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Simple Summary: The supplementation of microalgae as additives in animal diets has gathered the
scientific community’s attention over recent years due to their beneficial properties. A better under-
standing of the effect of such additives on the rumen physiology could unravel their mode of action
and overall functionality. Therefore, this study investigated the effect of Spirulina supplementation
on modifying the rumen microbiota of ewes. Our results suggested that supplementing Spirulina, in
the highest studied level (15 g/ewe/day), resulted in significant alterations in the relative abundance
of the rumen microorganisms, with those reported regarding the cellulolytic bacterial species being
considered the most interesting.

Abstract: Supplementing ruminant diets with microalgae, may prove an effective nutritional strategy
to manipulate rumen microbiota. Forty-eight ewes were divided into four homogenous groups
(n = 12) according to their fat-corrected milk yield (6%), body weight, age, and days in milk, and
were fed individually with concentrate, alfalfa hay, and wheat straw. The concentrate of the control
group (CON) had no Spirulina supplementation, while in the treated groups 5 (SP5), 10 (SP10), and
15 g (SP15) of Spirulina were supplemented as an additive in the concentrate. An initial screening
using metagenomic next-generation sequencing technology was followed by RT-qPCR analysis for
the targeting of specific microbes, which unveiled the main alterations of the rumen microbiota
under the Spirulina supplementation levels. The relative abundance of Eubacterium ruminantium and
Fibrobacter succinogenes in rumen fluid, as well as Ruminococcus albus in rumen solid fraction, were
significantly increased in the SP15 group. Furthermore, the relative abundance of Prevotella brevis
was significantly increased in the rumen fluid of the SP5 and SP10 groups. In contrast, the relative
abundance of Ruminobacter amylophilus was significantly decreased in the rumen fluid of the SP10
compared to the CON group, while in the solid fraction it was significantly decreased in the SP
groups. Moreover, the relative abundance of Selenomonas ruminantium was significantly decreased
in the SP5 and SP15 groups, while the relative abundance of Streptococcus bovis was significantly
decreased in the SP groups. Consequently, supplementing 15 g Spirulina/ewe/day increased the
relative abundance of key cellulolytic species in the rumen, while amylolytic species were reduced
only in the solid fraction.

Keywords: ewes; microalgae; Spirulina; rumen; microorganisms

1. Introduction

Microalgae can be considered an eco-efficient and sustainable source of animal feed
because they are rich in bioactive compounds gathering the attention of animal nutrition-
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ists over recent decades [1]. The bioactive compounds present in microalgae may trigger
antioxidant [2–6] and immunomodulatory properties [7,8]. Besides, they can beneficially
enhance dairy product quality and improve their shelf life [2–6]. However, due to microal-
gae’s cell walls, their digestive efficiency remains an open debate. Moreover, microalgae
exert antimicrobial activity [9], thus, evaluating the effect on the rumen microbiome may
unveil important findings and help their holistic evaluation as animal feedstuff. Notably,
the impact of microalgae in manipulating rumen microbiota has been previously demon-
strated [10–15]. However, most of these studies attributed the alterations to the rumen
microbiota to their ether extract and fatty acid content, and more specifically the mode
of action of the presented polyunsaturated fatty acids (PUFA) such as docosahexaenoic
acid (DHA). Although the nutritional benefits of microalgae in livestock have been well-
described, the chaotic diversity of marine microbes, seaweeds, macro-, and micro-algae can
variously affect animals’ metabolism. Beyond the interspecies differences in the chemical
composition of algae, within species, the cultivation conditions can severely affect their
composition as well [16,17]. Therefore, the effect of algae on animal nutrition should not
be assessed by treating them as a uniform group, rather the focus needs to be on specific
species while also considering their chemical composition.

