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Simple Summary: The accurate prediction of growth traits in genomic selection (GS) is essential for
pig breeding. Here, we performed GS using variants identified with three genome-wide association
study methods on four growth-related traits in Yorkshire and Landrace pigs. A total of 1485 loci
related to these traits and 24 candidate genes were mapped. Compared with using 60K SNP-chip
data, GS with the pre-selected variants significantly improved prediction accuracies by 4 to 46% in
genomic best linear unbiased prediction (GBLUP) models, and 5 to 27% in a two-kernel based GBLUP
model for the four traits.

Abstract: Improving the prediction accuracies of economically important traits in genomic selection
(GS) is a main objective for researchers and breeders in the livestock industry. This study aims at
utilizing potentially functional SNPs and QTLs identified with various genome-wide association
study (GWAS) models in GS of pig growth traits. We used three well-established GWAS methods,
including the mixed linear model, Bayesian model and meta-analysis, as well as 60K SNP-chip
and whole genome sequence (WGS) data from 1734 Yorkshire and 1123 Landrace pigs to detect
SNPs related to four growth traits: average daily gain, backfat thickness, body weight and birth
weight. A total of 1485 significant loci and 24 candidate genes which are involved in skeletal muscle
development, fatty deposition, lipid metabolism and insulin resistance were identified. Compared
with using all SNP-chip data, GS with the pre-selected functional SNPs in the standard genomic best
linear unbiased prediction (GBLUP), and a two-kernel based GBLUP model yielded average gains in
accuracy by 4 to 46% (from 0.19 ± 0.07 to 0.56 ± 0.07) and 5 to 27% (from 0.16 ± 0.06 to 0.57 ± 0.05)
for the four traits, respectively, suggesting that the prioritization of preselected functional markers in
GS models had the potential to improve prediction accuracies for certain traits in livestock breeding.

Keywords: GWAS; genomic selection; growth traits; pigs

1. Introduction

Genomic selection (GS) has been a routine method for genetic evaluation in animal
breeding schemes [1]. It can increase the rate of genetic improvement, by reducing gen-
eration interval and providing higher accuracy of estimated breeding values. Due to the
reduced cost of SNP chips and genome sequencing [2], the continuous escalation of the
density of marker panels is generating both theoretical and implementation problems in
breeding practice. Although improvements on prediction accuracies for some traits were
occasionally observed by increasing the density of marker panels [3–5], in most scenarios
the increase of marker density did not transform into an improved prediction accuracy,
especially with a small population size. Theoretically, increasing the number of SNPs in
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a linear model may magnify collinearity and reduce the effects of causal variants, which
will hamper the ability to prioritize relevant variants [6]. Recent studies reported that the
prediction accuracy was increased by using only a limited number of SNPs associated
with specific traits [7–9], in comparison to using low or moderate SNP-chip. In addition,
SNPs around genes or potential causal variants can be preselected and integrated into
genomic prediction [10]. A study highlighted that using only SNPs within quantitative
trait loci (QTLs) showed a higher accuracy of the prediction of reproductive traits in two
pig breeds [11]. A similar result was also observed for the prediction of residual feed intake
in Duroc pigs, in which the predictive ability increased when only utilizing SNPs located
in genes [12]. Moreover, combining pre-selected markers from QTLs with 50k SNP panels
could result in a better prediction performance of production traits in Nordic Holstein
cattle [13].

Genome-wide association analysis (GWAS) is a powerful tool to identify potential
causal mutations associated with traits of interest [14,15]. It can be implemented with
various statistical models, such as a mixed linear model and Bayesian model [16,17].
The mixed linear model takes one SNP into the regression model every time to analyze
the relationship between marker and target traits. Significant signals might fall into a
broad-range genomic region owing to the strong linkage disequilibrium between SNPs.
However, the interaction of markers from an underlying QTL would be ignored [18,19]. As
an alternative, Bayesian methods simultaneously fit multiple SNPs effects, mapping the
genomic region on the complex trait and taking LD effect into account [20]. Performing
GWAS independently on multiple populations may reduce the false positive rate and
increase statistical power to find true causal mutations. However, combining summary
statistics from these independent GWAS studies using meta-analysis can increase the
power to find effects that are homogeneous across populations, and can elucidate between-
population heterogeneity [21]. This method has gained popularity for the discovery of
new candidate loci and for improving mapping precision using data from multi-breed
populations in the field of livestock breeding [22,23].

