Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Human–Canine Interface: SARS-CoV-2 Infection, Susceptibility, Epidemiology, and Transmissibility in Dogs
2.1. SARS-CoV-2 Infection of Dogs
2.2. Dog Susceptibility to Infections and Its Link to Receptors
2.3. Epidemiological Prevalence of SARS-CoV-2 Infection in Dogs: Molecular and Serological Surveys
2.4. COVID-19 Transmissibility between Companion Animals and Humans
3. Human–Canine Interface: Human–Dog Behavior, Dog Adoptions, and Needed Care during Handling
3.1. Human–Canine Interface: Dog Adoption Boom Due to COVID-19 Pandemic
3.2. Human–Canine Interface: Needed Care for Handling Dogs during the COVID-19 Pandemic
3.3. Human–Canine Interface: Cardiac Failure Is a Possible Cause of Death for Dogs That Requires in-Depth Investigation, as Learned from COVID-19 in Humans
4. Human–Canine Interface: Possible Roles of Dogs in Controlling COVID-19 Pandemic
4.1. Detection Dogs as a Rapid and Reliable Diagnostic Approach for COVID-19 Patients
4.2. Tested Anti-Inflammatory Drugs for Canine Coronavirus Can Be Helpful for COVID-19 in Humans
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Sayed, A.; Aleya, L.; Kamel, M. COVID-19: A new emerging respiratory disease from the neurological perspective. Environ. Sci. Pollut. Res. 2021, 28, 40445–40459. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Abdel-Daim, M.M.; Kamel, M. Causes of respiratory failure in COVID-19 patients. Environ. Sci. Pollut. Res. 2021, 28, 28825–28830. [Google Scholar] [CrossRef] [PubMed]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis. 2021, 68, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27, 1–4. [Google Scholar] [CrossRef]
- Tazerji, S.S.; Duarte, P.M.; Rahimi, P.; Shahabinejad, F.; Dhakal, S.; Malik, Y.S.; Shehata, A.A.; Lama, J.; Klein, J.; Safdar, M.; et al. Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to animals: An updated review. J. Transl. Med. 2020, 18, 358. [Google Scholar] [CrossRef]
- Swelum, A.A.; Shafi, M.E.; Albaqami, N.M.; El-Saadony, M.T.; Elsify, A.; Abdo, M.; Taha, A.E.; Abdel-Moneim, A.-M.E.; Al-Gabri, N.A.; Almaiman, A.A.; et al. COVID-19 in Human, Animal, and Environment: A Review. Front. Vet. Sci. 2020, 7, 578. [Google Scholar] [CrossRef]
- Mahdy, M.A.A.; Younis, W.; Ewaida, Z. An Overview of SARS-CoV-2 and Animal Infection. Front. Vet. Sci. 2020, 7, 1084. [Google Scholar] [CrossRef]
- Defo Deeh, P.B.; Kayri, V.; Orhan, C.; Sahin, K. Status of Novel Coronavirus Disease 2019 (COVID-19) and Animal Production. Front. Vet. Sci. 2020, 7, 864. [Google Scholar] [CrossRef]
- Alluwaimi, A.M.; Alshubaith, I.H.; Al-Ali, A.M.; Abohelaika, S. The Coronaviruses of Animals and Birds: Their Zoonosis, Vaccines, and Models for SARS-CoV and SARS-CoV2. Front. Vet. Sci. 2020, 7, 655. [Google Scholar] [CrossRef]
- Irian, M. COVID-19, Your Pet and Other Animals: Are You at Risk? MEDICC Rev. 2020, 22, 81–82. [Google Scholar]
- Haider, N.; Rothman-Ostrow, P.; Osman, A.Y.; Arruda, L.B.; Macfarlane-Berry, L.; Elton, L.; Thomason, M.J.; Yeboah-Manu, D.; Ansumana, R.; Kapata, N.; et al. COVID-19—Zoonosis or Emerging Infectious Disease? Front. Public Health 2020, 8, 596944. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; González-Bulnes, A.; Rodriguez-Morales, A.J. Animal Welfare and Livestock Supply Chain Sustainability Under the COVID-19 Outbreak: An Overview. Front. Vet. Sci. 2020, 7, 582528. [Google Scholar] [CrossRef] [PubMed]
- Anisuzzaman; Haque, Z.F.; Hossain, M.T. COVID-19 Pandemic: Animal Cross Talk and Comparison between nSARS-CoV-2 and Animal Coronaviruses; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Chandler, J.C.; Bevins, S.N.; Ellis, J.W.; Linder, T.J.; Tell, R.M.; Jenkins-Moore, M.; Root, J.J.; Lenoch, J.B.; Robbe-Austerman, S.; DeLiberto, T.J.; et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl. Acad. Sci. USA 2021, 118, e2114828118. [Google Scholar] [CrossRef] [PubMed]
- Stout, A.E.; André, N.M.; Jaimes, J.A.; Millet, J.K.; Whittaker, G.R. Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit? Vet. Microbiol. 2020, 247, 108777. [Google Scholar] [CrossRef]
- Cui, S.; Liu, Y.; Zhao, J.; Peng, X.; Lu, G.; Shi, W.; Pan, Y.; Zhang, D.; Yang, P.; Wang, Q. An Updated Review on SARS-CoV-2 Infection in Animals. Viruses 2022, 14, 1527. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K.; Pawde, A.M.; Gortázar, C.; Tiwari, R.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J.; de La Fuente, J.; Michalak, I.; Attia, Y.A. SARS-CoV-2 in animals: Potential for unknown reservoir hosts and public health implications. Vet. Q. 2021, 41, 181–201. [Google Scholar] [CrossRef]
- Meekins, D.A.; Gaudreault, N.N.; Richt, J.A. Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses 2021, 13, 1993. [Google Scholar] [CrossRef]
- Michelitsch, A.; Wernike, K.; Ulrich, L.; Mettenleiter, T.C.; Beer, M. SARS-CoV-2 in animals: From potential hosts to animal models. Adv. Virus Res. 2021, 110, 59–102. [Google Scholar] [CrossRef]
- Nerpel, A.; Yang, L.; Sorger, J.; Käsbohrer, A.; Walzer, C.; Desvars-Larrive, A. SARS-ANI: A global open access dataset of reported SARS-CoV-2 events in animals. Sci. Data 2022, 9, 438. [Google Scholar] [CrossRef]
- SARS-ANI VIS. Available online: https://vis.csh.ac.at/sars-ani/#outcomes (accessed on 24 January 2023).