Spirulina, the most cultivated microalga [18], is considered one of the most promising
ones, and has been considered the “Food of the future”. It is an eco-friendly and sustain-
able microalga with antiviral, antioxidant, immunomodulating, and microbial-modulating
activity [19]. Up until now, the use of low-fat Spirulina in animal diets has investigated
mainly the effect on animal productivity and its antioxidant and immunomodulatory prop-
erties. More specifically, in our previous study [6], the inclusion of 15 g Spirulina/ewe/day
increased milk PUFA andω-3 content while also improved its antioxidant capacity indi-
cating promising insights for a prolong milk and dairy product shelf-life. Additionally,
Spirulina-fed ewes had higher blood antioxidant enzyme activities with lower values of
protein carbonyls [6].

Nevertheless, it is essential to approach such a nutritional strategy holistically because
the rumen microbiome is responsible for fermentation processes enabling the digestion of
plant material and consequently is closely associated with ruminant productivity, product
quality [20], and overall animal health. Moreover, the optimum microalgae supplemen-
tation level should also be assessed, as significant alterations in the rumen bacteriome
have been associated with it in a dose-dependent manner [14]. Presumably, as there is no
knowledge regarding the effect of the different levels of Spirulina supplementation, study-
ing different levels could unravel different responses in manipulating rumen microbiota,
enabling the evaluation of the optimum supplementation level.

Several molecular techniques were optimized to study the rumen microbiota and
unravel novel features. An initial screening of the core bacteriome using a Next Generation
Sequencing (NGS) technique, followed by targeting key microbe species with real-time
qPCR (RT-qPCR), unveiled important findings regarding the effect of microalgae supple-
mentation in goat and ewe diets [12,21]. Considering the above, this is the first study that
has investigated the effect of three different supplementation levels of Spirulina on the
rumen microbiota of ewes and key microbe species related to rumen fermentation processes
using both NGS and RT-qPCR methods.

2. Materials and Methods
2.1. Experimental Diets and Experimental Design

Animal handling, housing, and care complied with the approved protocols by the
Ethical Committee in Research of the Agricultural University of Athens. Forty-eight dairy
Chios breed ewes were divided into four homogenous groups (n = 12) according to their
fat corrected (6%) milk yield (FCM6%) (1.85 ± 0.3 kg/d), days in milk (67 ± 8 days), age
(2–4 years old), and body weight (54 ± 6.0 kg). The feed ration consisted of alfalfa hay,
wheat straw, and concentrate. The forages were provided separately from the concentrate as
usually happens in traditional feeding systems for small ruminants. A detailed description
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of the housing and feeding system (individual feeding) is provided in our previously
published study [6]. The composition of the four concentrates and the chemical composition
of the feedstuffs are provided in Tables S1 and S2. Ewes were offered concentrate with
the addition of three different levels of Spirulina. Spirulina was added manually as top
dressing on the concentrate fraction of the diet. More specifically, the concentrate of the
control group (CON) had no Spirulina supplementation, while in the three following dietary
treatment groups (SP5, SP10, and SP15), Spirulina was supplemented as an additive at
5, 10, and 15 g/ewe/day, respectively. Spirulina was provided as a commercial organic
product by Spirulina Nigrita Ltd. (Serres, Greece). Biomass was harvested with filtration
and controlled solar drying was applied to ensure the ingredients integrity. The assays
regarding the analysis of the collected feed samples are presented by Christodoulou et al. [6].
The average daily feed intake (g/ewe/day) and nutrient intake (g/ewe/day) of the four
dietary treatments are presented in Table S3. Ewes had free access to fresh water.

2.2. Sample Collection

Rumen samples were collected on the final day of the experiment (60th experimental
day). Rumen digesta samples were collected from each ewe before feeding using a stom-
ach tube (flexible PVG tube of 1.5 mm thickness and 10 mm I.D.), and a vacuum pump
(MZ2CNT, Vacuubrand Gmbh & Co Kg, Wertheim, Germany). The stomach tube was
inserted at approximately 130 cm depth and during the collection, the tube was moved
aiming to sample from different rumen places to avoid previously reported biases [22].
Up to 30 mL of rumen fluid was initially discarded to avoid saliva contamination [23].
To separate the solid fraction from the rumen fluid, four layers of cheesecloth were used.
Following the sample collection, samples were snap-frozen in liquid nitrogen and then
stored at −80 ◦C before lab analysis.