Pigs are a primary source of animal protein for humans [24]. Improving pork pro-
duction has always been a never-ending goal for livestock breeding. Growth-related traits
such as average daily gain (ADG), backfat thickness (BFT), body weight (BW) and birth
weight (BTHWT) are commonly treated as selection indices in breeding programs [25,26].
Although the genetic architecture of growth traits is largely polygenic in nature, which
may be affected by a substantial number of variants with small effects, significant variants
with large effects have also been discovered [14,27,28]. In this study, we use three GWAS
methods including mixed linear model, Bayesian analysis and meta-analysis, with 60K
SNP-chip data and whole genome sequence data from 1734 Yorkshire and 1123 Landrace
pigs, to detect as many potential causal mutations as possible and assess whether utilizing
these pre-selected SNPs in GS can improve the prediction accuracies of growth traits in pigs.

2. Materials and Methods
2.1. Phenotype Data

In this study, a total of 1734 Yorkshire and 1123 Landrace pigs were sampled from the
nucleus farm of Guangdong IPIG Technology Co., Ltd. (Guangzhou, Guangdong, China).
The 153 male and 2704 female pigs of two populations were born between 2015 and 2021. All
fattening pigs were reared under uniform feeding conditions and consistent management.
Phenotypic observations included 4 growth-related traits: average daily gain (ADG kg/d),
backfat thickness (BFT mm), birth weight (BTHWT kg) and body weight (BW kg). When
the body weight of pigs reached approximately 115 kg, backfat thickness and body weight
were recorded in the test station. Backfat thickness was measured by ultrasound between
the 10th and 11th rib in the live pigs. To standardize the phenotypic records, BFT and ADG
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were both adjusted to 100 kg and calculated by corrected equations [29]. The equation for
corrected 100 kg BFT was shown below:

BFT (mm) = Measured BFT × A
A + B× (Measured body weight− 100 kg)

where the values of A and B for sire and dam were shown as follows:

Sire : A = 13.47; B = 0.1115
Dam : A = 15.65; B = 0.156

The ADG was adjusted to 100 kg by the formula:

ADG (kg/day) =
100 kg
AGE

where age to 100 kg (AGE) was calculated with the following formula:

AGE (day) = Measured age− Measured body weight− 100 kg
CF

where correction factors (CF) were as follows:

Sire : CF = 1.826× Measured body weight
Measured age

Dam : CF = 1.715× Measured body weight
Measured age

Piglets were weighed within 24 h after the delivery of each individual to measure
and record the birth weight. In Yorkshire and Landrace pigs, the numbers of phenotypic
records for ADG, BFT and BW were 1734 and 1123, and for BTHWT were 887 and 405,
respectively. Animals with missing records were excluded from the following analysis.

2.2. Genotype Data

Ear tissues collected from target swine were used for genomic DNA extraction with
a standard phenol/chloroform method. The A260/A280 ratio of all DNA samples was
qualified by electrophoresis and a light absorption. The samples with ratio in the range of
1.8–2.0 were diluted to a final concentration of 50 ng/µL. Genotyping was conducting with
the KPS Porcine 60K SNP Chip (Beijing Compass Biotechnology Co., Ltd., Beijing, China),
which contains 57,466 genome-wide SNPs across 18 autosomes and sex chromosomes.
SNPs with call rate less than 95% and the minor allele frequency less than 1% were filtered
out using PLINK [30]. Individuals with more than 5% missing genotype were removed.
Unmapped or sex-chromosome located SNPs were also excluded. The quality controls
for the two populations were implemented under the same criteria, with 44,119 and
44,142 SNPs remaining for Yorkshire and Landrace pigs, respectively. In meta-analysis of
GWAS, a union set of SNP-chip from two populations that passed the same quality control
procedure mentioned above were later used.

2.3. Imputation of SNP Chips

To obtain high density SNP data, genotype phasing and imputation from 60K SNP
to whole genome sequencing (WGS) data were performed by Beagle using two reference
panels [31], including WGS data of 19 Yorkshire pigs and 12 Landrace pigs from NCBI
Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra/ accessed on 1 July 2020)
and European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena accessed on 3 July
2020) under project PRJNA260763 (Table S5). SNPs calling was performed under the
following pipeline. The raw reads were trimmed by filtering adapter and low-quality
bases using Trimmomatic (version 0.40) [32]. Clean reads were aligned to the pig reference
genome Sus Scrofa (v11.1.104) by BWA, and then the aligned reads were used to detect short
variants [33]. The raw SNPs were generated by employing GATK under the instruction of

