Evaluating the Effects of Some Selected Medicinal Plant Extracts on Feed Degradability, Microbial Protein Yield, and Total Gas Production In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Plant Materials
2.2. Preparation of Plant Extracts
2.3. Chemical Analysis of Substrate
2.4. Preparation of Incubation Medium
2.5. In Vitro Rumen Fermentation of Themeda triandra Hay
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of the Substrate (Themeda triandra Hay)
3.2. Dry Matter Degradability, Microbial Protein Yield and Gas Production of Themeda triandra Hay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V.J.S. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Galmessa, U.; Fita, L.; Tadesse, T.; Bekuma, A. Rumen Manipulation: One of the Promising Strategies to Improve Livestock Productivity-Review. J. Dairy Veter. Sci. 2019, 9, 555758. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P. Recent advances in the in vitro gas method for evaluation of nutritional quality of feed resources. Assessing quality and safety of animal feeds. FAO Anim. Prod. Health Ser. 2004, 160, 55–88. [Google Scholar]
- Chagunda, M.G.; Flockhart, J.F.; Roberts, D.J. The effect of forage quality on predicted enteric methane pro-duction from dairy cows. Int. J. Agric. Sustain. 2010, 8, 250–256. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Cottle, D.J.; Nolan, J.V.; Wiedemann, S.G. Ruminant enteric methane mitigation: A review. Anim. Prod. Sci. 2011, 51, 491–514. [Google Scholar] [CrossRef]
- EPA—United States Environmental Protection Agency. Global Greenhouse Gas Emissions Data. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 11 November 2018).
- Ungerfeld, E.M.; Newbold, C.J. Editorial: Engineering Rumen Metabolic Pathways: Where We Are, and Where Are We Heading. Front. Microbiol. 2018, 8, 2627. [Google Scholar] [CrossRef] [Green Version]
- Moran, J. How the Rumen Works. Tropical Dairy Farming; Landlinks Press: Collingwood, VIC, Australia, 2005; pp. 41–49. [Google Scholar]
- Guglielmelli, A.; Calabrò, S.; Cutrignelli, M.; Gonzalez, O.; Infascelli, F.; Tudisco, R.; Piccolo, V. In vitro fer-mentation and methane production of fava and soy beans. In Proceedings of the 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6–10 September, 2010; pp. 457–460. [Google Scholar]
- Seal, B.S.; Lillehoj, H.S.; Donovan, D.M.; Gay, C.G. Alternatives to antibiotics: A symposium on the challenges and solutions for animal production. Anim. Health Res. Rev. 2013, 14, 78–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greathead, H. Plants and plant extracts for improving animal productivity. Proc. Nutr. Soc. 2003, 62, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K.; Saxena, J. Dietary phytochemicals as rumen modifiers: A review of the effects on microbial populations. Antonie Van Leeuwenhoek 2009, 96, 363–375. [Google Scholar] [CrossRef]