2.3. DNA Extraction

The DNA extraction was performed following the protocol described by Mavrommatis
et al. [12]. To clear the RNA contamination, RNase A (10 mg/mL) was then added to each
sample, followed by incubation at 37 ◦C for 1 h. Finally, the DNA pellet was resuspended in
ultrapure water and purified through a NucleoSpin® Tissue spin column (Macherey-Nagel
GmbH & Co., KG, Düren, Germany) based on the manufacturer’s guidelines. From each
sample, the quality of the extracted DNA was tested based on the abundance of the DNA
content and the levels of impurities in the 260/230 and 260/280 ratios, using an ND-1000
spectrophotometer (Nanodrop, Wilmington, DE, USA), and verified in a 0.7% agarose gel.

2.4. Primer Design and Relative Abundance of Selected Rumen Microorganisms

The primer set that was considered for the real-time PCR, the genomic region of PCR
amplification, the primer efficiency, amplicon size, and the hybridization temperature
are provided in Table S4. Primer design, selection, amplification region, and validation
processes were assessed following the steps described by Mavrommatis et al. [12]. A Step-
One Plus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) was used for
quantitative PCRs [12]. Primer specificity and primer dimer formation were investigated
(melt curve) by applying dissociation curve analysis. Based on the equation provided by
Carberry et al. [24]: relative abundance = e (target)(Ct target microorganism-Ct of bacterial 16s rDNA),
the proportion of total bacterial 16S ribosomal DNA was used to indicate the relative
abundance of microbial populations. The relative abundance expression of the results is a
practical and consistent method [25], given the fact that comparisons across treatments are
limited and no other taxa are compared.

2.5. Metagenomic NGS Analysis

The DNA samples, (50 ng·uL) from each rumen fluid sample, were pooled for each
group (four samples were obtained) for the metagenomic NGS bacteriome screening. The
16S rRNA gene (~1.5 kb) was amplified using a 16S Barcoding kit (SQK-RAB204, Oxford
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Nanopore Technologies (ONT), Oxford, UK), and following the manufacturer’s proto-
col. The sequencing library for 16S rRNA gene sequencing was generated from 20 ng
of DNA using the same kit (SQK-RAB204 from Oxford Nanopore Technologies, Oxford,
UK) following the manufacturer’s instructions and loaded into a MinION flow cell (R9.4.1,
FLO-MIN106). The flow cell was placed into a MinION-Mk1B device (Oxford Nanopore
Technologies) for sequencing and controlled using ONT’s MinKNOW software. Raw
sequencing data (FAST5 files) were basecalled with algorithms implemented in GUPPY
software (ONT) and reads were demultiplexed according to the used barcodes. Clean
sequences were obtained after trimming of barcodes, adapter, and primer sequences. Pro-
cessed reads (FASTQ files) were uploaded to the EPI2ME cloud-based workflow (Metrichor,
Oxford, UK) for taxonomic classification of bacteria in the following major ranks: Superk-
ingdom/phylum/class/order/family/genus/species. The analysis was carried out using
NCBI’s ‘16S Ribosomal RNA database’ (bacterial and archaeal strains) with an identity
threshold of 85% and a minimum quality score of 12.

2.6. Statistical Analysis

Statistical analysis was carried out using IBM SPSS Statistics for Windows software
(IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY,
USA). To compare the effect of the dietary treatment the one-way ANOVA analysis was
performed (CON vs. SP5 vs. SP10 vs. SP15) on the relative abundance of the studied
microorganisms.