http://www.ncbi.nlm.nih.gov/sra/
https://www.ebi.ac.uk/ena
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GATK best practice online documentation [34,35]. The GATK VariantFiltration parameter
was set as “QUAL < 30.0 || QD < 2.0 || FS > 60.0 || MQ < 40.0 || SOR > 4.0 ||
ReadPosRankSum < −8.0 || MQRankSum < −12.5”to filter raw SNPs, followed by a
further quality control step with the “–maf 0.05 –min-alleles 2 –max-alleles 2 –hwe 1e-6 –min-
meanDP 5 –max-missing 0.9” option in Vcftools [36]. After the filtration, the autosome-only
VCF files which contained 9,075,894 and 11,268,962 highly confident SNPs for Yorkshire and
Landrace pigs, respectively, were used as reference panels of corresponding populations
for genotype-imputation from the 60K SNP panel to WGS data. The average imputation
accuracy based on Beagle R2 was 0.71 and 0.69 for the two populations. The imputed SNPs
with minor allele frequency (MAF) < 0.01 and Hardy–Weinberg Equilibrium < 1 × 10−6

were discarded. Finally, the remaining 1,468,003 and 2,221,629 SNPs for Yorkshire and
Landrace pigs were available for the following analyses.

2.4. Statistical Models for GWAS

We used three statistic models including the mixed linear model, Bayesian model, and
meta-analysis for GWAS, including (1) linear model based on 60K chip data (CL_GWAS);
(2) linear model based on imputed WGS data (IL_GWAS); (3) Bayesian model based on 60K
chip data (CB_GWAS); and (4) meta-analysis based on 60K chip data.

2.4.1. Mixed Linear Model

We performed CL_GWAS and IL_GWAS by fitting a univariate Mixed Linear Model
(MLM) in GEMMA [37]:

y = Wα + Xβ + u + ε (1)

where y denotes the vector of phenotypic values; W is the incident matrices of multiple
covariates, comprised of sex, days to measure and top five eigenvectors of PCA which
were generated by GCTA tool [38]; α denotes the vector of corresponding coefficients
including the intercept; X is the vector of SNP genotypes; β denotes the marker effect;
u ∼ MVNn

(
0, λτ−1K

)
and ε ∼ MVNn

(
0, τ−1In

)
represent the vector of random effects

and random residuals, respectively; τ−1 is the variance of the residual errors; λ is the ratio
of variance components of random effects to random residuals; K is a genomic relatedness
matrix; In is an n × n identity matrix; and MVNn denotes the multivariare normal distribu-
tion with n-dimension. Bonferroni correction was used to determine the genome-wide and
suggestive significance threshold values [39]. The estimated significant levels were, respec-
tively, set as 1.13 × 10−6 and 2.25 × 10−5 for CL_GWAS, and 3.40 × 10−8 and 6.81 × 10−7

for imputed data-based GWAS.

2.4.2. Meta-Analysis

Combining the CL_GWAS results from two breeds by the same trait, a meta-analysis
using an inverse variance weighting method was implemented by METAL [40], in which
p values and effects of common SNPs were used as input data. Bonferroni correction
threshold for meta-analysis was identical to CL_GWAS.

2.4.3. Bayesian Model

Bayes C model was implemented by GenSel, the prior assumption of which was that
most markers were set as zero effect, with only a few SNPs explaining large variances [41].
Prior variance components of genetic effects and residuals were obtained using AIREMLF90
from BLUPF90 [42,43]. Gibbs-sampling chains for 50,000 iterations were run, and the
first 40,000 burn-in iterations were discarded. The probFixed parameter of π was set to
0.999, which meant that one of 1000 SNPs were taken into the Bayesian analysis iterations
and calculated with the given none-zero variance. The windowsBV option in GenSel
was set to 1 Mb, which means that every consecutive 1 Mb SNPs region that followed
the physical map order across the genome was divided into a genomic window. The
percentage of genome-wide genetic variance explained by windows was utilized to identify
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the informative regions. Windows with the proportion of genomic variance (GV) greater
than 1% were considered as significant regions, which were then taken to the downstream
analyses. Genetic variances of SNP effects were estimated with the same model as in the
single-marker GWAS.

2.5. Candidate Genes Annotation

Sus scrofa reference genome (version 11.1) which served as the gene location map
was downloaded from Ensembl database [44]. Genes that contained or were located
nearby significant SNPs which were identified using three single-marker approaches
(CL_GWAS, IL_GWAS and meta-analyses) were considered as candidate genes associated
with growth traits. In addition, genes which overlapped significant genomic regions
(1 Mb) that explained more than 1% genetic variance proportion from CB_GWAS were also
considered to be candidate genes. These genes were annotated with KOBAS 2.0 [45]. The
annotated KEGG pathways and GO biological processes were confirmed under Fisher’s
exact test with a significant threshold of p < 0.05.