- Kim, E.T.; Kim, C.-H.; Min, K.-S.; Lee, S.S. Effects of Plant Extracts on Microbial Population, Methane Emission and Ruminal Fermentation Characteristics in In vitro. Asian-Australas. J. Anim. Sci. 2012, 25, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Jayanegara, A.; Wina, E.; Takahashi, J. Meta-analysis on Methane Mitigating Properties of Saponin-rich Sources in the Rumen: Influence of Addition Levels and Plant Sources. Asian-Australas. J. Anim. Sci. 2014, 27, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Yuliana, P.; Laconi, E.; Wina, E.; Jayanegara, A. Extraction of Tannins and Saponins from plant sources and their effects on in vitro methanogenesis and rumen fermentation. J. Indones. Trop. Anim. Agric. 2014, 39, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Akanmu, A.M.; Hassen, A. The use of certain medicinal plant extracts reduced in vitro methane production while improving in vitro organic matter digestibility. Anim. Prod. Sci. 2018, 58, 900. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Cai, L.; Zhang, J.; Yang, A.; Wang, Y.; Zhang, L.; Guan, L.L.; Qi, D. Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro. Microorganisms 2020, 8, 1160. [Google Scholar] [CrossRef]
- Akanmu, A.M.; Hassen, A.; Adejoro, F.A. Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates. Animals 2020, 10, 146. [Google Scholar] [CrossRef] [Green Version]
- Abd’Quadri-Abojukoro Aderonke, N.; Yobo, K.S.; Nsahlai, I.V. Screening of some medicinal plant extracts for antibacterial effects: A step towards natural antibiotic feed additive formulation. Lett. Anim. Biol. 2022, 2, 1–11. [Google Scholar]
- Abd’Quadri-Abojukoro, A.N.; Nkadimeng, S.M.; McGaw, L.J.; Nsahlai, I.V. Phytochemical composition and cytotoxicity of ethanolic extracts of some selected plants. J. Appl. Anim. Res. 2022, 50, 656–665. [Google Scholar] [CrossRef]
- Van Soest, P.; Robertson, J.; Lewis, B. Symposium: Carbohydrate methodology, metabolism, and nutritional im-plications in dairy cattle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Basha, N.A.; Scogings, P.F.; Nsahlai, I.V. Effects of season, browse species and polyethylene glycol addition on gas production kinetics of forages in the subhumid subtropical savannah, South Africa. J. Sci. Food Agric. 2013, 93, 1338–1348. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed. Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Blümmel, M.; Steingaβ, H.; Becker, K. The relationship between in vitro gas production, in vitro microbial biomass yield and 15 N incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr. 1997, 77, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications; United States: Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1970.
- SAS. Statistical Analysis System User’s Guide, (Version 9.4); SAS: Cary, NC, USA, 2014. [Google Scholar]
- Makkar, H.P. In vitro gas methods for evaluation of feeds containing phytochemicals. Anim. Feed. Sci. Technol. 2005, 123–124, 291–302. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.; Becker, K. The partitioning kinetics of in vitro rumen fermentation products in a gas production test. J. Dairy Sci. 1998, 1, 309. [Google Scholar]
- Ouda, J.O.; Nsahlai, I.V. Relevance and Potential Use of In vitro Gas Production Measurements to Evaluate Varying Ratios of Roughages and Protein Sources for Ruminants. J. Appl. Anim. Res. 2009, 35, 9–16. [Google Scholar] [CrossRef]
- Getachew, G.; Makkar, H.P.S.; Becker, K. Tannins in Tropical Browses: Effects on in Vitro Microbial Fermentation and Microbial Protein Synthesis in Media Containing Different Amounts of Nitrogen. J. Agric. Food Chem. 2000, 48, 3581–3588. [Google Scholar] [CrossRef]