The Lavene’s test was used to evaluate the homogeneity of the dataset and the Shapiro–
Wilk test was used to assess the dataset’s normality. For the data that did not violate
the homogeneity and normality tests, post hoc analysis was assessed considering the
Tukey multiple range tests, while for the data that violated these criteria, considering the
Games–Howell test. The significance threshold for these tests was set at 0.05. GraphPad
Prism 8.4.2. software was used for the interleaved bars on which the error bars represent
the standard error mean (SEM).

3. Results
3.1. 16S Amplicon Sequencing

Metagenomic sequencing of the DNA of the isolated microorganisms from the
pooled rumen fluid samples resulted in the detection of 19, 20, 17, and 19 phyla, 50, 48,
53, and 49 families, and 108, 90, 91, and 90 genera for the CON, SP5, SP10, and SP15
groups, respectively. A minimum similarity criterion of 85% was set, and approximately
100,000 reads/sample were assigned to various taxonomic levels with an average identity
score of 89% and an average quality score of 12.36. All the samples reached the plateau
phase, consistent with the rarefaction curves of the bacterial population at the genus
taxonomic level so that any additional increase in the number of sequences would not affect
the number of genera discovered. The dominant rumen fluid phyla were Bacteroidetes (%),
Firmicutes (%), and Proteobacteria (%). The highest relative abundance of the Bacteroidetes
was observed in the CON (39.3%) compared to the other groups (SP5: 26.5%; SP10: 36.1%;
and SP15: 29.2%, respectively). The relative abundance of Firmicutes was found to be
higher in the SP15 group (63.0%) compared to the rest (CON: 50.7%; SP5: 59.4%; and
SP10: 55.3%, respectively). The highest relative abundance of the Proteobacteria, was
found in the SP5 (12.5%) compared to the rest (CON: 7.9%; SP10: 6.2%; and SP15: 5.8%,
respectively). The Firmicutes:Bacteroidetes ratio was found to be at the lowest level for the
CON group compared to the rest (Table 1).
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Table 1. Relative abundance (%) in the metagenomic sequencing of the genomic DNA of the rumen
fluid samples (n = 1; pooled group samples) from the four dietary treatments (CON, SP5, SP10,
and SP15).

Dietary Treatments
Phyla (%)

Bacteroidetes Firmicutes Proteobacteria Firmicutes:Bacteroidetes

CON 39.3 50.7 7.9 1.29
SP5 26.5 59.4 12.5 2.24

SP10 36.1 55.3 6.2 1.53
SP15 29.2 63.0 5.8 2.16

CON: Control dietary treatment with no Spirulina supplementation. SP5: Dietary treatment with 5 g Spirulina/day
included in the concentrate. SP10: Dietary treatment with 10 g Spirulina/day included in the concentrate.
SP15: Dietary treatment with 15 g Spirulina/day included in the concentrate.

At a family level, Prevotellaceae was dominant in the four dietary treatments (CON:
37.4%; SP5: 24.1%; SP10: 32.8%; SP15: 26.6%, respectively), followed by Lachnospiraceae
(Figure 1).
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Figure 1. Relative abundance of dominant families based on the 16S amplicon sequencing in the
rumen fluid (n = 1; pooled group samples) of the four pooled DNA samples representative of the
four dietary treatments (CON; SP5; SP10; and SP15) with four different Spirulina supplementation
levels (0, 5, 10, and 15 g/day, in the concentrate, respectively) at a family level.

