Infection with Cryptosporidium parvum Affects Secondary Sexual Characteristics of Male Mice by Altering the Pheromone Content in Preputial Gland
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Oocysts Isolation and Culture Maintenance
2.3. Mouse Immunosuppression
2.4. Lymphocyte Proliferation Assay
2.5. Flow Cytometry
2.6. C. parvum Infection
2.7. Extraction of Volatile Pheromones from the Preputial Gland Secretions
2.8. Urine Collection
2.9. Behavioral Tests
2.10. Determination of Serum Corticosterone and Testosterone
2.11. Quantitative Real-Time RT-PCR (qRT-PCR)
2.12. SDS-PAGE Assay
2.13. GC-MS Analysis
3. Results
3.1. Dexamethasone Sodium Phosphate Treatment Decreased Immunity
3.2. C. parvum Infection Reduced Physiological Indexes
3.3. Infection with C. parvum Decreased the Attractiveness of Male Mouse Urine to Females
3.4. C. parvum Infection Reduced the Gene Expression of MUP
3.5. C. parvum Infection Significantly Reduced Pheromone Content in the Secretions of Mouse Prepuce Gland
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ehman, K.D.; Scott, M.E. Female mice mate preferentially with non-parasitized males. Parasitology 2002, 125, 461–466. [Google Scholar] [CrossRef]
- Penn, D.; Potts, W.K. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 1998, 13, 391–396. [Google Scholar] [CrossRef]
- Gore, A.C.; Wersinger, S.R.; Rissman, E.F. Effects of female pheromones on gonadotropin-releasing hormone gene expression and luteinizing hormone release in male wild-type and oestrogen receptor-alpha knockout mice. J. Neuroendocrinol. 2000, 12, 1200–1204. [Google Scholar] [CrossRef]
- Penn, D.J.; Zala, S.M.; Luzynski, K.C. Regulation of Sexually Dimorphic Expression of Major Urinary Proteins. Front. Physiol. 2022, 13, 822073. [Google Scholar] [CrossRef]
- Mucignat-Caretta, C.; Cavaggioni, A.; Caretta, A. Male urinary chemosignals differentially affect aggressive behavior in male mice. J. Chem. Ecol. 2004, 30, 777–791. [Google Scholar] [CrossRef]
- Janotova, K.; Stopka, P. The level of major urinary proteins is socially regulated in wild Mus musculus musculus. J. Chem. Ecol. 2011, 37, 647–656. [Google Scholar] [CrossRef]
- Nelson, A.C.; Cauceglia, J.W.; Merkley, S.D.; Youngson, N.A.; Oler, A.J.; Nelson, R.J.; Cairns, B.R.; Whitelaw, E.; Potts, W.K. Reintroducing domesticated wild mice to sociality induces adaptive transgenerational effects on MUP expression. Proc. Natl. Acad. Sci. USA 2013, 110, 19848–19853. [Google Scholar] [CrossRef]
- Oldstone, M.B.A.; Ware, B.C.; Davidson, A.; Prescott, M.C.; Beynon, R.J.; Hurst, J.L. Lymphocytic Choriomeningitis Virus Alters the Expression of Male Mouse Scent Proteins. Viruses 2021, 13, 1180. [Google Scholar] [CrossRef]
- Lopes, P.C.; König, B. Choosing a healthy mate: Sexually attractive traits as reliable indicators of current disease status in house mice. Anim. Behav. 2016, 111, 119–126. [Google Scholar] [CrossRef]
- Beynon, R.J.; Hurst, J.L. Multiple roles of major urinary proteins in the house mouse, Mus domesticus. Biochem. Soc. Trans. 2003, 31, 142–146. [Google Scholar] [CrossRef]
- Fayer, R.; Morgan, U.; Upton, S.J. Epidemiology of Cryptosporidium: Transmission, detection and identification. Int. J. Parasitol. 2000, 30, 1305–1322. [Google Scholar] [CrossRef]
- Rochelle, P.A.; Upton, S.J.; Montelone, B.A.; Woods, K. The response of Cryptosporidium parvum to UV light. Trends Parasitol. 2005, 21, 81–87. [Google Scholar] [CrossRef]
