Evaluation of Single Nucleotide Polymorphisms (SNPs) Associated with Genetic Resistance to Bovine Paratuberculosis in Marchigiana Beef Cattle, an Italian Native Breed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Herds and Animals Identified for the Study
2.2. Assessment of MAP Infection Status Using Traditional Methods
- -
- a serological assay, ELISA test for PTB from blood serum (IDVet®-Grabels, France; IDEXX®-Westbrook, ME, USA) in accordance with the manufacturer’s instructions;
- -
- -
- a MAP culture, on selective solid media, according to the OIE/WOAH Terrestrial Manual [58].
2.3. Assessment of Cell-Mediated Immunity (CMI) Parameters
- -
- “Phosphate Buffered Saline” (PBS) without specific antigens;
- -
- Bovine PPD and Italian Avian PPD (produced at IZSUM);
- -
- Johnin PPD (produced at IZSUM); and
- -
- Mitogen (BOVIGAM® Pokeweed Mitogen-Thermofisher Scientific, Waltham, MA, USA) for the lymphocyte viability check.
2.4. Phenotypic Categorization
- -
- group 1: healthy, uninfected cattle, which were always negative for the ELISA, qPCR, and IFN-γ assays;
- -
- group 2: healthy but MAP-infected cattle, with positivity for the IFN-γ test but always negative for the ELISA and qPCR assays; and
- -
- group 3: PTB affected cattle, with positivity for at least the ELISA and/or qPCR from feces and/or the MAP culture, regardless of the IFN-γ test results.
2.5. SNPs Analysis for TLR-1, 2, 4, INF-γ, IL-10R, and IL-12R Genes
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arsenault, R.J.; Maattanen, P.; Daigle, J.; Potter, A.; Griebel, P.; Napper, S. From mouth to macrophage: Mechanisms of innate immune subversion by Mycobacterium avium subsp. paratuberculosis. Vet. Res. 2014, 45, 54. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, K. Genetic diversity of Mycobacterium avium subspecies paratuberculosis and the influence of strain type on infection and pathogenesis: A review. Vet. Res. 2015, 46, 64. [Google Scholar] [CrossRef] [PubMed]
- Stabel, J.R.; Kimura, K.; Robbe-Austerman, S. Augmentation of secreted and intracellular gamma interferon following Johnin purified protein derivative sensitization of cows naturally infected with Mycobacterium avium subsp. paratuberculosis. J. Vet. Diagn. Investig. 2007, 19, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Fecteau, M.E. Paratuberculosis in cattle. Vet. Clin. N. Am. Food. Anim. Pract. 2018, 34, 209–222. [Google Scholar] [CrossRef]
- Fecteau, M.E.; Whitlock, R.H.; Buergelt, C.D.; Sweeney, R.W. Exposure of young dairy cattle to Mycobacterium avium subsp. paratuberculosis (MAP) through intensive grazing of contaminated pastures in a herd positive for Johne’s disease. Can. Vet. J. 2010, 51, 198–200. [Google Scholar]
- Smith, R.L.; Schukken, Y.H.; Pradhan, A.K.; Smith, J.M.; Whitlock, R.H.; Van Kessel, J.S.; Wolfgang, D.R.; Grohn, Y.T. Environmental contamination with Mycobacterium avium subsp. paratuberculosis in endemically infected dairy herds. Prev. Vet. Med. 2011, 102, 1–9. [Google Scholar] [CrossRef]
- Donat, K.; Eisenberg, S.W.F.; Einax, E.; Reinhold, G.; Zoche-Golob, V. Reduction of viable Mycobacterium avium ssp. paratuberculosis in slurry subjected to anaerobic digestion in biogas plants. J. Dairy Sci. 2019, 7, 6485–6494. [Google Scholar] [CrossRef]
- Garvey, M. Mycobacterium avium subspecies paratuberculosis: A possible causative agent in human morbidity and risk to public health safety. Open Vet. J. 2018, 8, 172–181. [Google Scholar] [CrossRef]
- Mazzone, P.; Corneli, S.; Di Paolo, A.; Maresca, C.; Felici, A.; Biagetti, M.; Ciullo, M.; Sebastiani, C.; Pezzotti, G.; Leo, S. Survival of Mycobacterium avium subsp. paratuberculosis in the intermediate and final digestion products of biogas plants. J. Appl. Microbiol. 2018, 125, 36–44. [Google Scholar] [CrossRef]
- Chiodini, R.J.; Van Kruiningen, H.J.; Merkal, R.S. Ruminant paratuberculosis (Johne’s disease): The current status and future prospects. Cornell Vet. 1984, 74, 218–262. [Google Scholar]