- Makkar, H.P. In vitro screening of feed resources for efficiency of microbial protein synthesis. In In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies; Springer: Dordrecht, The Netherlands, 2010; pp. 107–144. [Google Scholar]
- Newbold, C.J.; De La Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The Role of Ciliate Protozoa in the Rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [Green Version]
- Komolong, M.K.; Barber, D.G.; McNeill, D.M. Post-ruminal protein supply and N retention of weaner sheep fed on a basal diet of lucerne hay (Medicago sativa) with increasing levels of quebracho tannins. Anim. Feed. Sci. Technol. 2001, 92, 59–72. [Google Scholar] [CrossRef]
- Hersom, M.; Carter, J.N. Total Protein Requirement of Beef Cattle II: Protein Components: AN168/AN168, rev. 4/2010. EDIS 2010, 2010. [Google Scholar] [CrossRef]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Oba, M.; Allen, M.S. Evaluation of the Importance of the Digestibility of Neutral Detergent Fiber from Forage: Effects on Dry Matter Intake and Milk Yield of Dairy Cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegarty, R.S. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 1999, 50, 1321–1328. [Google Scholar] [CrossRef]
- Hess, H.-D.; Kreuzer, M.; Dıaz, T.; Lascano, C.E.; Carulla, J.E.; Soliva, C.R.; Machmüller, A. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim. Feed. Sci. Technol. 2003, 109, 79–94. [Google Scholar] [CrossRef]
- Sharma, P.; Tyagi, A.; Bhansali, P.; Pareek, S.; Singh, V.; Ilyas, A.; Mishra, R.; Poddar, N.K. Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representatives. Food Chem. Toxicol. 2021, 150, 112075. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Kamra, D.; Agarwal, N. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed. Sci. Technol. 2006, 128, 276–291. [Google Scholar] [CrossRef]
- Chevalier, A. The Encyclopedia of Medicinal Plants; Dorling Kindersley Publishing Inc.: London, UK, 1996. [Google Scholar]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population. BioMed Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef] [Green Version]
- Atikah, I.N.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Jahromi, M.F.; Ivan, M.; Samsudin, A.A. Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Veter. Res. 2018, 14, 344. [Google Scholar] [CrossRef]
- Callaway, T.R.; Edrington, T.S.; Rychlik, J.L.; Genovese, K.J.; Poole, T.L.; Jung, Y.S.; Bischoff, K.M.; Anderson, R.C.; Nisbet, D.J. Ionophores: Their use as ruminant growth promotants and impact on food safety. Curr. Issues Intest. Microbiol. 2003, 4, 43–51. [Google Scholar]
Scientific Name | Common Name | Family Name | Part Used |
---|---|---|---|
Acacia nilotica L. | Gum Arabic | Fabaceae | Leaves |
Acacia nilotica L. | Gum Arabic (pod) | Fabaceae | Pods with seeds |
Acacia sieberiana DC. | Paperbark | Fabaceae | Leaves |
Allium cepa L. | Onions | Liliaceae | Bulbs |
Allium sativum L. | Garlic | Liliaceae | Bulbs |
Aloe ferox Mill. | Aloe | Asphodelaceae | Leaves |
Ananas comosus (L) Merr. | Pineapple | Bromeliaceae | Leaves |
Camellia japonica L. | Tea | Theaceae | Leaves |
Carica papaya L. | Pawpaw | Caricaceae | Leaves |
Carya illinoinensis K.Koch | Pecan | Juglandaceae | Kernel shell |
Cichorium intybus L. | Chicory | Asteraceae | Leaves |
Citrus limon (L.) Osbeck | Lemon | Rutaceae | Leaves |
Coffea arabica L. | coffee | Rubiaceae | Leaves |
Ficus benjamina L. | Weeping fig | Moraceae | Leaves |