- Lam, T.T.-Y.; Jia, N.; Zhang, Y.-W.; Shum, M.H.-H.; Jiang, J.-F.; Zhu, H.-C.; Tong, Y.-G.; Shi, Y.-X.; Ni, X.-B.; Liao, Y.-S. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020, 583, 282–285. [Google Scholar] [CrossRef]
- Ye, Z.-W.; Yuan, S.; Yuen, K.-S.; Fung, S.-Y.; Chan, C.-P.; Jin, D.-Y. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Int. J. Biol. Sci. 2020, 16, 1686–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengis, R.G.; Leighton, F.A.; Fischer, J.R.; Artois, M.; Morner, T.; Tate, C.M. The role of wildlife in emerging and re-emerging zoonoses. Rev. Sci. Tech. L’oie 2004, 23, 497–512. [Google Scholar]
- Woolhouse, M.E.J. Population biology of emerging and re-emerging pathogens. Trends Microbiol. 2002, 10, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Abdel-Daim, M.M.; Kamel, M. Zoonotic and anthropozoonotic potential of COVID-19 and its implications for public health. Environ. Sci. Pollut. Res. 2021, 28, 52599–52609. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Kamel, M. Coronaviruses in humans and animals: The role of bats in viral evolution. Environ. Sci. Pollut. Res. 2021, 28, 19589–19600. [Google Scholar] [CrossRef] [PubMed]
- Durr, P.; Gatrell, A. GIS and Spatial Analysis in Veterinary Science; CABI Publishing: Wallingford, UK, 2004; ISBN 0851990460. [Google Scholar]
- Carella, E.; Orusa, T.; Viani, A.; Meloni, D.; Borgogno-Mondino, E.; Orusa, R. An Integrated, Tentative Remote-Sensing Approach Based on NDVI Entropy to Model Canine Distemper Virus in Wildlife and to Prompt Science-Based Management Policies. Animals 2022, 12, 1049. [Google Scholar] [CrossRef]
- Norstrøm, M. Geographical Information System (GIS) as a tool in surveillance and monitoring of animal diseases. Acta Vet. Scand. 2001, 42, S79. [Google Scholar] [CrossRef]
- de Marinis, P.; de Petris, S.; Sarvia, F.; Manfron, G.; Momo, E.J.; Orusa, T.; Corvino, G.; Sali, G.; Borgogno, E.M. Supporting Pro-Poor Reforms of Agricultural Systems in Eastern DRC (Africa) with Remotely Sensed Data: A Possible Contribution of Spatial Entropy to Interpret Land Management Practices. Land 2021, 10, 1368. [Google Scholar] [CrossRef]
- Pfeiffer, D.U. Geographical information science and spatial analysis in animal health. In GIS and Spatial Analysis in Veterinary Science; CABI Publishing: Wallingford UK, 2004; pp. 119–144. [Google Scholar]
- Orusa, T.; Mondino, E.B. Landsat 8 thermal data to support urban management and planning in the climate change era: A case study in Torino area, NW Italy. In Remote Sensing Technologies and Applications in Urban Environments IV; SPIE: Philadelphia, PA, USA, 2019; pp. 133–149. [Google Scholar]
- Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Borgogno Mondino, E. Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sens. 2020, 12, 3542. [Google Scholar] [CrossRef]
- Orusa, T.; Borgogno Mondino, E. Exploring Short-Term Climate Change Effects on Rangelands and Broad-Leaved Forests by Free Satellite Data in Aosta Valley (Northwest Italy). Climate 2021, 9, 47. [Google Scholar] [CrossRef]
- Kuldeep, D.; Verma, A.K.; Ruchi, T.; Sandip, C.; Kranti, V.; Sanjay, K.; Rajib, D.; Karthik, K.; Rajendra, S.; Muhammad, M. A perspective on applications of Geographical Information System (GIS): An advanced tracking tool for disease surveillance and monitoring in veterinary epidemiology. Adv. Anim. Vet. Sci. 2013, 1, 14–24. [Google Scholar]
- Fayisa, W.O. Review on The Importance of Geographic Information System (Gis) In Epidemiology: In Prevention and Control of Animal Disease. Int. J. Vet. Sci. Res. 2020, 6, 47–51. [Google Scholar]
- Rinaldi, L.; Musella, V.; Biggeri, A.; Cringoli, G. New insights into the application of geographical information systems and remote sensing in veterinary parasitology. Geospat. Health 2006, 1, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Ahmad, F.J.; Kar, S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr. Res. Microb. Sci. 2022, 3, 100120. [Google Scholar] [CrossRef]
- Wang, J.; Ranjbaran, M.; Ault, A.; Verma, M.S. A loop-mediated isothermal amplification assay to detect Bacteroidales and assess risk of fecal contamination. Food Microbiol. 2023, 110, 104173. [Google Scholar] [CrossRef]
- Wang, J.; Davidson, J.L.; Kaur, S.; Dextre, A.A.; Ranjbaran, M.; Kamel, M.S.; Athalye, S.M.; Verma, M.S. Paper-Based Biosensors for the Detection of Nucleic Acids from Pathogens. Biosensors 2022, 12, 1094. [Google Scholar] [CrossRef]
- Pascual-Garrigos, A.; Maruthamuthu, M.K.; Ault, A.; Davidson, J.L.; Rudakov, G.; Pillai, D.; Koziol, J.; Schoonmaker, J.P.; Johnson, T.; Verma, M.S. On-farm colorimetric detection of Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni in crude bovine nasal samples. Vet. Res. 2021, 52, 126. [Google Scholar] [CrossRef]
- Davidson, J.L.; Wang, J.; Maruthamuthu, M.K.; Dextre, A.; Pascual-Garrigos, A.; Mohan, S.; Putikam, S.V.S.; Osman, F.O.I.; McChesney, D.; Seville, J.; et al. A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. Biosens. Bioelectron. X 2021, 9, 100076. [Google Scholar] [CrossRef]
- Mohan, S.; Pascual-Garrigos, A.; Brouwer, H.; Pillai, D.; Koziol, J.; Ault, A.; Schoonmaker, J.; Johnson, T.; Verma, M.S. Loop-Mediated Isothermal Amplification for the Detection of Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni in Bovine Nasal Samples. ACS Agric. Sci. Technol. 2021, 1, 100–108. [Google Scholar] [CrossRef]
- Wang, J.; Dextre, A.; Pascual-Garrigos, A.; Davidson, J.L.; McChesney, D.; Seville, J.; Verma, M.S. Fabrication of a paper-based colorimetric molecular test for SARS-CoV-2. MethodsX 2021, 8, 101586. [Google Scholar] [CrossRef]
- Ranjbaran, M.; Verma, M.S. Microfluidics at the interface of bacteria and fresh produce. Trends Food Sci. Technol. 2022, 128, 102–117. [Google Scholar] [CrossRef]