- Feller, M.; Huwiler, K.; Stephan, R.; Altpeter, E.; Shang, A.; Furrer, H.; Pfyffer, G.E.; Jemmi, T.; Baumgartner, A.; Egger, M. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: A systematic review and meta-analysis. Lancet Infect. Dis. 2007, 7, 607–613. [Google Scholar] [CrossRef]
- Chiodini, R.J.; Chamberlin, W.M.; Sarosiek, J.; McCallum, R.W. Crohn’s disease and the mycobacterioses: A quarter century later. Causation or simple association? Crit. Rev. Microbiol. 2012, 38, 52–93. [Google Scholar] [CrossRef] [PubMed]
- Sechi, L.A.; Dow, C.T. Mycobacterium avium ss. paratuberculosis Zoonosis—The Hundred Year War—Beyond Crohn’s Disease. Front. Immunol. 2015, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Scanu, A.M.; Bull, T.J.; Cannas, S.; Sanderson, J.D.; Sechi, L.A.; Dettori, G.; Zanetti, S.; Hermon-Taylor, J. Mycobacterium avium subspecies paratuberculosis infection in cases of irritable bowel syndrome and comparison with Crohn’s disease and Johne’s disease: Common neural and immune pathogenicities. J. Clin. Microbiol. 2007, 45, 3883–3890. [Google Scholar] [CrossRef] [PubMed]
- Recht, J.; Schuenemann, V.J.; Sánchez-Villagra, M.R. Host diversity and origin of zoonoses: The ancient and the new. Animals 2020, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, T.C.; Okoh, A.I. Systematic Assessment of Mycobacterium avium Subspecies Paratuberculosis Infections from 1911-2019: A Growth Analysis of Association with Human Autoimmune Diseases. Microorganisms 2020, 8, 1212. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Falade, A.O.; Igere, B.E.; Iwu, C.D.; Adewoyin, M.A.; Olasehinde, T.A.; Ijabadeniyi, O.A. Systematic and meta-analysis of Mycobacterium avium subsp. paratuberculosis related type 1 and type 2 diabetes mellitus. Sci. Rep. 2022, 12, 4608. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, T.C.; Olasehinde, T.A.; Falade, A.O.; Adewoyin, M.A.; Iwu, C.D.; Igere, B.E.; Ijabadeniyi, O.A. Systematic review and meta-analysis of Mycobacterium avium subsp. paratuberculosis as environmental trigger of multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 59, 103671. [Google Scholar] [CrossRef]
- Grant, I.R.; Ball, H.J.; Rowe, M.T. Incidence of Mycobacterium paratuberculosis in bulk raw and commercially pasteurized cows’ milk from approved dairy processing establishments in the United Kingdom. Appl. Environ. Microbiol. 2002, 68, 2428–2435. [Google Scholar] [CrossRef] [PubMed]
- Eltholth, M.M.; Marsh, V.R.; Van Winden, S.; Guitian, F.J. Contamination of food products with Mycobacterium avium paratuberculosis: A systematic review. J. Appl. Microbiol. 2009, 107, 1061–1071. [Google Scholar] [CrossRef]
- Waddell, L.; Rajic, A.; Stärk, K.; McEwen, S.A. Mycobacterium avium ssp. paratuberculosis detection in animals, food, water and other sources or vehicles of human exposure: A scoping review of the existing evidence. Prev. Vet. Med. 2016, 132, 32–48. [Google Scholar] [CrossRef]
- McAloon, C.G.; Doherty, M.L.; Whyte, P.; O’Grady, L.; More, S.J.; Messam, L.L.M.; Good, M.; Mullowney, P.; Strain, S.; Green, M.J. Bayesian estimation of prevalence of paratuberculosis in dairy herds enrolled in a voluntary Johne’s Disease Control Programme in Ireland. Prev. Vet. Med. 2016, 128, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Bates, A.; O’Brien, R.; Liggett, S.; Griffin, F. The effect of sub-clinical infection with Mycobacterium avium subsp. paratuberculosis on milk production in a New Zealand dairy herd. BMC Vet. Res. 2018, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.B.; Shalloo, L. Invited review: The economic impact and control of paratuberculosis in cattle. J. Dairy Sci. 2015, 98, 5019–5039. [Google Scholar] [CrossRef] [PubMed]
- Barratt, A.S.; Arnoult, M.H.; Ahmadi, B.V.; Rich, K.M.; Gunn, G.J.; Stott, A.W. A framework for estimating society’s economic welfare following the introduction of an animal disease: The case of Johne’s disease. PLoS ONE 2018, 13, e0198436. [Google Scholar]
- Bulletin of the International Dairy. Federation, No. 362/2001, Mycobacterium Paratuberculosis. 2001. Available online: https://filidf.org/publications/bulletin/mycobacterium-paratuberculosis (accessed on 21 December 2022).