Bacteria of the genus Prevotella were the main representatives of the phylum Bac-
teroidetes in the four dietary treatments (Figure 2). The highest relative abundance was
found in the CON (36.0%) compared to the SP5 (23.3%), SP10 (31.9%), and SP15 (25.5%).
The predominant bacterial species of this genus were Prevotella ruminocola for the four
dietary treatments. Moreover, the genus Butyrivibrio was the second most dominant for
the CON, while the Ruminococcus, Butyrivibrio, and Selenomonas genera were next most
abundant for the SP dietary groups (Figure 2).
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3.2. Relative Abundance of Selected Microorganisms in the Rumen Fluid Samples Using a
RT-qPCR Platform

The relative abundance of Bacteroidetes and Firmicutes as well as the Firmicutes:
Bacteroidetes ratio did not significantly differ among the four dietary treatments (Figure 3,
Table S5). The relative abundance of Archaea, Fungi, and total Methanogens did not
significantly differ in the four dietary treatments, and Protozoa tended to increase in the
SP15 (p = 0.060) (Figure 3, Table S5). The relative abundance of the species Prevotela brevis
was significantly increased (p = 0.001) in the SP5 and the SP10 compared to the CON
and SP15 (Figure 3, Table S5). In addition, Methanobrevibacter tended to increase in the
SP15 (p = 0.053) (Figure 3, Table S5). A significant decrease (p = 0.012) was observed in
the relative abundance of Ruminobacter amylophilus in the SP10 compared to the CON-fed
ewes (Figure 3, Table S5). Furthermore, the relative abundance of Fibrobacter succinogenes
(p = 0.008) and Eubacterium ruminantium (p = 0.005) were significantly increased in the SP15,
while the relative abundance of Ruminococcus albus tended to increase (p = 0.095) in the
SP15 compared to the CON and SP5-fed ewes (Figure 3, Table S5).

3.3. Relative Abundance of Selected Microorganisms in the Rumen Solid Particle Using
RT-qPCR Platform

The relative abundance of Bacteroidetes, Firmicutes, and the ratio Firmicutes: Bac-
teroidetes did not significantly differ among the four dietary treatments (Figure 4, Table S6).
In addition, the relative abundance of Protozoa, Fungi, Archaea, and total Methanogens
did not significantly differ among the dietary treatments, while the relative abundance of
Methanobrevibacter tended to increase (p = 0.060) in the SP15 compared to the SP5-fed ewes
(Figure 4, Table S6). The relative abundance of Ruminobacter amylophilus and Streptococcus
bovis were significantly decreased (p < 0.001) in all SP-fed ewes (Figure 4, Table S6). More-
over, the relative abundance of Fibrobacter succinogenes was significantly reduced (p = 0.017)
in the SP5 and SP10 compared to the CON, while the relative abundance of Selenomonas
ruminantium was significantly reduced (p = 0.001) in the SP5 and SP15 compared to the CON
(Figure 4, Table S6). In contrast, the relative abundance of Ruminococcus albus was significantly
increased (p = 0.046) in the SP15 compared to the CON group (Figure 4, Table S6).
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4. Discussion

Studies to date have mainly focused on assessing the effect of Spirulina supplemen-
tation on animal performance and product quality. Our previous study suggested that
Spirulina dietary supplementation in the three different studied levels did not affect ewe
performance, while it improved the oxidative status of both ewes’ organism and milk [6].
Nevertheless, for a more thorough evaluation of Spirulina as a feed additive, it was critical
not only to assess the effect on animal health status and product quality but also to inspect
its impact on feed degradation potential as reflected by rumen inhabitation.

As far as is known, this is the first in vivo study that has investigated the effect of
supplementing different levels of Spirulina on the rumen microbiota of ewes and more
specifically the specific bacterial species that are involved in the feed degradation processes
as well as methane formation, in both rumen fluid and solid. For a more thorough approach,
the advent of rapid and robust long-read sequencing by Oxford Nanopore was used to
comprehensively evaluate the effect of Spirulina supplementation on the rumen bacteriome
of ewes. Following this initial bacteriome cataloguing, the relative abundance of selective
rumen microorganisms was assessed using a well-assessed RT-qPCR platform. By such an
approach, previous work from our research group [12,21] unveiled important findings and
an in-depth understanding of the rumen microbiota under the influence of feed additives to
diets of small ruminants. Discrepancies in the abundance levels of dominant phyla between
NGS and qPCR approaches may lie in both different analytical workflows (pool DNA
samples on NGS vs. individually on qPCR) and the dissimilar amplification regions and
amplicon length. Although these minor inconsistencies were not subversive or significant,
this partial incompatibility between the two methodologies remains a controversial topic
necessitating further research.