- Avendaño, C.; Patarroyo, M.A. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections. Int. J. Mol. Sci. 2020, 21, 7981. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.S.; Zamzami, M.A.; Choudhry, H.; Murtaza, B.N.; Kazmi, I.; Ahmad, H.; Shakoori, A.R. Origin, Potential Therapeutic Targets and Treatment for Coronavirus Disease (COVID-19). Pathogens 2020, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019–COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef] [PubMed]
- Satarker, S.; Nampoothiri, M. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Arch. Med. Res. 2020, 51, 482–491. [Google Scholar] [CrossRef]
- Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.-J.; Jiang, S. The spike protein of SARS-CoV—A target for vaccine and therapeutic development. Nat. Rev. Microbiol. 2009, 7, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Patel, S.K.; Sharun, K.; Pathak, M.; Tiwari, R.; Yatoo, M.I.; Malik, Y.S.; Sah, R.; Rabaan, A.A.; Panwar, P.K.; et al. SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel Med. Infect. Dis. 2020, 37, 101830. [Google Scholar] [CrossRef]
- Hobbs, E.C.; Reid, T.J. Animals and SARS-CoV-2: Species susceptibility and viral transmission in experimental and natural conditions, and the potential implications for community transmission. Transbound. Emerg. Dis. 2020, 68, 1850–1867. [Google Scholar] [CrossRef]
- Sit, T.H.C.; Brackman, C.J.; Ip, S.M.; Tam, K.W.S.; Law, P.Y.T.; To, E.M.W.; Yu, V.Y.T.; Sims, L.D.; Tsang, D.N.C.; Chu, D.K.W.; et al. Infection of dogs with SARS-CoV-2. Nature 2020, 586, 776–778. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.S.; Abdelwhab, E.M. Evidence for SARS-CoV-2 Infection of Animal Hosts. Pathogens 2020, 9, 529. [Google Scholar] [CrossRef]
- Medkour, H.; Catheland, S.; Boucraut-Baralon, C.; Laidoudi, Y.; Sereme, Y.; Pingret, J.-L.; Million, M.; Houhamdi, L.; Levasseur, A.; Cabassu, J.; et al. First evidence of human-to-dog transmission of SARS-CoV-2 B.1.160 variant in France. Transbound. Emerg. Dis. 2021, 69, e823–e830. [Google Scholar] [CrossRef] [PubMed]
- Temmam, S.; Barbarino, A.; Maso, D.; Behillil, S.; Enouf, V.; Huon, C.; Jaraud, A.; Chevallier, L.; Backovic, M.; Pérot, P.; et al. Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. One Health 2020, 10, 100164. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Abad, D.; Eiros, J.M.; Rodríguez-Lázaro, D. Are Animals a Neglected Transmission Route of SARS-CoV-2? Pathogens 2020, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://www.who.int/docs/default-source/coronaviruse/real-time-rt-pcr-assays-for-the-detection-of-sars-cov-2-institut-pasteur-paris.pdf?sfvrsn=3662fcb6_2 (accessed on 12 June 2020).
- Ruiz-Arrondo, I.; Portillo, A.; Palomar, A.M.; Santibáñez, S.; Santibáñez, P.; Cervera, C.; Oteo, J.A. Detection of SARS-CoV-2 in pets living with COVID-19 owners diagnosed during the COVID-19 lockdown in Spain: A case of an asymptomatic cat with SARS-CoV-2 in Europe. Transbound Emerg Dis. 2021, 68, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, A.; Ghai, R.; Gary, J.; Ritter, J.; Carvallo, F.; Diel, D.D.; Martins, M.; Murphy, J.; Schroeder, B.; Brightbill, K.; et al. Determining the Role of Natural SARS-CoV-2 Infection in the Death of Ten Domestic Pets; Research Square: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
- Rutherford, C.; Kafle, P.; Soos, C.; Epp, T.; Bradford, L.; Jenkins, E. Investigating SARS-CoV-2 Susceptibility in Animal Species: A Scoping Review. Environ. Health Insights 2022, 16, 11786302221107786. [Google Scholar] [CrossRef] [PubMed]
- Meisner, J.; Baszler, T.V.; Kuehl, K.H.; Ramirez, V.; Baines, A.; Frisbie, L.A.; Lofgren, E.T.; De Avila, D.M.; Wolking, R.M.; Bradway, D.S.; et al. Household Transmission of SARS-CoV-2 from Humans to Dogs in Washington and Idaho: Burden and Risk Factors. bioRxiv 2021. [Google Scholar] [CrossRef]
- Lyoo, K.-S.; Yeo, Y.; Lee, S.-G.; Yeom, M.; Bae, E.-H.; Lee, J.-Y.; Kim, K.-C.; Song, D. Pathogenicity of SARS-CoV-2 and MERS-CoV in Beagle Dogs; Research Square: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef]
- OIE; World Organisation for Animal Health. SARS-COV-2 in Animals—Situation Report 2 2021. Available online: https://www.oie.int/app/uploads/2021/07/sars-cov-2-situation-report-2.pdf (accessed on 13 December 2022).
- Jairak, W.; Charoenkul, K.; Chamsai, E.; Udom, K.; Chaiyawong, S.; Hangsawek, A.; Waenkaew, S.; Mungaomklang, A.; Tangwangvivat, R.; Amonsin, A. Survey of SARS-CoV-2 in dogs and cats in high-risk areas during the second wave of COVID-19 outbreak, Thailand. Zoonoses Public Health 2022, 69, 737–745. [Google Scholar] [CrossRef]
- Dias, H.G.; Resck, M.E.B.; Caldas, G.C.; Resck, A.F.; da Silva, N.V.; Dos Santos, A.M.V.; Sousa, T.d.C.; Ogrzewalska, M.H.; Siqueira, M.M.; Pauvolid-Corrêa, A.; et al. Neutralizing antibodies for SARS-CoV-2 in stray animals from Rio de Janeiro, Brazil. PLoS ONE 2021, 16, e0248578. [Google Scholar] [CrossRef]
- Chetboul, V.; Foulex, P.; Kartout, K.; Klein, A.M.; Sailleau, C.; Dumarest, M.; Delaplace, M.; Gouilh, M.A.; Mortier, J.; Le Poder, S. Myocarditis and Subclinical-Like Infection Associated With SARS-CoV-2 in Two Cats Living in the Same Household in France: A Case Report With Literature Review. Front. Vet. Sci. 2021, 8, 748869. [Google Scholar] [CrossRef]
- Ferasin, L.; Fritz, M.; Ferasin, H.; Becquart, P.; Corbet, S.; Ar Gouilh, M.; Legros, V.; Leroy, E.M. Infection with SARS-CoV-2 variant B.1.1.7 detected in a group of dogs and cats with suspected myocarditis. Vet. Rec. 2021, 189, e944. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Arévalo, S.; Rivera, B.; Domínguez, L.; Sánchez-Vizcaíno, J.M. First Detection of SARS-CoV-2 B.1.1.7 Variant of Concern in an Asymptomatic Dog in Spain. Viruses 2021, 13, 1379. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Blanco, M.; Vega, S.; Enjuanes, L.; Morey, A.; Lorenzo, T.; Marín, C.; Ivorra, C.; Maiques, E.; Rubio, V.; Rubio-Guerri, C. Detection of SARS-CoV-2 in a dog with hemorrhagic diarrhea. BMC Vet. Res. 2022, 18, 370. [Google Scholar] [CrossRef]