- Whittington, R.; Donat, K.; Weber, M.F.; Kelton, D.; Nielsen, S.S.; Eisenberg, S.; Arrigoni, N.; Juste, R.; Sáez, J.L.; Dhand, N.; et al. Control of paratuberculosis: Who, why and how. A review of 48 countries. BMC Vet. Res. 2019, 15, 198. [Google Scholar] [CrossRef]
- Pozzato, N.; Gwozdz, J.; Gastaldelli, M.; Capello, K.; Dal Ben, C.; Stefani, E. Evaluation of a rapid and inexpensive liquid culture system for the detection of Mycobacterium avium subsp. paratuberculosis in bovine feces. J. Microbiol. Methods 2011, 84, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Rathnaiah, G.; Zinniel, D.K.; Bannantine, J.P.; Stabel, J.R.; Gröhn, Y.T.; Collins, M.T.; Barletta, R.G. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne’s Disease. Front. Vet. Sci. 2017, 4, 187. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Ersbøll, A.K. Age at Occurrence of Mycobacterium avium Subspecies paratuberculosis in Naturally Infected Dairy Cows. J. Dairy Sci. 2006, 89, 4557–4566. [Google Scholar] [CrossRef]
- Koets, A.P.; Eda, S.; Sreevatsan, S. The within host dynamics of Mycobacterium avium subsp. paratuberculosis infection in cattle: Where time and place matter. Vet. Res. 2015, 46, 61. [Google Scholar] [CrossRef]
- Field, N.L.; McAloon, C.G.; Gavey, L.; Mee, J.F. Mycobacterium avium subspecies paratuberculosis infection in cattle—A review in the context of seasonal pasture-based dairy herds. Ir. Vet. J. 2022, 75, 12. [Google Scholar] [CrossRef]
- Coussens, P.M. Model for immune responses to Mycobacterium avium subspecies paratuberculosis in cattle. Infect. Immun. 2004, 72, 3089–3096. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, A.; Pelzer, K.; Sriranganathan, N. The Paratuberculosis Paradigm Examined: A Review of Host Genetic Resistance and Innate Immune Fitness in Mycobacterium avium subsp. Paratuberculosis Infection. Front. Vet. Sci. 2021, 8, 721706. [Google Scholar] [CrossRef] [PubMed]
- Jungersen, G.; Mikkelsen, H.; Grell, S.N. Use of the johnin PPD interferon-gamma assay in control of bovine paratuberculosis. Vet. Immunol. Immunopathol. 2012, 148, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Hearn, M.; Badia-Bringué, G.; Canive, M. Genome-wide association studies for the identification of cattle susceptible and resilient to paratuberculosis. Front. Vet. Sci. 2022, 9, 935133. [Google Scholar] [CrossRef] [PubMed]
- Corneli, S.; Di Paolo, A.; Vitale, N.; Torricelli, M.; Petrucci, L.; Sebastiani, C.; Ciullo, M.; Curcio, L.; Biagetti, M.; Papa, P.; et al. Early Detection of Mycobacterium avium subsp. paratuberculosis Infected Cattle: Use of Experimental Johnins and Innovative Interferon-Gamma Test Interpretative Criteria. Front. Vet. Sci. 2021, 8, 638890. [Google Scholar] [CrossRef] [PubMed]