The Spirulina Supplementation Demonstrated Important Findings in the Modification of the
Populations of Rumen Microorganisms

In the past, studies evaluated the microbial-modulating activity of Spirulina and
its inhibitory activity against Gram-negative and Gram-positive bacteria [26]. Spirulina
produces extracellular metabolites with antibacterial activity [27–30]. Conversely, Spirulina
extracellular products, obtained from an advanced exponential phase culture and separated
by filtration, have been reported to significantly promote the growth of lactic acid bacteria
in vitro [26]. Regarding the Spirulina biomass, although better growth and survival have
been linked to the high level of nitrogenous substances, specifically free amino acids [31],
phenolic compounds have been acknowledged to exert antimicrobial or bacteriostatic
activities and improve probiotic growth [32].

Supplementing Spirulina to the diet of ewes did not significantly affect the relative
abundance of total methanogens. However, in its highest dietary inclusion level (SP15),
the relative abundance of the key methanogenic Archaeon taxon Methanobrevibacter tended
to increase in both the liquid and solid rumen fractions. Archaea make up about 0.3 to
4% of the rumen microbial DNA (16s and 18s rRNAs) [33]. Almost all the Archaea are
the so-called methanogens that have been related to methane (CH4) production and the
subsequent livestock emissions [34]. In our study, the relative abundance of the total
rumen methanogens in both the fluid and solid fraction is in partial contrast to a study
that reported that the addition of 10 g Chlorella vulgaris/kg (10% ether extract content),
increased total methanogens in goats’ rumen fluid [10]. In contrast, different findings
were observed by the supplementation of microalgae rich in ether extract (55.6% ether
extract content) and polyunsaturated fatty acids (PUFA), especially DHA (22% of total
fatty acids), such as Schizochytrium spp. [14,15]. Therefore, it appears that the manipulation
of rumen methanogens by the administration of microalgae in ruminants’ diet may not
be strictly related to their ether extract and fatty acid (e.g., DHA) content but also other
compounds and secondary metabolites presented in algae biomass can impair methanogens
abundance. Further to the metabolic function of methanogens per se, a mutualistic mode of
action involving the Selenomonas ruminantium has been reported in in vitro co-cultures [35].
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However, in our study, the relative abundance of Selenomonas ruminantium was significantly
reduced in the solid fraction of the SP5 and SP15.

Furthermore, methanogens coexist also in symbiotic interactions with protozoa [36]
and thus, there is a linear relationship between protozoa and CH4 emissions as well [37].
Nevertheless, plant extracts have been associated with the manipulation of protozoa,
however, thus far, there is no applicable approach to control the rumen protozoa. [38]. The
numerical increase in protozoa in the group with the highest inclusion level (SP15), both
in rumen fluid and solid, is in agreement with the reported increase in protozoa when
Chlorella vulgaris (10 g/kg of concentrate dry matter) was included in goat diets [10].

A meta-analysis reported that rumen defaunation (absence of rumen protozoa), can
suppress both the abundance and activity of fibrolytic microorganisms, and more specifi-
cally of anaerobic fungi, and bacterial species namely Ruminococcus albus and Ruminococcus
flavefaciens and thus impairs the overall rumen organic matter digestibility [37]. The incor-
poration of 10 g of Chlorella vulgaris in goat diets significantly reduced the population of
Ruminococcus albus in their rumen fluid [10]. Among the former cellulolytic bacteria, Fi-
brobacter succinogenes demonstrates the strongest cellulolytic activity [39] and Ruminococcus
albus has been considered a cellulolytic specie of major importance [40]. The fact that the
highest inclusion level of Spirulina in ewe diets resulted in a higher relative abundance of
major cellulolytic bacterial species (Eubacterium ruminantium and Fibrobacter succinogenes in
rumen fluid, and Ruminococcus albus in the solid fraction) could be considered as an inter-
esting finding which requires further investigation as it was accompanied by an increasing
abundance trend in both protozoa and methanogenic species in the rumen of ewes.