- Sun, S.-H.; Chen, Q.; Gu, H.-J.; Yang, G.; Wang, Y.-X.; Huang, X.-Y.; Liu, S.-S.; Zhang, N.-N.; Li, X.-F.; Xiong, R.; et al. A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host Microbe 2020, 28, 124–133.e4. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsueh, P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Chiocchetti, R.; Galiazzo, G.; Fracassi, F.; Giancola, F.; Pietra, M. ACE2 Expression in the Cat and the Tiger Gastrointestinal Tracts. Front. Vet. Sci. 2020, 7, 514. [Google Scholar] [CrossRef]
- Tiwari, R.; Dhama, K.; Sharun, K.; Iqbal Yatoo, M.; Malik, Y.S.; Singh, R.; Michalak, I.; Sah, R.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. COVID-19: Animals, veterinary and zoonotic links. Vet. Q. 2020, 40, 169–182. [Google Scholar] [CrossRef]
- Luan, J.; Lu, Y.; Jin, X.; Zhang, L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem. Biophys. Res. Commun. 2020, 526, 165–169. [Google Scholar] [CrossRef]
- Conceicao, C.; Thakur, N.; Human, S.; Kelly, J.T.; Logan, L.; Bialy, D.; Bhat, S.; Stevenson-Leggett, P.; Zagrajek, A.K.; Hollinghurst, P.; et al. SARS-CoV-2 Spike has broad tropism for mammalian ACE2 proteins yet exhibits a distinct pattern of receptor usage when compared to other β-coronavirus Spike proteins. Access Microbiol. 2022, 4, po0554. [Google Scholar] [CrossRef]
- Mathavarajah, S.; Dellaire, G. Lions, Tigers and Kittens too: ACE2 and susceptibility to CoVID-19. Evol. Med. Public Health 2020, 2020, 109–113. [Google Scholar] [CrossRef]
- Demogines, A.; Farzan, M.; Sawyer, S.L. Evidence for ACE2-Utilizing Coronaviruses (CoVs) Related to Severe Acute Respiratory Syndrome CoV in Bats. J. Virol. 2012, 86, 6350–6353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melin, A.D.; Janiak, M.C.; Marrone, F.; Arora, P.S.; Higham, J.P. Comparative ACE2 variation and primate COVID-19 risk. bioRxiv 2020, 3, 641. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhao, Y.-B.; Wang, Q.; Li, J.-Y.; Zhou, Z.-J.; Liao, C.-H.; Ge, X.-Y. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect. 2020, 22, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; He, W.-T.; Wang, L.; Lai, A.; Ji, X.; Zhai, X.; Li, G.; Suchard, M.A.; Tian, J.; Zhou, J. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol. Med. 2020, 26, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Sang, E.R.; Tian, Y.; Gong, Y.; Miller, L.C.; Sang, Y. Integrate structural analysis, isoform diversity, and interferon-inductive propensity of ACE2 to predict SARS-CoV2 susceptibility in vertebrates. Heliyon 2020, 6, e04818. [Google Scholar] [CrossRef]
- Brooke, G.N.; Prischi, F. Structural and functional modelling of SARS-CoV-2 entry in animal models. Sci. Rep. 2020, 10, 15917. [Google Scholar] [CrossRef]
- Khatri, I.; Staal, F.J.T.; van Dongen, J.J.M. Blocking of the High-Affinity Interaction-Synapse Between SARS-CoV-2 Spike and Human ACE2 Proteins Likely Requires Multiple High-Affinity Antibodies: An Immune Perspective. Front. Immunol. 2020, 11, 570018. [Google Scholar] [CrossRef]
- Zhai, S.-L.; Wei, W.-K.; Lv, D.-H.; Xu, Z.-H.; Chen, Q.-L.; Sun, M.-F.; Li, F.; Wang, D. Where did SARS-CoV-2 come from? Vet. Rec. 2020, 186, 254. [Google Scholar] [CrossRef]
- Lean, F.Z.X.; Núñez, A.; Spiro, S.; Priestnall, S.L.; Vreman, S.; Bailey, D.; James, J.; Wrigglesworth, E.; Suarez-Bonnet, A.; Conceicao, C.; et al. Differential susceptibility of SARS-CoV-2 in animals: Evidence of ACE2 host receptor distribution in companion animals, livestock and wildlife by immunohistochemical characterisation. Transbound. Emerg. Dis. 2022, 69, 2275–2286. [Google Scholar] [CrossRef]
- Chen, D.; Sun, J.; Zhu, J.; Ding, X.; Lan, T.; Zhu, L.; Xiang, R.; Ding, P.; Wang, H.; Wang, X.; et al. Single-cell screening of SARS-CoV-2 target cells in pets, livestock, poultry and wildlife. bioRxiv 2020. [Google Scholar] [CrossRef]
- Le Poder, S. Feline and canine coronaviruses: Common genetic and pathobiological features. Adv. Virol. 2011, 2011, 609465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavisky, J.; Pinchbeck, G.L.; German, A.J.; Dawson, S.; Gaskell, R.M.; Ryvar, R.; Radford, A.D. Prevalence of canine enteric coronavirus in a cross-sectional survey of dogs presenting at veterinary practices. Vet. Microbiol. 2010, 140, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef]
- Leroy, E.M.; Ar Gouilh, M.; Brugère-Picoux, J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health 2020, 10, 100133. [Google Scholar] [CrossRef]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef]
- Chen, J.; Huang, C.; Zhang, Y.; Zhang, S.; Jin, M. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibodies in Pets in Wuhan, China. J. Infect. 2020, 81, e68–e69. [Google Scholar] [CrossRef]
- Sailleau, C.; Dumarest, M.; Vanhomwegen, J.; Delaplace, M.; Caro, V.; Kwasiborski, A.; Hourdel, V.; Chevaillier, P.; Barbarino, A.; Comtet, L.; et al. First detection and genome sequencing of SARS-CoV-2 in an infected cat in France. Transbound. Emerg. Dis. 2020, 67, 2324–2328. [Google Scholar] [CrossRef]
- Fritz, M.; Rosolen, B.; Krafft, E.; Becquart, P.; Elguero, E.; Vratskikh, O.; Denolly, S.; Boson, B.; Vanhomwegen, J.; Gouilh, M.A.; et al. High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health 2021, 11, 100192. [Google Scholar] [CrossRef]
- Hamer, S.A.; Pauvolid-Corrêa, A.; Zecca, I.B.; Davila, E.; Auckland, L.D.; Roundy, C.M.; Tang, W.; Torchetti, M.; Killian, M.L.; Jenkins-Moore, M.; et al. Natural SARS-CoV-2 infections, including virus isolation, among serially tested cats and dogs in households with confirmed human COVID-19 cases in Texas, USA. bioRxiv 2020. [Google Scholar] [CrossRef]
- Patterson, E.I.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.L.; Anderson, E.R.; Prince, T.; Patterson, G.T.; et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat. Commun. 2020, 11, 6231. [Google Scholar] [CrossRef] [PubMed]
- Zambrano-Mila, M.S.; Freire-Paspuel, B.; Orlando, S.A.; Garcia-Bereguiain, M.A. SARS-CoV-2 infection in free roaming dogs from the Amazonian jungle. One Health 2022, 14, 100387. [Google Scholar] [CrossRef] [PubMed]