- Purdie, A.C.; Plain, K.M.; Begg, D.J.; de Silva, K.; Whittington, R.J. Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: A review. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 197–208. [Google Scholar] [CrossRef]
- Mucha, R.; Bhide, M.R.; Chakurkar, E.B.; Novak, M.; Mikula, Sr I. Toll-like receptors TLR1, TLR2 and TLR4 gene mutations and natural resistance to Mycobacterium avium subsp. paratuberculosis infection in cattle. Vet. Immunol. Immunopathol. 2009, 128, 381–388. [Google Scholar] [CrossRef]
- Pinedo, P.J.; Buergelt, C.D.; Donovan, G.A.; Melendez, P.; Morel, L.; Wu, R.; Langaee, T.Y.; Rae, D.O. Candidate gene polymorphisms (BoIFNG, TLR4, SLC11A1) as risk factors for paratuberculosis infection in cattle. Prev. Vet. Med. 2009, 91, 189–196. [Google Scholar] [CrossRef]
- Verschoor, C.P.; Pant, S.D.; You, Q.; Schenkel, F.S.; Kelton, D.F.; Karrow, N.A. Polymorphisms in the gene encoding bovine interleukin-10 receptor alpha are associated with Mycobacterium avium ssp. paratuberculosis infection status. BMC Genet. 2010, 15, 11–23. [Google Scholar] [CrossRef]
- Pant, S.D.; Verschoor, C.P.; Skelding, A.M.; Schenkel, F.S.; You, Q.; Biggar, G.A.; Kelton, D.F.; Karrow, N.A. Bovine IFNGR2, IL12RB1, IL12RB2, and IL23R polymorphisms and MAP infection status. Mamm. Genome 2011, 9–10, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.J.; Souza, C.D.; Evanson, O.A.; Sanders, M.; Rutherford, M. Bovine monocyte TLR2 receptors differentially regulate the intracellular fate of Mycobacterium avium subsp. paratuberculosis and Mycobacterium avium subsp. avium. J. Leukoc. Biol. 2008, 83, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, B.M.; Gupta, J.P.; Pandey, D.P.; Parmar, G.A.; Chaudhari, J.D. Molecular markers for resistance against infectious diseases of economic importance. Vet. World 2017, 10, 112–120. [Google Scholar] [CrossRef]
- Bartens, M.C.; Gibson, A.J.; Etherington, G.J.; Di Palma, F.; Holder, A.; Werling, D.; Willcocks, S. Single Nucleotide Polymorphisms in the Bovine TLR2 Extracellular Domain Contribute to Breed and Species-Specific Innate Immune Functionality. Front. Immunol. 2021, 12, 764390. [Google Scholar] [CrossRef] [PubMed]
- Koets, A.; Santema, W.; Mertens, H.; Oostenrijk, D.; Keestra, M.; Overdijk, M.; Labouriau, R.; Franken, P.; Frijters, A.; Nielen, M.; et al. Susceptibility to paratuberculosis infection in cattle is associated with single nucleotide polymorphisms in Toll-like receptor 2 which modulate immune responses against Mycobacterium avium subspecies paratuberculosis. Prev. Vet. Med. 2010, 93, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Shah, S.Z.; Zhao, D.; Sreevatsan, S.; Zhou, X. The role of IL-10 in Mycobacterium avium subsp. paratuberculosis infection. Cell. Commun. Signal. 2016, 14, 29. [Google Scholar] [CrossRef]