- Vyas, A.; Kim, S.K.; Giacomini, N.; Boothroyd, J.C.; Sapolsky, R.M. Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc. Natl. Acad. Sci. USA 2007, 104, 6442–6447. [Google Scholar] [CrossRef]
- Diaz, L.; Zambrano, E.; Flores, M.E.; Contreras, M.; Crispin, J.C.; Aleman, G.; Bravo, C.; Armenta, A.; Valdes, V.J.; Tovar, A.; et al. Ethical Considerations in Animal Research: The Principle of 3R’s. Rev. Investig. Clin. 2020, 73, 199–209. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Cui, Z.; Li, D.; Li, X.; Zhang, S.; Zhang, L. Enrichment and proteomic identification of Cryptosporidium parvum oocyst wall. Parasit. Vectors 2022, 15, 335. [Google Scholar] [CrossRef]
- Truong, Q.; Ferrari, B.C. Quantitative and qualitative comparisons of Cryptosporidium faecal purification procedures for the isolation of oocysts suitable for proteomic analysis. Int. J. Parasitol. 2006, 36, 811–819. [Google Scholar] [CrossRef]
- Hijjawi, N.S.; Meloni, B.P.; Ng’anzo, M.; Ryan, U.M.; Olson, M.E.; Cox, P.T.; Monis, P.T.; Thompson, R.C. Complete development of Cryptosporidium parvum in host cell-free culture. Int. J. Parasitol. 2004, 34, 769–777. [Google Scholar] [CrossRef]
- Giles, A.J.; Hutchinson, M.N.D.; Sonnemann, H.M.; Jung, J.; Fecci, P.E.; Ratnam, N.M.; Zhang, W.; Song, H.; Bailey, R.; Davis, D.; et al. Dexamethasone-induced immunosuppression: Mechanisms and implications for immunotherapy. J. Immunother. Cancer 2018, 6, 51. [Google Scholar] [CrossRef]
- Jeklova, E.; Leva, L.; Jaglic, Z.; Faldyna, M. Dexamethasone-induced immunosuppression: A rabbit model. Vet. Immunol. Immunopathol. 2008, 122, 231–240. [Google Scholar] [CrossRef]
- Li, G.; Shu, J.; Jin, J.; Shu, J.; Feng, H.; Chen, J.; He, Y. Development of a Multi-Epitope Vaccine for Mycoplasma hyopneumoniae and Evaluation of Its Immune Responses in Mice and Piglets. Int. J. Mol. Sci. 2022, 23, 7899. [Google Scholar] [CrossRef]
- Khosravi, M.; Khazaeil, K.; KhademiMoghadam, F. Triggering of the immune response to MCF7 cell line using conjugated antibody with bacterial antigens: In-vitro and in-vivo study. PLoS ONE 2022, 17, e0275776. [Google Scholar] [CrossRef]
- Rasmussen, K.R.; Healey, M.C. Experimental Cryptosporidium parvum infections in immunosuppressed adult mice. Infect. Immun. 1992, 60, 1648–1652. [Google Scholar] [CrossRef]
- Yang, S.; Healey, M.C. The immunosuppressive effects of dexamethasone administered in drinking water to C57BL/6N mice infected with Cryptosporidium parvum. J. Parasitol. 1993, 79, 626–630. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Liang, H.C.; Guo, H.L.; Zhang, J.X. Exaggerated male pheromones in rats may increase predation cost. Curr. Zool. 2016, 62, 431–437. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, L.F.; Zhang, Y.H.; Guo, H.F.; Xia, M.; Zhang, M.W.; Jing, X.Y.; Zhang, J.H.; Zhang, J.X. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice. Chem. Senses 2017, 42, 247–257. [Google Scholar] [CrossRef]
- Lai, S.C.; Vasilieva, N.; Johnston, R.E. Odors providing sexual information in Djungarian hamsters: Evidence for an across-odor code. Horm. Behav. 1996, 30, 26–36. [Google Scholar] [CrossRef]
- Liu, Y.J.; Guo, H.F.; Zhang, J.X.; Zhang, Y.H. Quantitative inheritance of volatile pheromones and darcin and their interaction in olfactory preferences of female mice. Sci. Rep. 2017, 7, 2094. [Google Scholar] [CrossRef]