- Jairak, W.; Chamsai, E.; Udom, K.; Charoenkul, K.; Chaiyawong, S.; Techakriengkrai, N.; Tangwangvivat, R.; Suwannakarn, K.; Amonsin, A. SARS-CoV-2 delta variant infection in domestic dogs and cats, Thailand. Sci. Rep. 2022, 12, 8403. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, Y.; Gao, J.; Huang, K.; Hu, C.; Hui, X.; He, X.; Li, C.; Gong, W.; Lv, C.; et al. A serological survey of severe acute respiratory syndrome coronavirus 2 in dogs in Wuhan. Transbound. Emerg. Dis. 2021, 69, 591–597. [Google Scholar] [CrossRef]
- Alberto-Orlando, S.; Calderon, J.L.; Leon-Sosa, A.; Patiño, L.; Zambrano-Alvarado, M.N.; Pasquel-Villa, L.D.; Rugel-Gonzalez, D.O.; Flores, D.; Mera, M.D.; Valencia, P.; et al. SARS-CoV-2 transmission from infected owner to household dogs and cats is associated to food sharing. Int. J. Infect. Dis. 2022, 122, 295–299. [Google Scholar] [CrossRef]
- Deng, J.; Jin, Y.; Liu, Y.; Sun, J.; Hao, L.; Bai, J.; Huang, T.; Lin, D.; Jin, Y.; Tian, K. Serological survey of SARS-CoV-2 for experimental, domestic, companion and wild animals excludes intermediate hosts of 35 different species of animals. Transbound. Emerg. Dis. 2020, 67, 1745–1749. [Google Scholar] [CrossRef]
- Jairak, W.; Charoenkul, K.; Chamsai, E.; Udom, K.; Chaiyawong, S.; Bunpapong, N.; Boonyapisitsopa, S.; Tantilertcharoen, R.; Techakriengkrai, N.; Surachetpong, S.; et al. First cases of SARS-CoV-2 infection in dogs and cats in Thailand. Transbound. Emerg. Dis. 2022, 69, e979–e991. [Google Scholar] [CrossRef]
- Goryoka, G.W.; Cossaboom, C.M.; Gharpure, R.; Dawson, P.; Tansey, C.; Rossow, J.; Mrotz, V.; Rooney, J.; Torchetti, M.; Loiacono, C.M.; et al. One Health Investigation of SARS-CoV-2 Infection and Seropositivity among Pets in Households with Confirmed Human COVID-19 Cases-Utah and Wisconsin, 2020. Viruses 2021, 13, 1813. [Google Scholar] [CrossRef]
- Stevanovic, V.; Tabain, I.; Vilibic-Cavlek, T.; Mauric Maljkovic, M.; Benvin, I.; Hruskar, Z.; Kovac, S.; Smit, I.; Miletic, G.; Hadina, S.; et al. The Emergence of SARS-CoV-2 within the Dog Population in Croatia: Host Factors and Clinical Outcome. Viruses 2021, 13, 1430. [Google Scholar] [CrossRef]
- Bessière, P.; Vergne, T.; Battini, M.; Brun, J.; Averso, J.; Joly, E.; Guérin, J.-L.; Cadiergues, M.-C. SARS-CoV-2 Infection in Companion Animals: Prospective Serological Survey and Risk Factor Analysis in France. Viruses 2022, 14, 1178. [Google Scholar] [CrossRef]
- Bosco-Lauth, A.M.; Porter, S.M.; Fox, K.A.; Wood, M.E.; Neubaum, D.; Quilici, M. Experimental Infection of Brazilian Free-Tailed Bats (Tadarida brasiliensis) with Two Strains of SARS-CoV-2. Viruses 2022, 14, 1809. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.; Luk, H.K.; Wong, A.C.; Li, K.S.; Zhu, L.; He, Z.; Fung, J.; Chan, T.T.; Fung, K.S.; Woo, P.C. Possible Bat Origin of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 1542–1547. [Google Scholar] [CrossRef]
- Csiszar, A.; Jakab, F.; Valencak, T.G.; Lanszki, Z.; Tóth, G.E.; Kemenesi, G.; Tarantini, S.; Fazekas-Pongor, V.; Ungvari, Z. Companion animals likely do not spread COVID-19 but may get infected themselves. GeroScience 2020, 42, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Almendros, A. Can companion animals become infected with Covid-19? Vet. Rec. 2020, 186, 419–420. [Google Scholar] [CrossRef]
- Mallapaty, S. Coronavirus can infect cats—Dogs, not so much. Nature 2020. [Google Scholar] [CrossRef]
- Singla, R.; Mishra, A.; Joshi, R.; Jha, S.; Sharma, A.R.; Upadhyay, S.; Sarma, P.; Prakash, A.; Medhi, B. Human animal interface of SARS-CoV-2 (COVID-19) transmission: A critical appraisal of scientific evidence. Vet. Res. Commun. 2020, 44, 119–130. [Google Scholar] [CrossRef]
- CDC. Center for Disease Control: Interim Guidance for Public Health Professionals Managing People With COVID-19 in Home Care and Isolation Who Have Pets or Other Animals; CDC: Atlanta, GA, USA, 2020.
- Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, 145–151. [Google Scholar]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.-Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef] [PubMed]
- Marconato, L.; Finotello, R. Veterinary oncologists adapting to COVID-19 pandemic. Vet. Comp. Oncol. 2020, 18, 257. [Google Scholar] [CrossRef]
- Decaro, N.; Martella, V.; Saif, L.J.; Buonavoglia, C. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res. Vet. Sci. 2020, 131, 21–23. [Google Scholar] [CrossRef]
- Aitken, M.M. Ensuring animal welfare during Covid-19 pandemic. Vet. Rec. 2020, 186, 389. [Google Scholar] [CrossRef] [PubMed]
- Halfmann, P.J.; Hatta, M.; Chiba, S.; Maemura, T.; Fan, S.; Takeda, M.; Kinoshita, N.; Hattori, S.-I.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; et al. Transmission of SARS-CoV-2 in Domestic Cats. N. Engl. J. Med. 2020, 383, 592–594. [Google Scholar] [CrossRef]
- Bowen, J.; Bulbena, A.; Fatjó, J. The Value of Companion Dogs as a Source of Social Support for Their Owners: Findings From a Pre-pandemic Representative Sample and a Convenience Sample Obtained During the COVID-19 Lockdown in Spain. Front. Psychiatry 2021, 12, 622060. [Google Scholar] [CrossRef] [PubMed]
- Morgan, L.; Protopopova, A.; Birkler, R.I.D.; Itin-Shwartz, B.; Sutton, G.A.; Gamliel, A.; Yakobson, B.; Raz, T. Human–dog relationships during the COVID-19 pandemic: Booming dog adoption during social isolation. Hum. Soc. Sci. Commun. 2020, 7, 155. [Google Scholar] [CrossRef]
- Holland, K.E.; Owczarczak-Garstecka, S.C.; Anderson, K.L.; Casey, R.A.; Christley, R.M.; Harris, L.; McMillan, K.M.; Mead, R.; Murray, J.K.; Samet, L.; et al. “More Attention than Usual”: A Thematic Analysis of Dog Ownership Experiences in the UK during the First COVID-19 Lockdown. Animals 2021, 11, 240. [Google Scholar] [CrossRef]
- AVMA. 37. American Veterinary Medical Association. Testing Animals for SARS-CoV-2. 2020. Available online: https://www.avma.org/resources-tools/animal-health-and-welfare/covid-19/testing-animals-sars-cov-2 (accessed on 24 April 2020).
