Coat, Claw and Dewclaw 17-β-Estradiol and Testosterone Concentrations in Male and Female Postpubertal Cats: Preliminary Results
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals
2.3. Coat and Claws Collection
2.4. Hormonal Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Coat and Claws for Differentiation between Male and Female Postpubertal Cats
4.2. Coat, Claws and Dewclaws as Matrices for the Assessment of E2 and T Concentrations within Female and Male Postpubertal Cats
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sjaastad, O.V.; Sand, O.; Hove, K. La riproduzione. In Fisiologia Degli Animali Domestici; Sjaastad, O.V., Sand, O., Hove, K., Eds.; CEA: Milan, Italy, 2013; pp. 676–725. [Google Scholar]
- Herbison, A.E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 2016, 12, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Sudsukh, A.; Taya, K.; Watanabe, G.; Wajjwalku, W.; Thongphakdee, A.; Thongtip, N. Annual ovarian activity monitored by the noninvasive measurement of fecal concentrations of progesterone and 17β-estradiol metabolites in rusa deer (Rusa timorensis). J. Vet. Med. Sci. 2017, 78, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.L.; Li, R.X.; Gao, H.T.; Wang, C.M.; Li, L.; Xu, Q.; Li, J. Determination of Five Sex Hormones in Urine Samples for Early Evaluation of Male Reproductive Toxicity Induced by Phthalate Esters in Rats. J. Agric. Food Chem. 2018, 66, 10588–10597. [Google Scholar] [CrossRef] [PubMed]
- Accorsi, P.A.; Carloni, E.; Valsecchi, P.; Viggiani, R.; Gamberoni, M.; Tamanini, C.; Seren, E. Cortisol determination in hair and faeces from domestic cats and dogs. Gen. Comp. Endocrinol. 2008, 155, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Doan, S.N.; DeYoung, G.; Fuller-Rowell, T.E.; Liu, C.; Meyer, J. Investigating relations among stress, sleep and nail cortisol and DHEA. Stress 2018, 21, 188–193. [Google Scholar] [CrossRef]
- Whitham, J.C.; Bryant, J.L.; Miller, L.J. Beyond Glucocorticoids: Integrating Dehydroepiandrosterone (DHEA) into Animal Welfare Research. Animals 2020, 10, 1381. [Google Scholar] [CrossRef]
- Veronesi, M.C.; Comin, A.; Meloni, T.; Faustini, M.; Rota, A.; Prandi, A. Coat and claws as new matrices for noninvasive long-term cortisol assessment in dogs from birth up to 30 days of age. Theriogenology 2015, 84, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Fusi, J.; Peric, T.; Probo, M.; Cotticelli, A.; Faustini, M.; Veronesi, M.C. How Stressful Is Maternity? Study about Cortisol and Dehydroepiandrosterone-Sulfate Coat and Claws Concentrations in Female Dogs from Mating to 60 Days Post-Partum. Animals 2021, 11, 1632. [Google Scholar] [CrossRef]
- Terwissen, C.V.; Mastromonaco, G.F.; Murray, D.L. Influence of adrenocorticotrophin hormone challenge and external factors (age, sex, and body region) on hair cortisol concentration in Canada lynx (Lynx canadensis). Gen. Comp. Endocrinol. 2013, 194, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Prandi, A.; Filacorda, S.; Pezzin, E.N.; Fanin, Y.; Comin, A. Cortisolin hair: A comparison between wild and feral cats in the northeastern Alps. Eur. J. Wildl. Res. 2019, 65, 90. [Google Scholar] [CrossRef]
- Contreras, E.T.; Lappin, M.R. Quantification and evaluation of cortisol in feline fur and claws: A novel non-invasive measurement of chronic stress in cats. J. Feline Med. Surg. 2020, 22, 49. [Google Scholar]
- Contreras, E.T.; Vanderstichel, R.; Hovenga, C.; Lappin, M.R. Evaluation of hair and nail cortisol concentrations and associations with behavioral, physical, and environmental indicators of chronic stress in cats. J. Vet. Intern. Med. 2021, 35, 2662–2672. [Google Scholar] [CrossRef] [PubMed]
- Naidenko, S.V.; Alekseeva, G.S.; Klyuchnikova, P.S.; Erofeeva, M.N. Application of Felid Hair for Non-Invasive Tracking of Animal Reproductive Status and Adrenal Activity. Animals 2022, 12, 2792. [Google Scholar] [CrossRef]
- Wojta’s, J.; Garbiec, A.; Karpi’nski, M.; Skowronek, P.; Strachecka, A. Are Hair Cortisol Levels of Humans, Cats, and Dogs from the Same Household Correlated? Animals 2022, 12, 1472. [Google Scholar] [CrossRef] [PubMed]
- Mack, Z.; Fokidis, H.B. A novel method for assessing chronic cortisol concentrations in dogs using the nail as a source. Domest. Anim. Endocrinol. 2017, 59, 53–57. [Google Scholar] [CrossRef]
- Voegel, C.D.; La Marca-Ghaemmaghami, P.; Ehlert, U.; Baumgartner, M.R.; Kraemer, T.; Binz, T.M. Steroid profiling in nails using liquid chromatography-tandem mass spectrometry. Steroids 2018, 140, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Macbeth, B.J.; Cattet, M.R.L.; Stenhouse, G.B.; Gibeau, M.L.; Janz, D.M. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): Considerations with implycations for other wildlife. Can. J. Zool. 2010, 88, 935–949. [Google Scholar] [CrossRef]