- Begg, D.J.; de Silva, K.; Carter, N.; Plain, K.M.; Purdie, A.; Whittington, R.J. Does a Th1 over Th2 dominancy really exist in the early stages of Mycobacterium avium subspecies paratuberculosis infections? Immunobiology 2011, 216, 840–846. [Google Scholar] [CrossRef]
- Park, H.E.; Park, H.T.; Jung, Y.H.; Yoo, H.S. Gene expression profiles of immune-regulatory genes in whole blood of cattle with a674 subclinical infection of Mycobacterium avium subsp. paratuberculosis. PLoS ONE 2018, 13, e0196502. [Google Scholar]
- Moyano, R.D.; Romero, M.A.; Colombatti Olivieri, M.A.; Alvarado Pinedo, M.F.; Traveria, G.E.; Romano, M.I.; Alonso, M.N. Development and Validation of a Novel ELISA for the Specific Detection of Antibodies against Mycobacterium avium Subspecies paratuberculosis Based on a Chimeric Polyprotein. Vet Med Int 2021, 2021, 7336848. [Google Scholar] [CrossRef]
- Alonso-Hearn, M.; Salgado, M.; de Silva, K. Editorial: Advances in the Diagnosis and Control of Johne’s Disease. Front. Vet. Sci. 2021, 8, 771891. [Google Scholar] [CrossRef]
- Collins, M.T. Diagnosis of paratuberculosis. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, K.K.; Gupta, R.D.; Gupta, S.; Singh, S.V.; Bhatia, A.K.; Jayaraman, S.; Kumar, N.; Goel, A.; Rathore, A.S.; Sahzad; et al. Trends and advances in the diagnosis and control of paratuberculosis in domestic livestock. Vet. Q. 2016, 36, 203–227. [Google Scholar] [CrossRef] [PubMed]
- Whittington, R.J.; Begg, D.J.; de Silva, K.; Purdie, A.C.; Dhand, N.K.; Plain, K.M. Case definition terminology for paratuberculosis (Johne’s disease). BMC Vet. Res. 2017, 13, 328. [Google Scholar] [CrossRef]
- De la Rua-Domenech, R.; Goodchild, A.T.; Vordermeier, H.M.; Hewinson, R.G.; Christiansen, K.H.; Clifton-Hadley, R.S. Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, gamma-interferon assay and other ancillary diagnostic techniques. Res. Vet. Sci. 2006, 2, 190–210. [Google Scholar] [CrossRef] [PubMed]
- Bezos, J.; Casal, C.; Romero, B.; Schroeder, B.; Hardegger, R.; Raeber, A.J.; López, L.; Rueda, P.; Domínguez, L. Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res. Vet. Sci. 2014, 97, S44–S52. [Google Scholar] [CrossRef] [PubMed]
- Martucciello, A.; Vitale, N.; Mazzone, P.; Dondo, A.; Archetti, I.; Chiavacci, L.; Cerrone, A.; Gamberale, F.; Schiavo, L.; Pacciarini, M.L.; et al. Field Evaluation of the Interferon Gamma Assay for Diagnosis of Tuberculosis in Water Buffalo (Bubalus bubalis) Comparing Four Interpretative Criteria. Front. Vet. Sci. 2020, 7, 563792. [Google Scholar] [CrossRef]
- World Organisation for Animal Health OIE/WOAH. Paratuberculosis (Johne’s disease). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; OIE: Paris, France, 2009; Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.01.16_PARATB.pdf (accessed on 21 December 2022).