2.6. Statistical Models for GS
2.6.1. GBLUP

The model of benchmark best linear unbiased prediction (GBLUP) is [46]:

y = Wα + Xg + ε (2)

where y is a vector of phenotypic values; α denotes the vector of fixed effects; g ∼
N
(

0, Gσ2
g

)
is a vector of genomic estimated breeding value (GEBV); ε ∼ N

(
0, Iσ2

e
)

repre-
sents the vector of residual effects; W and X are incident matrices for α and g. Genomic
relationship matrix G was calculated as G = ZZ′

2 ∑ pi(1−pi)
, where pi and Z represent MAF of

markers and the adjusted MAF matrix, respectively. The G was constructed by different
datasets of SNP markers depending on different strategies used [47].

2.6.2. Two-Kernel Based GBLUP

The model of two-kernel based GBLUP is:

y = Wα + X1g1 + X2g2 + ε (3)

where g1 ∼ N
(

0, G1σ2
g1

)
represents the matrix of GEBV1 estimated with G1 constructed

by all significant SNPs resulting from CL_GWAS, CB_GWAS IL_GWAS, and meta-analysis;
g2 ∼ N

(
0, G2σ2

g2

)
represents the matrix of GEBV2 estimated with G2 constructed by

the remaining SNPs in 60K SNP-chip. The sum of GEBV1 and GEBV2 were GEBV for
the method.

2.7. Evaluation of the Accuracy of GS

Prediction accuracy (GPA) was calculated as:

GPA =
r(GEBV, y∗)√

h2
(4)

where r(GEBV, y∗) represents the Pearson’s correlation between GEBV and phenotypes
corrected by fixed effects (y∗); h2 stands for heritability of trait. All models above were im-
plemented by BLUPF90 [43]. The predictive abilities of the defined models were measured
with 20 replications of a 5-fold random cross-validation [47]. The average (SD) accuracies
were presented as the results across replications.
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3. Results and Discussion
3.1. Phenotypic Statistics and Heritability Estimation

Phenotypic summary statistics and heritability based on the 60K SNP-chip for four
traits across two breeds are listed in Table 1. The coefficients of variation (CV) were in
different ranges from 7.95% to 30.12% and 8.05% to 33.47%, which indicated that two
breeds were in different variation levels. The results showed that ADG and BFT were
moderately heritable for Yorkshire and Landrace, 0.44, 0.43 and 0.44, 0.40, which were
similar to previous studies [14,48]. Heritability estimates of BW were also moderate, with
0.42 and 0.38 for two breeds. However, the additive genetic variance accounted for a small
proportion of phenotypic inheritance in BTHWT. The heritability of Yorkshire was 0.16,
consistent with the findings of [49], and the estimate of Landrace was 0.09 higher. As a low
heritable trait, a great breeding improvement of BTHWT would be made by implementing
marker-assisted selection or genomic selection.

Table 1. Phenotypic statistics and SNP chip-based heritability estimations for four growth-related
traits in two breeds.

Breed Trait N Mean ± SD CV Max Min h2

Yorkshire

ADG 1734 565.32 ± 44.92 7.95 792.59 394.51 0.44
BFT 1734 11.09 ± 3.34 30.12 28.04 5.17 0.43

BTHWT 887 1.39 ± 0.25 17.99 2.42 0.60 0.16
BW 1734 112.45 ± 14.64 13.02 167.10 74.01 0.42

Landrace

ADG 1123 608.19 ± 53.69 8.83 856.78 421.54 0.44
BFT 1123 14.58 ± 4.88 33.47 34.95 5.46 0.40

BTHWT 405 1.42 ± 0.26 18.31 2.17 0.71 0.27
BW 1123 117.12 ± 16.25 13.87 160.12 80.09 0.38

ADG, average daily gain; BFT, backfat thickness; BTHWT, birth weight; BW, body weight.

3.2. Population Structure Analysis

Principal component analysis (PCA) was performed using a 60K SNP panel. Almost
all individuals were divided into two clear clusters representing two different genetic
backgrounds of target animals, with only a few individuals overlapping (Figure 1). The
first two principal components explained 13.68% and 6.26% of the total variations. The
top five eigenvectors were added in the GWAS models as covariates to correct for existing
population stratification.
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3.3. GWAS Based on Mixed Linear Model and Bayesian Model