- Acker, M.; Mastromonaco, G.; Schulte-Hostedde, A.I. The effects of body region, season and external arsenic application on hair cortisol concentration. Conserv. Physiol. 2018, 6, coy037. [Google Scholar] [CrossRef]
- Carlitz, E.H.D.; Kirschbaum, C.; Miller, R.; Rukundo, J.; van Schaik, C.P. Effects of body region and time on hair cortisol concentrations in chimpanzees (Pan troglodytes). Gen. Comp. Endocrinol. 2015, 223, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Schell, C.J.; Young, J.K.; Lonsdorf, E.V.; Mateo, J.M.; Santymire, R.M. Investigation of techniques to measure cortisol and testosterone concentrations in coyote hair. Zoo Biol. 2017, 36, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Palmeri, A.; Pichini, S.; Pacifici, R.; Zuccaro, P.; Lopez, A. Drugs in nails: Physiology, pharmacokinetics and forensic toxicology. Clin. Pharmacokinet. 2000, 38, 95–110. [Google Scholar] [CrossRef]
- Higashi, T.; Arnold, T.R.; Stephenson, R.E.; Dinshaw, K.M.; Miller, A.L. Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis. Curr. Biol. 2016, 26, 1829–1842. [Google Scholar] [CrossRef] [PubMed]
- Dyce, K.M.; Sack, W.O.; Wensing, C.J.G. (Eds.) Tegumento comune. In Testo di Anatomia Veterinaria, Parte Prima-Anatomia Sistematica; A. Delfino Editore: Roma, Italy, 2013; pp. 355–366. [Google Scholar]
- Homberger, D.G.; Ham, K.; Ogunbakin, T.; Bonin, J.A.; Hopkins, B.A.; Osborn, M.-L.; Hossain, I.; Barnett, H.A.; Matthews, K.L., II; Butler, L.G.; et al. The structure of the cornified claw sheath in the domesticated cat (Felis catus): Implications for the claw-shedding mechanism and the evolution of cornified digital end organs. J. Anat. 2009, 214, 620–643. [Google Scholar] [CrossRef] [PubMed]
- Erickson, P. (Ed.) Claw care. In Cat Claws: Care and Keeping; Lulu.com: London, UK, 2013; pp. 110–135. [Google Scholar]
- Mannix, D.P. The Autobiography of Daniel Mannix: My Life with All Creatures Great and Small; eNet Press Inc.: Lake Oswego, OR, USA, 2014; p. 193. [Google Scholar]
- Baier, F.; Grandin, T.; Engle, T.; Edwards-Callaway, L. Evaluation of Hair Characteristics and Animal Age on the Impact of Hair Cortisol Concentration in Feedlot Steers. Front. Vet. Sci. 2019, 6, 323. [Google Scholar] [CrossRef] [PubMed]
- Fusi, J.; Comin, A.; Faustini, M.; Prandi, A.; Veronesi, M.C. Perinatal concentrations of 17β-estradiol and testosterone in the toe claws of female and male dogs from birth until 60 days of age. Anim. Reprod. Sci. 2020, 214, 106313. [Google Scholar] [CrossRef] [PubMed]
- Matas, D.; Koren, L. Age-related testosterone declines can be detected in men’s fingernails. Can. J. Physiol. Pharmacol. 2018, 96, 76–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SCOAT | ACOAT | CLAWS | DCLAWS | |||||
---|---|---|---|---|---|---|---|---|
SEX | E2 (pg/mg) | T (pg/mg) | E2 (pg/mg) | T (pg/mg) | E2 (pg/mg) | T (pg/mg) | E2 (pg/mg) | T (pg/mg) |
Males | 1.1 A (0.8–1.6) | 2.0 aC (1.1–4.2) | 1.2 A (0.7–1.6) | 1.7 aC (1.0–3.0) | 0.4 B (0.2–1.1) | 0.4 D (0.2–1.1) | 1.3 A (0.5–3.8) | 1.1 C (0.5–7.5) |
Females | 1.1 A (0.9–1.6) | 1.0 bC (0.6–2.0) | 1.1 A (1.0–1.8) | 1.0 bC (0.7–3.4) | 0.5 B (0.04–1.5) | 0.4 D (0.2–1.7) | 1.3 A (0.3–6.4) | 1.1 C (0.4–3.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusi, J.; Peric, T.; Probo, M.; Bucci, R.; Faustini, M.; Veronesi, M.C. Coat, Claw and Dewclaw 17-β-Estradiol and Testosterone Concentrations in Male and Female Postpubertal Cats: Preliminary Results. Animals 2023, 13, 522. https://doi.org/10.3390/ani13030522
Fusi J, Peric T, Probo M, Bucci R, Faustini M, Veronesi MC. Coat, Claw and Dewclaw 17-β-Estradiol and Testosterone Concentrations in Male and Female Postpubertal Cats: Preliminary Results. Animals. 2023; 13(3):522. https://doi.org/10.3390/ani13030522
Chicago/Turabian StyleFusi, Jasmine, Tanja Peric, Monica Probo, Roberta Bucci, Massimo Faustini, and Maria Cristina Veronesi. 2023. "Coat, Claw and Dewclaw 17-β-Estradiol and Testosterone Concentrations in Male and Female Postpubertal Cats: Preliminary Results" Animals 13, no. 3: 522. https://doi.org/10.3390/ani13030522
APA StyleFusi, J., Peric, T., Probo, M., Bucci, R., Faustini, M., & Veronesi, M. C. (2023). Coat, Claw and Dewclaw 17-β-Estradiol and Testosterone Concentrations in Male and Female Postpubertal Cats: Preliminary Results. Animals, 13(3), 522. https://doi.org/10.3390/ani13030522