- Corneli, S.; Corte, L.; Roscini, L.; Di Paolo, A.; Colabella, C.; Petrucci, L.; Severi, G.; Cagiola, M.; Mazzone, P. Spectroscopic Characterization of Bovine, Avian and Johnin Purified Protein Derivative (PPD) with High-Throughput Fourier Transform InfraRed-Based Method. Pathogens 2019, 8, 136. [Google Scholar] [CrossRef]
- Begg, D.J.; Purdie, A.C.; De Silva, K.; Dhand, N.K.; Plain, K.M.; Whittington, R.J. Variation in susceptibility of different breeds of sheep to Mycobacterium avium subspecies paratuberculosis following experimental inoculation. Vet. Res. 2017, 48, 36. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.V.; Saxena, V.K.; Horin, P.; Sohal, J.S.; Singh, M.K.; Singh, A.V. Effect of genetic variation in the MHC class II DRB region on resistance and susceptibility to Johne’s disease in endangered Indian Jamunapari goats. Int. J. Immunogenet. 2012, 39, 314–320. [Google Scholar] [CrossRef]
- Marfell, B.J.; O’Brien, R.; Griffin, J.F.T. Global gene expression profiling of monocyte-derived macrophages from red deer (Cervus elaphus) genotypically resistant or susceptible to Mycobacterium avium subspecies paratuberculosis infection. Dev. Comp. Immunol. 2013, 40, 210–217. [Google Scholar] [CrossRef]
- Minozzi, G.; Williams, J.L.; Stella, A.; Strozzi, F.; Luini, M.; Settles, M.L.; Taylor, J.F.; Whitlock, R.H.; Zanella, R.; Neibergs, H.L. Meta-analysis of two genome-wide association studies of bovine paratuberculosis. PloS ONE 2012, 7, e32578. [Google Scholar] [CrossRef]
- Koets, A.P.; Adugna, G.; Janss, L.; Lò van Weering, H.J.; Kalis, C.H.; Wentink, G.H.; Rutten, V.P.; Schukken, Y.H. Genetic variation of susceptibility to Mycobacterium avium subsp. paratuberculosis infection in dairy cattle. J. Dairy Sci. 2000, 83, 2702–2708. [Google Scholar] [CrossRef] [PubMed]
- Canive, M.; González-Recio, O.; Fernández, A.; Vázquez, P.; Badia-Bringué, G.; Lavín, J.L.; Garrido, J.M.; Juste, R.A.; Alonso-Hearn, M. Identification of loci associated with susceptibility to Mycobacterium avium subsp. paratuberculosis infection in Holstein cattle using combinations of diagnostic tests and imputed whole-genome sequence data. PLoS ONE 2021, 16, e0256091. [Google Scholar] [CrossRef] [PubMed]
- Ben-Jemaa, S.; Senczuk, G.; Ciani, E.; Ciampolini, R.; Catillo, G.; Boussaha, M.; Pilla, F.; Portolano, B.; Mastrangelo, S. Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle. Front. Genet. 2021, 12, 675569. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Ciani, E.; Ajmone Marsan, P.; Bagnato, A.; Battaglini, L.; Bozzi, R.; Carta, A.; Catillo, G.; Cassandro, M.; Casu, S.; et al. Conservation status and historical relatedness of Italian cattle breeds. Genet. Sel. Evol. 2018, 50, 35. [Google Scholar] [CrossRef] [PubMed]
- FAO. Report 2007 Section E The State of the World’s Animal Genetic Resources for Food and Agriculture—Section E: Animal Genetic Resources and Resistance to Disease. Animal Genetic Resources and Resistance to Disease. Available online: http://www.fao.org/3/a1250e/a1250e05.pdf (accessed on 21 December 2022).
- Mancini, G.; Gargani, M.; Chillemi, G.; Nicolazzi, E.L.; Ajmone Marsan, P.; Valentini, A.; Pariset, L. Signatures of selection in five Italian cattle breeds detected by a 54K SNP panel. Mol. Biol. Rep. 2014, 41, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, S.; Tolone, M.; Ben Jemaa, S.; Sottile, G.; Di Gerlando, R.; Cortés, O.; Senczuk, G.; Portolano, B.; Pilla, F.; Ciani, E. Refining the genetic structure and relationships of European cattle breeds through meta-analysis of worldwide genomic SNP data, focusing on Italian cattle. Sci. Rep. 2020, 10, 14522. [Google Scholar] [CrossRef]
- Rovelli, G.; Luigi-Sierra, M.G.; Guan, D.; Sbarra, F.; Quaglia, A.; Sarti, F.M.; Amills, M.; Lasagna, E. Evolution of inbreeding: A gaze into five Italian beef cattle breeds history. PeerJ 2021, 9, e12049. [Google Scholar] [CrossRef]
- European Community. Commission Regulation (EC) 1226/2002 of 8 July 2002 Amending Annex B to Council Directive 64/332/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32002R1226andfrom=EN (accessed on 21 December 2022).
- Italian Ministry Of Health. Decree No 196 of 22 May Implementation of Q21 Directive 97/12/EC Amending and Updating Directive 64/432/EEC on Animal Q26 Health Problems Affecting Intra-Community Trade in Bovine Animals and Swine. Gazzetta Ufficiale Della Repubblica Italiana—Serie Generale. Available online: https://www.gazzettaufficiale.it/eli/id/1999/06/24/099G0224/sg (accessed on 21 December 2022).