Results of significant genome-wide associations for four growth traits were shown
in Figures 2 and 3 and Supplementary Figures S1 to S4. The number of identified SNPs
for CL_GWAS and IL_GWAS were 48 and 142 (Tables S1 and S3), along with 44 genomic
regions that explained more than 1% of the genetic variance from CB_GWAS (Table S2).
Within the 65 genomic regions, several candidate genes were found to be related to growth
traits (Table 2).
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Figure 2. Manhattan plots for ADG (average daily gain) by breed in different GWAS approaches. The
red and blue lines in plots represent genome-wide and suggestive significance thresholds, respectively.
Results in Yorkshire population for: (A) CL_GWAS; (B) CB_GWAS; (C) IL_GWAS. Results in Landrace
population for: (D) CL_GWAS; (E) CB_GWAS; (F) IL_GWAS. %GV denotes the proportion of genomic
variance explained by the region identified.
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Figure 3. Manhattan plots for BFT (backfat thickness) by breed in different GWAS approaches. The
red and blue lines in plots represent genome-wide and suggestive significance thresholds, respectively.
Results in Yorkshire population for: (A) CL_GWAS; (B) CB_GWAS; (C) IL_GWAS. Results in Landrace
population for: (D) CL_GWAS; (E) CB_GWAS; (F) IL_GWAS. %GV denotes the proportion of genomic
variance explained by the region identified.

Four candidate genes (MDFIC, RPS12, PDE4D, AQP4) were putatively linked to ADG
and BW in pigs, which played supporting roles in the biological process of physical or
muscular growth. As a myogenic regulatory factor, the post-transcription downregulation
of MDFIC (MyoD family inhibitor domain containing) controls the promotion of myogenic
differentiation, which is beneficial for skeletal muscle development in bovines [50]. The
gene MDFIC was putatively linked to the birth weight of piglets [51] and the meat to
fat ratio in F2 × cross pigs [52], and harbored two SNPs which were associated with
ADG on SSC18:31.02~31.04 Mb. Ribosomal protein S12 (RPS12), mapped by two SNPs
on SSC1:30.88~30.92 Mb, was examined to regulate the process of nucleic acid translation
and physical growth in Drosophila by controlling Xrp1 expressing levels [53]. Induced
by fibroblast growth factor 1 (FGF1), phosphodiesterase 4D (PDE4D) was associated with
growth and fertility impairment [54] and lipolysis suppression [55]. Assigned to the most
significant SNP on SSC16:111.36 Mb for trait BW, aquaporin 4 (AQP4) was identified to
widely express in the digestive tract of guinea pigs, and the mediation of gastric acid
secretion in mice [56,57], which affected the physical growth in animals.
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Table 2. Summary of genomic regions significantly associated with growth-related traits of three
statistical analyses.

Traits 1 Breeds 2
The Number of Significant SNPs

Candidate Genes
CL_GWAS 3 CB_GWAS 4 IL_GWAS 5

ADG
YY 14 242 (12) 6 MDFIC, FOXP2, DOCK4,

IMMP2L, ZPLD1, CYP7B1
LL 3 164 (7) 1 ALDH8A1, RPS12

BFT
YY 20 219 (11) 71

UMAD1, GLCCI1, PDE4D,
ZSWIM6, RNF180, ANKRD55,

NDUFS4, NDUFA4

LL 5 193 (12) 2 ODF3, DEAF1, PACS1, ZNF300,
MS4A8, MS4A13

BTHWT
YY 4 20 EDRF1, DHX32, GMNN, MPP7,

CUBN, ITGA8, RPP38, UCMA

LL 104 (5) ASAP1, NAV3, MROH5,
PTP4A3, GPR20

BW
YY 6 245 (12) 40 TAF4B, AQP4, RORB, ATXN1,

TAFA5, SELENOI, TMEM104

LL 1 174 (10) 2 AMER2, MTMR6, NUP58,
ATP8A2, SHISA2, FAM171A1

1 ADG: average daily gain; BFT: backfat thickness; BTHWT: birth weight; BW: body weight. 2 YY: Yorkshire
population; LL: Landrace population. 3 The number of significant SNPs identified in CL_GWAS with a threshold
of 2.25 × 10−5. 4 The total number of SNPs located in genomic regions identified in CB_GWAS, explaining
more than 1% of genetic variance. The digit in brackets represents the number of genomic regions identified in
CB_GWAS, explaining more than 1% of genetic variance. 5 The number of significant SNPs identified in IL_GWAS
with a threshold of 6.81 × 10−7.