Supplementing Spirulina as an additive in ewe diets reduced the population of
specific bacterial species with prominent amylolytic activity such as Ruminobacter amy-
lophilus, Streptococcus bovis, and Selenomonas ruminantium. Especially regarding the
Ruminobacter amylophilus, similar results were reported in both the NGS and RT-qPCR
methods. Shifting starch degradation from the rumen to the small intestine digestion may
improve feed conversion efficiency since starch digestion in the small intestine can provide
proportionally more net energy to the host [41–43]. The reduced starch fermentation in the
rumen is desirable to prevent acidosis and to increase the supply of glycogenic substrates
for the host [44]. Highly fermentable starch in the rumen increases the production of
volatile fatty acids (VFAs) and especially lactic acid, which can lower the rumen’s pH and
affect the population and metabolism of cellulolytic microorganisms, leading to reduced
digestibility. These phenomena are more frequent in the high-yield ruminants where high-
grain diets are administrated to fulfil their increasing energy and nutrient demands. In
these cases, metabolic disorders such as acute and subacute rumen acidosis, galactosemia,
haemoconcentration, decarbonization of the rumen mucosa, liver abscess, and polioen-
cephalomalacia can occur [45]. Therefore, our results regarding the effect of Spirulina
supplementation in the relative abundance of the targeted amylolytic bacterial species
may deserve further evaluation by assessing changes in ruminal pH, VFA production, and
amylase activity in the rumen fluid. Streptococcus bovis has been also associated with lactic
acid production which usually occurs in the rumen of animals consuming low forage or
high fermentable starch diets. Excess digestible carbohydrates can lead to the overgrowth of
starch-metabolizing, acid-resistant, lactic acid-producing bacteria such as Streptococcus bovis
and Lactobacillus spp. [46–48]. When fed a high-starch diet, starch-fermenting bacteria like
Streptococcus bovis prevail and can compete with other ruminal species [48]. Moreover, the
risk of subacute ruminal acidosis in cows has been linked with the rate of starch intake
and fermentation [42,45,49–51]. Besides, ruminal acidosis occurs during abrupt changes
from a roughage-based diet to a low-cellulose diet with a high carbohydrate content [46]. A
review evaluated the microbial-modulating activity of Spirulina that may prevent dysbiosis,
benefit probiotic-species growth bacteria [19].
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5. Conclusions

The inclusion of Spirulina in the diets of dairy ewes slightly modulated selected rumen
microbes majorly regulating feed degradation with the most profound changes revealed for
the higher supplementation level (15 g of Spirulina/ewe/day) suggesting a dose-dependent
effect. Although selected cellulolytic bacteria expanded their niche against amylolytic
microbes belonging to the genera Ruminobacter and Streptococcus, an unfavourable trend for
an increase of Methanobrevibacter was observed. The former requires special attention as
future dietary strategies should holistically consider the livestock environmental burden as
well. More research and validation approaches at functional level are necessary to further
explore the effect of Spirulina on rumen biochemistry.
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(g/ewe/day) and nutrients intake (g/ewe/day) for the four dietary treatments (CON, SP5, SP10,
SP15) with different levels of Spirulina supplementation (5, 10, 15 g/ewe/day); Table S4: Sequences
of primers used for RT-PCRs, genomic regions of PCR amplification, primer efficiency, amplicon size,
and hybridization temperature; Table S5: Relative abundance of the microorganisms in ewes’ rumen
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