Ficus natalensis Hochst. | Natal fig | Moraceae | Leaves |
Moringa oleifera Lam. | Drumstick | Moringaceae | Leaves |
Morus nigra L. | Mulberry | Moraceae | Leaves |
Persea Americana Mill. | Avocado | Lauraceae | Leaves |
Psidium guajava L. | Guava | Myrtaceae | Leaves |
Tulbaghia violacea Harv. | Wild garlic | Alliaceae | Whole plant |
Vernonia amygdalina Delile | Bitter leaf | Asteraceae | Leaves |
Zingiber officinale Roscoe | Ginger | Zingiberceae | Rhizomes |
Treatments | Apdeg (mg g−1 DM) | Trdeg (mg g−1 DM) | NDFD (mg g−1 DM) | MY (mg g−1 DM) | GP (mL g−1 DM) |
---|---|---|---|---|---|
Acacia nilotica | 122 ab | 437 ab | 176 ab | 315 | 41 abcd |
Acacia nilotica (pods) | 146 ab | 437 ab | 176 ab | 291 | 23 bcd |
Acacia sieberiana | 191 a | 479 ab | 218 ab | 288 | 49 ab |
Allium cepa | 214 a | 490 ab | 229 ab | 277 | 40 abcd |
Allium sativum | 233 a | 460 ab | 199 ab | 227 | 42 abc |
Aloe ferox | 201 a | 499 ab | 238 ab | 298 | 41 abcd |
Ananas comosus | 201 a | 490 ab | 229 ab | 289 | 46 abc |
Camellia japonica | 232 a | 488 ab | 227 ab | 256 | 46 abc |
Carica papaya | 171 ab | 482 ab | 221 ab | 311 | 41 abcd |
Carya illinoinensis | −16 b | 407 b | 146 b | 423 | 6 d |
Cichorium intybus | 239 a | 458 ab | 197 ab | 220 | 62 a |
Citrus limon | 222 a | 492 ab | 231 ab | 269 | 51 ab |
Coffea arabica | 119 ab | 475 ab | 214 ab | 356 | 46 abc |
Ficus benjamina | 137 ab | 465 ab | 204 ab | 328 | 33 abcd |
Ficus natalensis | 174 ab | 483 ab | 222 ab | 309 | 43 abc |
Moringa oleifera | 151 ab | 493 ab | 232 ab | 341 | 46 abc |
Morus nigra | 243 a | 498 ab | 237 ab | 254 | 42 abc |
Persea Americana | 135 ab | 480 ab | 219 ab | 345 | 38 abcd |
Psidium guajava | 148 ab | 447 ab | 186 ab | 299 | 33 abcd |
Tulbaghia violacea | 161 ab | 511 a | 250 a | 350 | 36 abcd |
Vernonia amygdalina | 204 a | 481 ab | 220 ab | 277 | 50 ab |
Zingiber officinale | 212 a | 474 ab | 213 ab | 262 | 48 ab |
Monensin sodium | 146 ab | 452 ab | 191 ab | 306 | 13 cd |
Control | 255 a | 490 ab | 229 ab | 235 | 42 abc |
MSD | 198.41 | 96.93 | 96.93 | 246.83 | 34.98 |
RMSE | 62.89 | 30.72 | 30.72 | 78.24 | 11.09 |
Treatment effect | ** | * | * | NS | *** |
Treatments | Apdeg (mg g−1 DM) | Trdeg (mg g−1 DM) | NDFD (mg g−1 DM) | MY (mg g−1 DM) | GP (mL g−1 DM) |
---|---|---|---|---|---|
Acacia nilotica | 313 a | 540 ab | 279 ab | 227 ab | 89 abcdefgh |
Acacia nilotica (pods) | 278 a | 533 ab | 272 ab | 255 ab | 53 fgh |
Acacia sieberiana | 383 a | 556 ab | 295 ab | 173 b | 98 abcdefg |
Allium cepa | 376 a | 554 ab | 293 ab | 177 b | 117 abcde |
Allium sativum | 319 a | 562 ab | 301 ab | 243 ab | 130 ab |
Aloe ferox | 322 a | 518 ab | 257 ab | 196 b | 101 abcdef |
Ananas comosus | 344 a | 552 ab | 291 ab | 208 b | 87 abcdefgh |
Camellia japonica | 263 a | 552 ab | 291 ab | 290 ab | 64 efgh |
Carica papaya | 289 a | 587 a | 326 a | 298 ab | 118 abcde |
Carya illinoinensis | 46 b | 484 b | 223 b | 438 a | 62 defgh |
Cichorium intybus | 304 a | 564 ab | 303 ab | 260 ab | 123 abc |
Citrus limon | 385 a | 558 ab | 297 ab | 173 b | 140 a |
Coffea arabica | 322 a | 533 ab | 272 ab | 212 b | 127 ab |
Ficus benjamina | 304 a | 556 ab | 295 ab | 252 ab | 100 abcdefg |
Ficus natalensis | 318 a | 561 ab | 300 ab | 242 ab | 104 abcdef |
Moringa oleifera | 253 a | 545 ab | 284 ab | 292 ab | 109 abcdef |