Seven candidate genes (PNPLA2, DEAF1, PLCD3, ANKRD55, RORB, NDUFS4, ALDH8A1)
were found to potentially affect the trait of BFT in pigs, and are involved in pathways
of fatty acid metabolism, adipogenesis and insulin signaling. Candidate gene PNPLA2
(patatin like phospholipase domain containing 2), overlapping a genomic region with GV
of 2.88% on SSC2:0.01~0.96 Mb, controls the initial step in triglyceride hydrolysis of long-
chain fatty acid esters in adipocyte and non-adipocyte, and regulates adiposomes size [58].
Crespo-Piazuelo et al. identified that PNPLA2 was embedded in a region on SSC2:0~12.76
Mb which was associated with the abundance of three fatty acids in backfat in pigs [59].
Gene DEAF1 (deformed epidermal autoregulatory factor 1 homolog) mapped an identified
variant on SSC2, is involved in fatty acid deposition, and regulated the expression of periph-
eral tissue antigen in lymph node stromal cells among diabetic mice and humans [52,60,61].
Phospholipase c delta 3 (PLCD3) played a key role in phosphatidylinositol catabolism by
hydrolyzing phospholipids into fatty acids [62], and was linked to backfat thickness in
Chinese native pigs [63] and intramuscular fat deposition in African Ankole cattle [64].
Assigned to a significant SNP on SSC16, ANKRD55 (ankyrin repeat domain 55) showed a
high correlation with insulin resistance and lipid metabolism, which may result in adiposity
and have a risk of Type 2 Diabetes in humans [65,66]. With low expression in hyperglycemic
donors, retinoid-related orphan receptor beta (RORB) positively regulated insulin secretion
in pancreatic β cells [67] and acted as a regulator of osteogenesis [68]. It was closed to a
variant on SSC1 and reported that backfat thickness showed a positive correlation with
intramuscular fatness, which is a key factor affecting the flavor and juiciness of pork [69–71].
Gene NDUFS4 (NADH: ubiquinone oxidoreductase subunit S4), harboring two identified
markers on SSC16:23.93~23.97 Mb, was reported to highly express in high intramuscular
fat in pigs [72], and ALDH8A1 (aldehyde dehydrogenase 8 family member A1) was shown
to be significantly associated with fatness in large white pigs [73].

The annotation of candidate genes supported that cellular processes in early stages may
impact birth weight of piglets, and consequently affect many post-natal traits including
growth performance and meat quality. For BTHWT in Yorkshire, three SNPs located
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in SSC14:135.03~135.18 Mb that were shared in two single-marker models completely
coincided with the QTL identified in the birth weight of Yorkshire piglets [74]. Closed
to these imprinted 13 kb regions, erythroid differentiation regulatory factor 1 (EDRF1)
mediated organ development and histological differentiation and controlled erythroid
development and differentiation in primitive cells or organs, such as fetal liver and fetal
kidney [75]. The gene DEAD-box helicase 32 (DHX32), overlapping the two most prominent
SNPs, has an ability to unwind DNA and RNA, and is involved in embryogenesis or cellular
growth and division by changing RNA structure [76]. Geminin DNA Replication Inhibitor
(GMNN), closed to the BTHWT-linked marker on SSC7:19.60 Mb, plays a crucial role in the
S and G2 phases of the cell cycle. The gene GMNN is involved in the regulation of DNA
replication and cell fate control during embryonic development [77]. Moreover, ZNF300
(zinc finger protein 300) served as a zinc finger-domain protein regulating embryonic
development and transcription. Gene TAF4B (TATA-box binding protein associated factor
4b) was essential for the maintenance of spermatogonia stem cells in mammals [78].

In our study, 48 SNPs related to the four traits were identified in the two populations.
In each single-marker analysis, we found several significant SNPs that were in high linkage
disequilibrium within a small region. For example, 13 ADG-associated SNPs on SSC18
from 31 Mb to 35.1 Mb were partitioned into four blocks with high pairwise LDs of 0.86,
0.58, 0.99 and 0.80. However, single-marker analysis only identified the association between
a single SNP and traits of interest, neglecting the LD effect of adjoining SNPs [18,19]. Since
p-value was used to test the statistical significance of SNPs [79], markers were likely to lack
the power to reach the stringent threshold when association analysis came to small sample
size test or low heritability of trait. Bayesian methods, which derived from the genomic
estimation of breeding value [1,79,80], simultaneously estimated SNP effects without
any significance testing. To take the genetic interaction effect into account, these models
investigated the variation of genomic regions by fitting multiple SNPs. The Bayes C model
used in this study assumed that most variants had a non-zero effect, which was consistent
with MLM method, but only a small part of SNPs had zero effect [80]. From the comparison
between the Bayes C model and single-marker regression analysis, most of the significant
SNPs were embedded in the genomic regions with large variances, indicating that the
linked SNPs did have large effects and confirming that the results of the two methods
were in high accordance. On the other hand, numerous regions covered no significant
SNP in single-marker analyses and also accounted for over 1% of genetic variations, such
as the genomic region on SSC2:162.08~162.31 Mb explaining 6.11% of genetic variance
with no identified SNP in CL_GWAS for BFT in Landrace. The single variant within
the SSC2:162.08~162.31 Mb region was unable to surpass the significance threshold in
CL_GWAS, but the total effects of these variants in this region might be substantial due to
loci interactions. It has been reported that non-significant SNPs might have large effects for
phenotype variability, and putatively causal variants that failed to surpass the threshold
could be addressed by Bayesian analyses [81]. However, IL_GWAS identified a BFT-related
locus (−log(p-value) > 8) within that region, suggesting that increased marker density
might construct a more precise genomic relatedness matrix, and was able to highlight
non-significant SNPs among genomic regions capturing large genetic variance. GWAS
based on genomic regions with a Bayesian model was able to effectively discover putative
QTLs and candidate genes [82,83], but to date few studies performed Bayesian GWAS on
growth traits.