- Woolley, C.S.C.; Handel, I.G.; Bronsvoort, B.M.; Schoenebeck, J.J.; Clements, D.N. The Impact of the COVID-19 Pandemic on a Cohort of Labrador Retrievers in England; Research Square Platform LLC: Durham, NC, USA, 2022. [Google Scholar]
- USDA. USDA Statement on the Confirmation of COVID-19 in a Tiger in New York; USDA: Washington, DC, USA, 2020.
- El-Sayed, A.; Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 2020, 27, 22336–22352. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Kamel, M. Future threat from the past. Environ. Sci. Pollut Res. 2020, 28, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Gunter, L.M.; Gilchrist, R.J.; Blade, E.M.; Reed, J.L.; Isernia, L.T.; Barber, R.T.; Foster, A.M.; Feuerbacher, E.N.; Wynne, C.D.L. Emergency Fostering of Dogs From Animal Shelters During the COVID-19 Pandemic: Shelter Practices, Foster Caregiver Engagement, and Dog Outcomes. Front. Vet. Sci. 2022, 9, 862590. [Google Scholar] [CrossRef]
- Reese, L.A.; Jacobs, J.; Gembarski, J.; Opsommer, C.; Walker, B. The COVID-19 Animal Fostering Boom: Ephemera or Chimera? Animal 2022, 12, 1325. [Google Scholar] [CrossRef]
- Vučinić, M.; Vučićević, M.; Nenadović, K. The COVID-19 pandemic affects owners walking with their dogs. J. Vet. Behav. 2022, 48, 1–10. [Google Scholar] [CrossRef]
- Harvey, N.D.; Christley, R.M.; Giragosian, K.; Mead, R.; Murray, J.K.; Samet, L.; Upjohn, M.M.; Casey, R.A. Impact of Changes in Time Left Alone on Separation-Related Behaviour in UK Pet Dogs. Animal 2022, 12, 482. [Google Scholar] [CrossRef] [PubMed]
- OIE; World Organization for Animal Health. Questions and Answers on the 2019 Coronavirus Disease (COVID-19). 2020. Available online: https://www.oie.int/scientific-expertise/specific-information-and-recommendations/questions-and-answers-on-2019novel-coronavirus/ (accessed on 15 November 2022).
- Oliva, J.L.; Johnston, K.L. Puppy love in the time of Corona: Dog ownership protects against loneliness for those living alone during the COVID-19 lockdown. Int. J. Soc. Psychiatry 2021, 67, 232–242. [Google Scholar] [CrossRef]
- Bussolari, C.; Currin-McCulloch, J.; Packman, W.; Kogan, L.; Erdman, P. “I Couldn’t Have Asked for a Better Quarantine Partner!”: Experiences with Companion Dogs during Covid-19. Animals 2021, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.; Friedmann, E.; Gee, N.R.; Gilchrist, C.; Sachs-Ericsson, N.; Koodaly, L. Dog Walking and the Social Impact of the COVID-19 Pandemic on Loneliness in Older Adults. Animals 2021, 11, 1852. [Google Scholar] [CrossRef]
- Mueller, M.K.; Richer, A.M.; Callina, K.S.; Charmaraman, L. Companion Animal Relationships and Adolescent Loneliness during COVID-19. Animals 2021, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Kogan, L.R.; Erdman, P.; Bussolari, C.; Currin-McCulloch, J.; Packman, W. The Initial Months of COVID-19: Dog Owners’ Veterinary-Related Concerns. Front. Vet. Sci. 2021, 8, 629121. [Google Scholar] [CrossRef] [PubMed]
- Shorunke, F.O.; Okolocha, E.C.; Kia, G.S.; Usman, A.; Akano, O.; Awosanya, E.J. Prevalence and risk factors associated with SARS-CoV-2 infections among veterinary practitioners and dogs patients, June–August 2020, Lagos, Nigeria. One Health Outlook 2022, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Ga, E.; Won, Y.; Hwang, J.; Moon, S.; Yeom, M.; Lyoo, K.; Song, D.; Han, J.; Na, W. A COVID-19 Vaccine for Dogs Prevents Reverse Zoonosis. Vaccines 2022, 10, 676. [Google Scholar] [CrossRef]
- Jepsen-Grant, K.; Pollard, R.E.; Johnson, L.R. Vertebral heart scores in eight dog breeds. Vet. Radiol. Ultrasound 2013, 54, 3–8. [Google Scholar] [CrossRef]
- Romito, G.; Bertaglia, T.; Bertaglia, L.; Decaro, N.; Uva, A.; Rugna, G.; Moreno, A.; Vincifori, G.; Dondi, F.; Diana, A.; et al. Myocardial Injury Complicated by Systolic Dysfunction in a COVID-19-Positive Dog. Animals 2021, 11, 3506. [Google Scholar] [CrossRef]
- Recchia, F.A.; Lionetti, V. Animal models of dilated cardiomyopathy for translational research. Vet. Res. Commun. 2007, 31 (Suppl. 1), 35–41. [Google Scholar] [CrossRef] [PubMed]
- Paradies, P.; Carlucci, L.; Woitek, F.; Staffieri, F.; Lacitignola, L.; Ceci, L.; Romano, D.; Sasanelli, M.; Zentilin, L.; Giacca, M.; et al. Intracoronary Gene Delivery of the Cytoprotective Factor Vascular Endothelial Growth Factor-B 167 in Canine Patients with Dilated Cardiomyopathy: A Short-Term Feasibility Study. Vet. Sci. 2019, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Colitti, B.; Manassero, L.; Colombino, E.; Ferraris, E.I.; Caccamo, R.; Bertolotti, L.; Bortolami, A.; Bonfante, F.; Papa, V.; Cenacchi, G.; et al. Pulmonary fibrosis in a dog as a sequela of infection with Severe Acute Respiratory Syndrome Coronavirus 2? A case report. BMC Vet. Res. 2022, 18, 111. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). JAMA 2020, 324, 782. [Google Scholar] [CrossRef]
- Eskandari, E.; Ahmadi Marzaleh, M.; Roudgari, H.; Hamidi Farahani, R.; Nezami-Asl, A.; Laripour, R.; Aliyazdi, H.; Dabbagh Moghaddam, A.; Zibaseresht, R.; Akbarialiabad, H.; et al. Sniffer dogs as a screening/diagnostic tool for COVID-19: A proof of concept study. BMC Infect. Dis. 2021, 21, 243. [Google Scholar] [CrossRef] [PubMed]
- Sakr, R.; Ghsoub, C.; Rbeiz, C.; Lattouf, V.; Riachy, R.; Haddad, C.; Zoghbi, M. COVID-19 detection by dogs: From physiology to field application-a review article. Postgrad. Med. J. 2021, 98, 212–218. [Google Scholar] [CrossRef]
- McCulloch, M.; Jezierski, T.; Broffman, M.; Hubbard, A.; Turner, K.; Janecki, T. Diagnostic Accuracy of Canine Scent Detection in Early- and Late-Stage Lung and Breast Cancers. Integr. Cancer Ther. 2006, 5, 30–39. [Google Scholar] [CrossRef]