Morus nigra | 338 a | 528 ab | 267 ab | 190 b | 44 gh |
Persea Americana | 325 a | 552 ab | 291 ab | 227 ab | 40 h |
Psidium guajava | 238 ab | 499 ab | 238 ab | 261 ab | 92 abcdefgh |
Tulbaghia violacea | 310 a | 530 ab | 269 ab | 220 ab | 119 abcde |
Vernonia amygdalina | 205 ab | 549 ab | 288 ab | 344 ab | 121 abcd |
Zingiber officinale | 296 a | 567 ab | 306 ab | 271 ab | 117 abcde |
Monensin sodium | 327 a | 561 ab | 300 ab | 234 ab | 66 cdefgh |
Control | 382 a | 532 ab | 271 ab | 151 b | 104 abcdef |
MSD | 196.79 | 92.48 | 92.48 | 220.78 | 58.14 |
RMSE | 62.38 | 29.31 | 29.31 | 69.98 | 18.43 |
Treatment effect | *** | * | * | ** | *** |
16 h Incubation | 48 h Incubation | |||
---|---|---|---|---|
Treatments | pH | PF | pH | PF |
Acacia nilotica | 6.89 ab | 11.7 c | 6.72 ab | 6.14 cdef |
Acacia nilotica (pods) | 6.89 ab | 19.7 c | 6.74 ab | 10.52 abc |
Acacia sieberiana | 6.87 ab | 10.1 c | 6.73 ab | 6.13 cdef |
Allium cepa | 6.83 ab | 13.5 c | 6.64 ab | 4.83 ef |
Allium sativum | 6.82 ab | 11.0 c | 6.67 ab | 4.46 ef |
Aloe ferox | 6.84 ab | 12.2 c | 6.78 ab | 5.31 def |
Ananas comosus | 6.85 ab | 10.9 c | 6.68 ab | 6.50 cdef |
Camellia japonica | 6.85 ab | 10.8 c | 6.72 ab | 9.79 abcd |
Carica papaya | 6.88 ab | 12.3 c | 6.72 ab | 5.08 ef |
Carya illinoinensis | 6.96 a | 66.7 a | 6.91 a | 8.23 bcdef |
Cichorium intybus | 6.84 ab | 7.8 c | 6.66 ab | 4.72 ef |
Citrus limon | 6.85 ab | 10.0 c | 6.78 ab | 4.04 f |
Coffea arabica | 6.90 ab | 10.7 c | 6.76 ab | 4.28 ef |
Ficus benjamina | 6.92 ab | 15.6 c | 6.72 ab | 5.63 def |
Ficus natalensis | 6.81 b | 11.7 c | 6.79 ab | 5.46 def |
Moringa oleifera | 6.85 ab | 11.8 c | 6.58 b | 5.13 def |
Morus nigra | 6.85 ab | 11.9 c | 6.75 ab | 12.56 ab |
Persea Americana | 6.87 ab | 12.9 c | 6.83 ab | 14.32 a |
Psidium guajava | 6.91 ab | 14.4 c | 6.70 ab | 5.47 def |
Tulbaghia violacea | 6.80 b | 17.1 c | 6.62 b | 4.62 ef |
Vernonia amygdalina | 6.85 ab | 10.5 c | 6.64 ab | 4.59 ef |
Zingiber officinale | 6.84 ab | 11.4 c | 6.65 ab | 4.84 ef |
Monensin sodium | 6.96 a | 36.7 b | 6.79 ab | 8.80 bcde |
Control | 6.88 ab | 11.1 c | 6.78 ab | 5.12 def |
MSD | 0.14 | 14.3 | 0.29 | 4.71 |
RMSE | 0.05 | 4.5 | 0.09 | 1.49 |
Treatment effect | ** | *** | * | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd’quadri-Abojukoro, A.N.; Nsahlai, I.V. Evaluating the Effects of Some Selected Medicinal Plant Extracts on Feed Degradability, Microbial Protein Yield, and Total Gas Production In Vitro. Animals 2023, 13, 702. https://doi.org/10.3390/ani13040702
Abd’quadri-Abojukoro AN, Nsahlai IV. Evaluating the Effects of Some Selected Medicinal Plant Extracts on Feed Degradability, Microbial Protein Yield, and Total Gas Production In Vitro. Animals. 2023; 13(4):702. https://doi.org/10.3390/ani13040702
Chicago/Turabian StyleAbd’quadri-Abojukoro, Aderonke N., and Ignatius V. Nsahlai. 2023. "Evaluating the Effects of Some Selected Medicinal Plant Extracts on Feed Degradability, Microbial Protein Yield, and Total Gas Production In Vitro" Animals 13, no. 4: 702. https://doi.org/10.3390/ani13040702
APA StyleAbd’quadri-Abojukoro, A. N., & Nsahlai, I. V. (2023). Evaluating the Effects of Some Selected Medicinal Plant Extracts on Feed Degradability, Microbial Protein Yield, and Total Gas Production In Vitro. Animals, 13(4), 702. https://doi.org/10.3390/ani13040702