- Italian Ministry of Health. Decree No 592 of 15 December Regulation Q21 on the National Plan for the Eradication of Tuberculosis in Cattle and Buffalo Q26 Herds—And Subsequent Amendments. Gazzetta Ufficiale Della Repubblica Italiana Serie Generale. Available online: https://www.gazzettaufficiale (accessed on 21 December 2022).
- Agreement. Agreement Between the Government, the Regions and the Autonomous Provinces of Trento and Bolzano on Guidelines for the Adoption of Control and Certification Plans for Bovine Paratuberculosis. (Rep. Acts n. 146/CSR). (13a09123) GU General Seriesn. 271 of 19-11-2013-Ordinary Suppl. n.79). 2013. Available online: http://www.gazzettaufficiale.it/eli/gu/2013/11/19/271/so/79/sg/pdf (accessed on 21 December 2022).
- Donaghy, J.A.; Johnston, J.; Rowe, M.T. Detection of Mycobacterium avium ssp. paratuberculosis in cheese, milk powder and milk using IS900 and f57-based qPCR assays. J. Appl. Microbiol. 2011, 110, 479–489. [Google Scholar] [CrossRef]
- Sebastiani, C.; Curcio, L.; Ciullo, M.; Mazzone, P.; Pezzotti, G.; Biagetti, M. Development of IS900 and F57 fast real-time PCR assays for the detection of Mycobacterium paratuberculosis. In Proceedings of the XII International Colloquium on Paratuberculosis—ICP, Parma, Italy, 22–26 June 2014; p. 84. [Google Scholar]
- Pierboni, E.; Curcio, L.; Tovo, G.R.; Torricelli, M.; Rondini, C. Evaluation of Systems for Nopaline Synthase Terminator in Fast and Standard Real-Time PCR to Screen Genetically Modified Organisms. Food Anal. Methods 2016, 9, 1009–1019. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; UGENE team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
Gene | Chr | SNP | Reference | Year | |
---|---|---|---|---|---|
TLR1 | 6 | 658 G > A | missense | Mucha et al. [39] | 2009 |
TLR2 | 17 | 2038 A > G | missense | Mucha et al. [39] | 2009 |
TLR41 | 8 | 892 G > Y | missense | Mucha et al. [39] | 2009 |
TLR42 | 8 | 895 G > A | missense | Mucha et al. [39] | 2009 |
TLR43 | 8 | 1165 G > A | missense | Mucha et al. [39] | 2009 |
TLR44 | 8 | 1167 T > C | missense | Mucha et al. [39] | 2009 |
BoIFNG | 5 | 2781 G > T | missense | Pinedo et al. [40] | 2009 |
IL10RA | 15 | 984 G > A * | silent | Vershoor et al. [41] | 2010 |
IL12RB2 | 3 | −511 ** A > G | promoter | Pant et al. [42] | 2011 |
Group | Genotype Frequencies | ||||||||
---|---|---|---|---|---|---|---|---|---|
BoIFNG | IL10RA | IL12RB2 | TLR1 | TLR2 | TLR41 | TLR42 | TLR43 | TLR44 | |
Group 1 n = 50 | G/G 46/50 (92%) | G/G 5/50 (10%) | A/A * 25/47 (54%) | G/G * 48/48 (100%) | A/A 50/50 (100%) | G/G 50/50 (100%) | G/G 50/50 (100%) | G/G 50/50 (100%) | T/T 50/50 (100%) |
G/T 4/50 (8%) | G/A 23/50 (46%) | A/G * 19/47 (40%) | G/A * 0/48 (0%) | A/G 0/50 (0%) | G/Y 0/50 (0%) | G/A 0/50 (0%) | G/A 0/50 (0%) | T/C 0/50 (0%) | |