- Taylor, M.T.; McCready, J.; Broukhanski, G.; Kirpalaney, S.; Lutz, H.; Powis, J. Using Dog Scent Detection as a Point-of-Care Tool to Identify Toxigenic Clostridium difficile in Stool. Open Forum Infect. Dis. 2018, 5, ofy179. [Google Scholar] [CrossRef]
- Angle, C.; Waggoner, L.P.; Ferrando, A.; Haney, P.; Passler, T. Canine Detection of the Volatilome: A Review of Implications for Pathogen and Disease Detection. Front. Vet. Sci. 2016, 3, 47. [Google Scholar] [CrossRef]
- Angle, T.C.; Passler, T.; Waggoner, P.L.; Fischer, T.D.; Rogers, B.; Galik, P.K.; Maxwell, H.S. Real-Time Detection of a Virus Using Detection Dogs. Front. Vet. Sci. 2016, 2, 79. [Google Scholar] [CrossRef]
- Koivusalo, M.; Reeve, C. Biomedical scent detection dogs: Would they pass as a health technology? Pet. Behav. Sci 2018, 6, 1–7. [Google Scholar]
- Amann, A.; Costello, B.d.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8, 34001. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Jendrny, P.; Schulz, C.; Twele, F.; Meller, S.; Von Köckritz-Blickwede, M.; Osterhaus, A.D.M.E.; Ebbers, J.; Pilchová, V.; Pink, I.; Welte, T.; et al. Scent dog identification of samples from COVID-19 patients—A pilot study. BMC Infect. Dis 2020, 20, 536. [Google Scholar] [CrossRef]
- Grandjean, D.; Sarkis, R.; Lecoq-Julien, C.; Benard, A.; Roger, V.; Levesque, E.; Bernes-Luciani, E.; Maestracci, B.; Morvan, P.; Gully, E.; et al. Can the detection dog alert on COVID-19 positive persons by sniffing axillary sweat samples? A proof-of-concept study. PLoS ONE 2020, 15, e0243122. [Google Scholar] [CrossRef]
- Angeletti, S.; Travaglino, F.; Spoto, S.; Pascarella, M.C.; Mansi, G.; de Cesaris, M.; Sartea, S.; Giovanetti, M.; Fogolari, M.; Plescia, D.; et al. COVID-19 Sniffer Dog experimental training: Which protocol and which implications for reliable identification? J. Med. Virol. 2021, 93, 5924–5930. [Google Scholar] [CrossRef]
- Grandjean, D.; Al Marzooqi, D.H.; Lecoq-Julien, C.; Muzzin, Q.; Al Hammadi, H.K.; Alvergnat, G.; Al Blooshi, K.M.; Al Mazrouei, S.k.; Alhmoudi, M.S.; Al Ahbabi, F.M.; et al. Use of Canine Olfactory Detection for COVID-19 Testing Study on U.A.E. Trained Detection Dog Sensitivity. bioRxiv 2021. [Google Scholar] [CrossRef]
- Sharun, K.; Jose, B.; Tiwari, R.; Natesan, S.; Dhama, K. Biodetection dogs for COVID-19: An alternative diagnostic screening strategy. Public Health 2021, 197, e10–e12. [Google Scholar] [CrossRef] [PubMed]
- Sarkis, R.; Lichaa, A.; Mjaess, G.; Saliba, M.; Selman, C.; Lecoq-Julien, C.; Grandjean, D.; Jabbour, N.M. New method of screening for COVID-19 disease using sniffer dogs and scents from axillary sweat samples. J. Public Health 2021, 44, e36–e41. [Google Scholar] [CrossRef]
- Hag-Ali, M.; AlShamsi, A.S.; Boeijen, L.; Mahmmod, Y.; Manzoor, R.; Rutten, H.; Mweu, M.M.; El-Tholoth, M.; AlShamsi, A.A. The detection dogs test is more sensitive than real-time PCR in screening for SARS-CoV-2. Commun. Biol. 2021, 4, 686. [Google Scholar] [CrossRef]
- Maurer, M.; Seto, T.; Guest, C.; Somal, A.; Julian, C. Detection of SARS-CoV-2 by Canine Olfaction: A Pilot Study. Open Forum Infect. Dis. 2022, 9, ofac226. [Google Scholar] [CrossRef]
- Mancilla-Tapia, J.M.; Lozano-Esparza, V.; Orduña, A.; Osuna-Chávez, R.F.; Robles-Zepeda, R.E.; Maldonado-Cabrera, B.; Bejar-Cornejo, J.R.; Ruiz-León, I.; González-Becuar, C.G.; Hielm-Björkman, A.; et al. Dogs Detecting COVID-19 From Sweat and Saliva of Positive People: A Field Experience in Mexico. Front. Med. 2022, 9, 837053. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, D.; SLAMA, D.; Gallet, C.; Julien, C.; SEYRAT, E.; BLONDOT, M.; BENAZAZIEZ, M.; ELBAZ, J.; SALMON, D. Screening for SARS-CoV-2 Persistence in Long COVID Patients Using Sniffer Dogs and Scents from Axillary Sweats Samples; Cold Spring Harbor Laboratory: New York, NY, USA, 2022. [Google Scholar]
- Grandjean, D.; Gallet, C.; Julien, C.; Sarkis, R.; Muzzin, Q.; Roger, V.; Roisse, D.; Dirn, N.; Levert, C.; Breton, E.; et al. Identifying SARS-COV-2 infected patients through canine olfactive detection on axillary sweat samples; study of observed sensitivities and specificities within a group of trained dogs. PLoS ONE 2022, 17, e0262631. [Google Scholar] [CrossRef] [PubMed]
- Kantele, A.; Paajanen, J.; Turunen, S.; Pakkanen, S.H.; Patjas, A.; Itkonen, L.; Heiskanen, E.; Lappalainen, M.; Desquilbet, L.; Vapalahti, O.; et al. Scent dogs in detection of COVID-19: Triple-blinded randomised trial and operational real-life screening in airport setting. BMJ Glob. Health 2022, 7, e008024. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, D.; Elie, C.; Gallet, C.; Julien, C.; Roger, V.; Desquilbet, L.; Alvergnat, G.; Delarue, S.; Gabassi, A.; Minier, M.; et al. Diagnostic Accuracy of Non-Invasive Detection of SARS-CoV-2 Infection by Canine Olfaction; Cold Spring Harbor Laboratory: New York, NY, USA, 2022. [Google Scholar]
- Dickey, T.; Junqueira, H. Toward the use of medical scent detection dogs for COVID-19 screening. J. Osteopath. Med. 2021, 121, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Vesga, O.; Agudelo, M.; Valencia-Jaramillo, A.F.; Mira-Montoya, A.; Ossa-Ospina, F.; Ocampo, E.; Čiuoderis, K.; Pérez, L.; Cardona, A.; Aguilar, Y.; et al. Highly sensitive scent-detection of COVID-19 patients in vivo by trained dogs. PLoS ONE 2021, 16, e0257474. [Google Scholar] [CrossRef]
- Otto, C.M.; Sell, T.K.; Veenema, T.G.; Hosangadi, D.; Vahey, R.A.; Connell, N.D.; Privor-Dumm, L. The Promise of Disease Detection Dogs in Pandemic Response: Lessons Learned From COVID-19. Disaster Med. Public Health Prep. 2021, 17, 1–6. [Google Scholar] [CrossRef]