Performing GWAS with imputed genotypes is an effective way to enhance SNP
density at a low cost [84]. We identified 142 loci associated with four traits across two
breeds, composed of 122 novel loci and 20 common loci identified with CL_GWAS. With
the IL_GWAS, some of the significant loci obtained a much stronger significance to surpass
a more stringent threshold. For instance, the suggestive-significant marker CNC10110504
in CL_GWAS became the peak variant across the genome. A possible reason is that the
overall effect of the genomic relatedness matrix in IL_GWAS was different from that in
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CL_GWAS [85,86]. However, the advantage of higher SNP density was not observed
in Landrace.

3.4. Meta-Analyses

Meta-analysis uplifted the detection power by taking all informative SNPs into account,
including those SNPs filtered out by quality control in single population GWAS [28]. We
used meta-analysis to uncover potential associated loci by pooling CL_GWAS of Yorkshire
and Landrace breeds. We detected 40 significant SNPs associated with four traits: fourteen
for ADG, twelve for BFT, three for BTHWT and five for BW (Figure 4 and Table S4), 30 of
which were consistent with CL_GWAS by single population. Among the ten novel SNPs
(Table S4), three neighboring loci associated with ADG in SSC18:25.13~25.23 Mb were in the
range of PTPRZ1 (protein tyrosine phosphatase receptor type Z1), which encodes protein
tyrosine phosphatase that regulates the cell proliferation on the embryonic spinal cord.
Another ADG-associated SNP located in SSC15:0.17 Mb was closely adjacent to candidate
gene signal transducing adaptor molecule 2 (STAM2) which plays a role in intracellular
signal transduction induced by growth factors and cytokines [87]. Yang et al. detected seven
genetic variants of the STAM2 gene and demonstrated that these variants had significant
associations with growth performance in Chinese Wuchuan Black cattle [88]. Moreover, two
candidate genes, ADAMTS6 (a disintegrin and metalloproteinase with thrombospondin
motifs 6) and BMP2K (bone morphogenetic protein 2 inducible protein kinase), were
assigned to the biological pathway of skeletal development and patterning. The lack
of gene ADAMTS6 leads to a drastic reduction in aggrecan and cartilage link protein,
the impairment of bone morphogenetic proteins (BMP) signaling in cartilage and the
detention of growth differentiation factors, which consequently result in impaired skeletal
development [89]. BMP plays a key role in skeletal development and patterning, and
protein encoded by BMP2K is considered as a kinase potentially regulating the attenuation
of osteoblast differentiation [90]. Since body fatness was reported to negatively correlate
with bone weight, bone mineral content and density [91], ADAMTS6 and BMP2K may play
roles in body weight in pigs.

3.5. Genomic Prediction

Genomic prediction using GBLUP and a 60K chip panel (CHIP) was set as a benchmark
(Figure 5A,C). GPAs for three traits (ADG, BFT and BW) with moderate heritability ranged
from 0.42 to 0.50 in Yorkshire, and from 0.43 to 0.55 in Landrace (Table S6). The prediction
accuracies of the trait BTHWT with low heritability were 0.13 ± 0.05 and 0.21 ± 0.07 in the
two breeds. The heritabilities and prediction accuracies based on the 60K chip panel for the
four traits were highly positively correlated in the two breeds (r = 0.99) (Figure 5B,D).

Compared with using SNP chip data, the prediction accuracy using imputed WGS
data had almost no improvement for ADG and BW in both breeds, which was contrary to
the report for ADG in pigs [2], while for BTHWT prediction accuracies in Yorkshire and
Landrace were increased by 22% and 10%, respectively. For the prediction accuracies of
BFT, no improvement was observed in Landrace, which was similar to studies for backfat
thickness in pigs reported by Zhang et al. [2] and Pérez-Enciso et al. [92], but a 7% improve-
ment was yielded with the WGS dataset in Yorkshire. Genomic prediction improved with a
large amount of variants identified for traits of BFT and BTHWT in Yorkshire, which was
congruent with previous reports that genomic prediction with imputed data was affected
by the genetic architecture of traits [2,5,92], although it can also be influenced by factors
such as the statistical models used [92,93] and LD pruning before imputation [85,94].
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and suggestive significance thresholds, respectively.