T/T 0/50 (0%) | A/A 22/50 (44%) | G/G * 3/47 (6%) | A/A * 0/48 (0%) | G/G 0/50 (0%) | C/C, T/T 0/50 (0%) | A/A 0/50 (0%) | A/A 0/50 (0%) | C/C 0/50 (0%) | |
Group 2 n = 57 | G/G 55/57 (97%) | G/G * 1/55 (2%) | A/A 42/57 (74%) | G/G * 54/54 (100%) | A/A * 56/56 (100%) | G/G 57/57 (100%) | G/G 0/57 (100%) | G/G 0/57 (100%) | T/T 0/57 (100%) |
G/T 2/57 (3%) | G/A * 22/55 (40%) | A/G 15/57 (26%) | G/A * 0/54 (0%) | A/G * 0/56 (0%) | G/Y 0/57 (0%) | G/A 0/57 (0%) | G/A 0/57 (0%) | T/C 0/57 (0%) | |
T/T 0/57 (0%) | A/A * 32/55 (58%) | G/G 0/57 (0%) | A/A * 0/54 (0%) | G/G * 0/56 (0%) | C/C, T/T 0/57 (0%) | A/A 0/57 (0%) | A/A 0/57 (0%) | C/C 0/57 (0%) | |
Group 1 + Group 2 n = 107 | G/G 101/107 (94%) | G/G * 6/105 (6%) | A/A * 67/104 (64%) | G/G * 102/102 (100%) | A/A * 106/106 (100%) | G/G 107/107 (100%) | G/G 107/107 (100%) | G/G 107/107 (100%) | T/T 107/107 (100%) |
G/T 6/107 (6%) | G/A * 45/105 (43%) | A/G * 34/104 (33%) | G/A * 0/102 (0%) | A/G * 0/106 (0%) | G/Y 0/107 (0%) | G/A 0/107 (0%) | G/A 0/107 (0%) | T/C 0/107 (0%) | |
T/T 0/107 (0%) | A/A * 54/105 (51%) | G/G * 3/104 (3%) | A/A * 0/102 (0%) | G/G * 0/106 (0%) | C/C, T/T 0/107 (0%) | A/A 0/107 (0%) | A/A 0/107 (0%) | C/C 0/107 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzone, P.; Di Paolo, A.; Petrucci, L.; Torricelli, M.; Corneli, S.; Sebastiani, C.; Ciullo, M.; Sebastianelli, M.; Costarelli, S.; Scoccia, E.; et al. Evaluation of Single Nucleotide Polymorphisms (SNPs) Associated with Genetic Resistance to Bovine Paratuberculosis in Marchigiana Beef Cattle, an Italian Native Breed. Animals 2023, 13, 587. https://doi.org/10.3390/ani13040587
Mazzone P, Di Paolo A, Petrucci L, Torricelli M, Corneli S, Sebastiani C, Ciullo M, Sebastianelli M, Costarelli S, Scoccia E, et al. Evaluation of Single Nucleotide Polymorphisms (SNPs) Associated with Genetic Resistance to Bovine Paratuberculosis in Marchigiana Beef Cattle, an Italian Native Breed. Animals. 2023; 13(4):587. https://doi.org/10.3390/ani13040587
Chicago/Turabian StyleMazzone, Piera, Antonella Di Paolo, Linda Petrucci, Martina Torricelli, Sara Corneli, Carla Sebastiani, Marcella Ciullo, Martina Sebastianelli, Silva Costarelli, Eleonora Scoccia, and et al. 2023. "Evaluation of Single Nucleotide Polymorphisms (SNPs) Associated with Genetic Resistance to Bovine Paratuberculosis in Marchigiana Beef Cattle, an Italian Native Breed" Animals 13, no. 4: 587. https://doi.org/10.3390/ani13040587
APA StyleMazzone, P., Di Paolo, A., Petrucci, L., Torricelli, M., Corneli, S., Sebastiani, C., Ciullo, M., Sebastianelli, M., Costarelli, S., Scoccia, E., Sbarra, F., Gabbianelli, F., Chillemi, G., Valentini, A., Pezzotti, G., & Biagetti, M. (2023). Evaluation of Single Nucleotide Polymorphisms (SNPs) Associated with Genetic Resistance to Bovine Paratuberculosis in Marchigiana Beef Cattle, an Italian Native Breed. Animals, 13(4), 587. https://doi.org/10.3390/ani13040587