- Devillier, P.; Gallet, C.; Salvator, H.; Lecoq-Julien, C.; Naline, E.; Roisse, D.; Levert, C.; Breton, E.; Galtat, A.; Decourtray, S.; et al. Biomedical detection dogs for the identification of SARS-CoV-2 infections from axillary sweat and breath samples. J. Breath Res. 2022, 16, 37101. [Google Scholar] [CrossRef]
- Tetro, J.A. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 2020, 22, 72–73. [Google Scholar] [CrossRef]
- Tilocca, B.; Soggiu, A.; Sanguinetti, M.; Babini, G.; de Maio, F.; Britti, D.; Zecconi, A.; Bonizzi, L.; Urbani, A.; Roncada, P. Immunoinformatic analysis of the SARS-CoV-2 envelope protein as a strategy to assess cross-protection against COVID-19. Microbes Infect. 2020, 22, 182–187. [Google Scholar] [CrossRef]
- Tilocca, B.; Soggiu, A.; Sanguinetti, M.; Musella, V.; Britti, D.; Bonizzi, L.; Urbani, A.; Roncada, P. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes Infect. 2020, 22, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Marinella, M.A. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int. J. Clin. Pract. 2020, 74, e13535. [Google Scholar] [CrossRef] [PubMed]
Study of COVID-19 in Dogs | Country | Number of Animals and Positive Animals | Method of Detection | Infections Type | Reference |
---|---|---|---|---|---|
Two dogs (no clinical sign, detected SARS-CoV-2 RNA and neutralizing antibodies) | China | 15 (2) | Real-time RT-PCR, sequencing, and viral isolation | Natural | [54] |
Human-to-dog transmission. Viral RNA shedding could be observed. | France | One infected dog | RT_qPCR PCR ELISA automated Western blotting (WB) assays WGS | Natural | [56] |
A longitudinal study in Texas | USA | 59 (one dog was verified by PCR and sequencing) seven dogs had neutralizing antibodies | RT_qPCR virus isolation sequencing virus neutralization test (VNT) | Natural | [99] |
Infection of SARS-CoV-2 in a dog resulting in haemorrhagic diarrhea | Spain | One dog | RT-PCR sequencing | Natural | [72] |
High prevalence of antibodies in dogs from households with SARS-CoV-2 +ve patients | France | 13 (5 were seropositive) | FACS multiplex microsphere immunoassay | Natural | [98] |
Survey to detect SARS-CoV-2 among pets of owners positive to SARS-CoV-2 across 15 communities in Wuhan. | China | 9 dogs (One dog tested as positive showing high ELISA-OD values for IgG) | RT_qPCR ELISA Plaque reduction neutralization test (PRNT) | Natural | [96] |
In a large-scale study in Italy, no dogs tested PCR-positive. However, 3.3% (15/451) of dogs had seroconversion for SARS-CoV-2, with dogs housed with SARS-CoV-2 infected patients being significantly to be positive than the COVID-19 negative households. | Italy | 451 dogs (neutralizing antibodies were identified in 15 dogs (3.3%) | RT_qPCR PRNT | Natural | [100] |
A survey of 487 dogs showed serological negative to SARS-CoV-2. | China | 487 (Serologically tested to be negative) | double-antigen sandwich ELISA | Natural | [105] |
Stray dogs seropositivity in Brazil | Brazil | 47 dogs (serum samples of a stray cat and a stray dog presented neutralizing antibodies) | PRNT RT_qPCR | Natural | [68] |
SARS-CoV-2 infection within dogs in Thailand | Thailand | three out of 35 dogs | indirect ELISA and VNT RT_qPCR WGS | Natural | [106] |
SARS-CoV-2 infection and seropositivity in Utah and Wisconsin | Utah and Wisconsin (USA) | 37 dogs (one dog RT_qPCR, one dog’s fur swabs) 48 (12% are seropositive (4 dogs) | RT_qPCR, sequencing VNT | Natural | [107] |
SARS-CoV-2 infection within dogs in Croatia | Croatia | 1038 serum samples from dogs (Out of 149 ELISA positive samples, 23 had neutralizing antibody) 87 dogs from household (43.9%) were ELISA positive, and neutralizing antibody was detected in 25.64% of 87 dogs from household dogs) | microneutralization test ELISA | Natural | [108] |
SARS-CoV-2 infection within dogs in France | France | 165 (neutralizing antibodies are detected in 5.4% of the dogs (9/165) | ELISA HAT VNT | Natural | [109] |
No viral RNA was diagnosed in 12 dogs residing in northern Spain with individuals reported to be infected | Northern Spain | 12 dogs (Viral RNA was not observed) | RT_qPCR | Natural | [60] |
In France, an investigation conducted at a veterinary campus has revealed that cats and dogs that were closely in contact with patients with COVID-19 did not contract SARS-CoV-2. | France | 12 during the epidemic and 55 dogs before the epidemic (0) | Luciferase Immuno-Precipitation System (LIPSPCR) | Natural | [57] |
Experimentally infected five SARS-CoV-2 beagle dogs | China | 5 experimentally infected and uninoculated two dogs Two of the four inoculated dogs developed antibodies; however, neither the remaining two inoculated dogs nor the other two contact-exposed dogs produced anti-SARS-CoV-2 antibodies. | Rectal swabs from two virus-inoculated dogs were positive for viral RNA at 2 dpi. No clinical signs, no replication or transmission to in-contact animals and no pathological necropsy changes but only antibody response is detected. | Experimental | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamel, M.S.; El-Sayed, A.A.; Munds, R.A.; Verma, M.S. Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives. Animals 2023, 13, 524. https://doi.org/10.3390/ani13030524
Kamel MS, El-Sayed AA, Munds RA, Verma MS. Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives. Animals. 2023; 13(3):524. https://doi.org/10.3390/ani13030524
Chicago/Turabian StyleKamel, Mohamed S., Amr A. El-Sayed, Rachel A. Munds, and Mohit S. Verma. 2023. "Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives" Animals 13, no. 3: 524. https://doi.org/10.3390/ani13030524
APA StyleKamel, M. S., El-Sayed, A. A., Munds, R. A., & Verma, M. S. (2023). Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives. Animals, 13(3), 524. https://doi.org/10.3390/ani13030524