We used significant variants (Table 2 and Table S4) preselected from CL_GWAS,
IL_GWAS, meta-analysis, and SNPs located in genomic regions with high GV% from
CB_GWAS in GS (SIG). In the comparison with using the complete chip data, prediction
accuracies resulting from preselected SNPs for BFT in Yorkshire were 0.56 ± 0.08, which
increased by 10%, and likewise for BW the GPAs increased by 8% and 4% in Yorkshire and
Landrace, respectively (Figure 5A,C). The improvement was even more significant for the
trait with low heritability, such as BTHWT, with GPA increasing by 45% in Yorkshire and
46% in Landrace. Taken together, the use of preselected SNPs had the potential to improve
the GPA by reason of being free from the interference of non-significant loci [7,8]. Corredor
et al. found that genomic prediction with SNPs identified to be linked to the vulva size in
pigs had a better performance than that using all SNPs in the chip panel [11]. Van den Berg
et al. suggested using only variants closed to the causal variants, and rare sequence variants
closed to rare causal variants could improve prediction accuracies in dairy cattle, with
accuracies ranging from 0.73 to 0.95 [95]. Such improvements were not observed in some
studies which only used one of the GWAS methods to identify significant SNPs [96,97]. We
then hypothesized that prediction accuracy using preselected data could be determined by
the number of causal SNPs detected [98]. We pooled all SNPs identified by three different
GWAS methods in genomic prediction. For example, significant causal variants missed
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by using a single GWAS method might be identified by other GWAS methods, which can
be considered as supplements to the main model used, although there may be more false
positive loci with no effects identified. For BFT in Yorkshire, GPAs estimated by two-kernel
based GBLUP (TK) saw a slight improvement compared to SIG (Figure 5A,C). Compared
with CHIP, TK improved by 23% and 29% for BTHWT in the two breeds, and by 4% for BW
in Landrace. A similar study [9] revealed that TK outperformed the single kernel-based
model with pre-selected variants by 0.11, and with all markers on the SNP panel by 0.06 in
bulls, suggesting that the prioritization or appropriate weighting of pre-selected functional
markers have advantages in GS for some traits.
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Figure 5. Genomic prediction accuracies (GPA) of GS using three sets of SNPs for average daily gain
(ADG), backfat thickness (BFT), birth weight (BTHWT) and body weight (BW). Results for Yorkshire
and Landrace are in (A,C), respectively. CHIP and IMPUTED represent GPAs estimated by GBLUP
model based on all loci in 60K chip and imputed data, respectively. SIG represents GPAs estimated
by GBLUP model based on the combination of significant variants from CL_GWAS, CB_GWAS and
IL_GWAS. TK represents GPAs estimated by two-kernel based GBLUP based on the combination of
significant variants from CL_GWAS, CB_GWAS and IL_GWAS. (B,D) represent correlation fitting
curves between heritabilities and GPAs of 60K chip SNPs in Yorkshire and Landrace, respectively.
Error bars represent the standard deviation of the accuracy across replications.

4. Conclusions

In this study, we employed three different statistical methods as well as 60K SNP-
chip and whole genome sequence data (CL_GWAS, CB_GWAS, IL_GWAS and meta-
analysis based on chip data) for GWAS, which allowed us to discover more candidate loci
linked to the four growth traits. A total of 1485 candidate loci, and 24 candidate genes
which are involved in skeletal muscle development, fatty deposition, lipid metabolism
and insulin resistance, were identified. Using the pre-selected functional SNPs in GS
outperformed using all 60K SNP-chip and imputed WGS data for some traits, suggesting



Animals 2023, 13, 722 14 of 18

that the prioritization of preselected functional markers in GS models has a potential to
improve prediction accuracies in livestock breeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13040722/s1. Table S1: Significant SNPs related to growth
traits by breed in CL_GWAS. Table S2: Genomic regions explained ≥ 1% genomic variance from
CB_GWAS in traits by breed. Table S3: Significant SNPs related to growth traits by breed in IL_GWAS.
Table S4: Significant SNPs identified in meta-analysis for four traits. Table S5: Sequencing depth
of WGS data of reference panel. Table S6: Genomic prediction accuracies of different strategies by
traits. Figure S1: Manhattan plots for BTHWT (birth weight) by breed in different GWAS approaches.
Figure S2: Manhattan plots for BW (body weight) by breed in different GWAS approaches. Figure S3:
Q-Q plots for CL_GWAS of four growth traits in Yorkshire and Landrace population. Figure S4: Q-Q
plots for IL_GWAS of four growth traits in Yorkshire and Landrace population.
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