPEA | CPE-CML350 | CPE-CML500 | SEM | p Value |
---|---|---|---|---|---|---|
21d | ||||||
TP, ug/ml | 13.61 ± 3.99 ab | 11.32 ± 4.01 b | 15.58 ± 5.89 ab | 20.11 ± 3.33 a | 1.29 | 0.08 |
AIB, g/L | 13.62 ± 1.72 a | 10.83 ± 0.5 b | 12.04 ± 1.39 ab | 10.18 ± 0.99 b | 0.44 | 0.01 |
UA, μmol/ml | 379.06 ± 69.25 | 290.13 ± 121.42 | 258.85 ± 102.81 | 282.31 ± 112.91 | 24.54 | 0.28 |
BUN, mmol/L | 1.15 ± 0.25 b | 1.70 ± 0.42 ab | 1.96 ± 0.41 a | 1.94 ± 0.7 a | 0.12 | 0.03 |
GPT, U/L | 13.98 ± 1.18 | 13.95 ± 2.5 | 13.35 ± 1.67 | 13.00 ± 0.22 | 0.32 | 0.69 |
GOT, U/L | 62.28 ± 8.54 | 58.90 ± 4.44 | 58.82 ± 16.69 | 65.79 ± 16.67 | 2.82 | 0.84 |
MDA, nmol/ml | 3.78 ± 0.62 c | 7.37 ± 0.44 a | 6.18 ± 0.46 b | 5.78 ± 0.82 b | 0.36 | <0.01 |
T-AOC, U/ml | 2.76 ± 0.08 a | 1.92 ± 0.21 c | 2.01 ± 0.3 bc | 2.32 ± 0.16 b | 0.10 | <0.01 |
SOD, U/ml | 311.51 ± 47.3 a | 210.15 ± 21.01 b | 284.42 ± 23.37 a | 313.21 ± 36.62 a | 12.87 | <0.01 |
28d | ||||||
TP, ug/ml | 51.89 ± 8.39 a | 28.68 ± 4.77 b | 37.59 ± 14.89 ab | 39.94 ± 2.02 ab | 3.17 | 0.02 |
AIB, g/L | 10.30 ± 0.45 a | 8.53 ± 0.28 b | 9.44 ± 1.33 ab | 10.15 ± 1.08 a | 0.26 | 0.04 |
UA, μmol/ml | 195.39 ± 90.95 | 215.08 ± 66.77 | 176.02 ± 27.73 | 180.14 ± 22.33 | 11.71 | 0.66 |
BUN, mmol/L | 0.94 ± 0.52 | 1.18 ± 1.73 | 0.47 ± 0.34 | 1.20 ± 1.61 | 0.26 | 0.73 |
GPT, U/L | 12.75 ± 0.12 | 12.94 ± 0.23 | 12.75 ± 0.18 | 12.8 ± 0.24 | 0.04 | 0.38 |
GOT, U/L | 52.49 ± 1.16 | 50.33 ± 4.9 | 52.61 ± 9.21 | 54.44 ± 2.53 | 1.19 | 0.74 |
MDA, nmol/ml | 2.06 ± 0.95 c | 5.94 ± 0.67 a | 4.60 ± 1.02 b | 4.27 ± 1.09 b | 0.39 | <0.01 |
T-AOC, U/ml | 2.62 ± 0.12 a | 1.64 ± 0.08 b | 1.79 ± 0.21 b | 1.71 ± 0.03 b | 0.10 | <0.01 |
SOD, U/ml | 295.61 ± 11.33 a | 227.86 ± 20.38 b | 271.36 ± 30.32 a | 280.74 ± 23.46 a | 8.28 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Xiao, G.; Yan, X.; Qiu, T.; Liu, S.; Ou, J.; Cen, M.; Gong, L.; Shi, J.; Zhang, H. Complex of Lauric Acid Monoglyceride and Cinnamaldehyde Ameliorated Subclinical Necrotic Enteritis in Yellow-Feathered Broilers by Regulating Gut Morphology, Barrier, Inflammation and Serum Biochemistry. Animals 2023, 13, 516. https://doi.org/10.3390/ani13030516
Zheng C, Xiao G, Yan X, Qiu T, Liu S, Ou J, Cen M, Gong L, Shi J, Zhang H. Complex of Lauric Acid Monoglyceride and Cinnamaldehyde Ameliorated Subclinical Necrotic Enteritis in Yellow-Feathered Broilers by Regulating Gut Morphology, Barrier, Inflammation and Serum Biochemistry. Animals. 2023; 13(3):516. https://doi.org/10.3390/ani13030516
Chicago/Turabian StyleZheng, Chaojun, Gengsheng Xiao, Xia Yan, Ting Qiu, Shun Liu, Jiancun Ou, Mingzhu Cen, Li Gong, Jiansheng Shi, and Huihua Zhang. 2023. "Complex of Lauric Acid Monoglyceride and Cinnamaldehyde Ameliorated Subclinical Necrotic Enteritis in Yellow-Feathered Broilers by Regulating Gut Morphology, Barrier, Inflammation and Serum Biochemistry" Animals 13, no. 3: 516. https://doi.org/10.3390/ani13030516
APA StyleZheng, C., Xiao, G., Yan, X., Qiu, T., Liu, S., Ou, J., Cen, M., Gong, L., Shi, J., & Zhang, H. (2023). Complex of Lauric Acid Monoglyceride and Cinnamaldehyde Ameliorated Subclinical Necrotic Enteritis in Yellow-Feathered Broilers by Regulating Gut Morphology, Barrier, Inflammation and Serum Biochemistry. Animals, 13(3), 516. https://doi.org/10.3390/ani13030516