- Guo, H.; Fang, Q.; Huo, Y.; Zhang, Y.; Zhang, J. Social dominance-related major urinary proteins and the regulatory mechanism in mice. Integr. Zool. 2015, 10, 543–554. [Google Scholar] [CrossRef]
- Armstrong, S.D.; Robertson, D.H.; Cheetham, S.A.; Hurst, J.L.; Beynon, R.J. Structural and functional differences in isoforms of mouse major urinary proteins: A male-specific protein that preferentially binds a male pheromone. Biochem. J. 2005, 391, 343–350. [Google Scholar] [CrossRef]
- Zhang, J.X.; Sun, L.; Novotny, M. Mice respond differently to urine and its major volatile constituents from male and female ferrets. J. Chem. Ecol. 2007, 33, 603–612. [Google Scholar] [CrossRef]
- Harvey, S.; Jemiolo, B.; Novotny, M. Pattern of volatile compounds in dominant and subordinate male mouse urine. J. Chem. Ecol. 1989, 15, 2061–2072. [Google Scholar] [CrossRef]
- Zhang, J.X.; Rao, X.P.; Sun, L.; Zhao, C.H.; Qin, X.W. Putative chemical signals about sex, individuality, and genetic background in the preputial gland and urine of the house mouse (Mus musculus). Chem. Senses 2007, 32, 293–303. [Google Scholar] [CrossRef]
- Stowers, L.; Kuo, T.H. Mammalian pheromones: Emerging properties and mechanisms of detection. Curr. Opin. Neurobiol. 2015, 34, 103–109. [Google Scholar] [CrossRef]
- Novotny, M.V. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 2003, 31, 117–122. [Google Scholar] [CrossRef]
- Hurst, J.L. Female recognition and assessment of males through scent. Behav. Brain Res. 2009, 200, 295–303. [Google Scholar] [CrossRef]
- Wyatt, T.D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 2014, 97, 273–280. [Google Scholar] [CrossRef]
- Potts, W.K.; Manning, C.J.; Wakeland, E.K. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 1991, 352, 619–621. [Google Scholar] [CrossRef]
- Kheirandish, R.; Azizi, S.; Nourollahifard, S.; Imani, M.; Kermani, R.S.; Hassanzadeh, S. Histopathologic and histomorphometric evaluation of Dipetalonema evansi infection in camel testicular tissue. J. Parasit. Dis. 2021, 45, 959–963. [Google Scholar] [CrossRef]
- Sekoni, V.O.; Rekwot, P.I.; Bawa, E.K. The effects of trypanosomosis on sperm morphology in Zebu × Friesian crossbred bulls. Trop. Anim. Health Prod. 2004, 36, 55–64. [Google Scholar] [CrossRef]
- Dvorakova-Hortova, K.; Sidlova, A.; Ded, L.; Hladovcova, D.; Vieweg, M.; Weidner, W.; Steger, K.; Stopka, P.; Paradowska-Dogan, A. Toxoplasma gondii decreases the reproductive fitness in mice. PLoS ONE 2014, 9, e96770. [Google Scholar] [CrossRef]
- Betancur Hurtado, O.J.; Jimenez Castro, P.D.; Giraldo-Rios, C. Reproductive failures associated with Trypanosoma (Duttonella) vivax. Vet. Parasitol. 2016, 229, 54–59. [Google Scholar] [CrossRef]
- Li, H.; Yang, B.Y.; Liu, M.M.; Zhao, S.W.; Xie, S.Z.; Wang, H.; Zhang, S.; Xuan, X.N.; Jia, L.J. Reproductive injury in male BALB/c mice infected with Neospora caninum. Parasit. Vectors 2021, 14, 158. [Google Scholar] [CrossRef]
- Zala, S.M.; Potts, W.K.; Penn, D.J. Scent-marking displays provide honest signals of health and infection. Behav. Ecol. 2004, 15, 338–344. [Google Scholar] [CrossRef]
- Kavaliers, M.; Choleris, E.; Agmo, A.; Pfaff, D.W. Olfactory-mediated parasite recognition and avoidance: Linking genes to behavior. Horm. Behav. 2004, 46, 272–283. [Google Scholar] [CrossRef]
- Kavaliers, M.; Colwell, D.D. Discrimination by female mice between the odours of parasitized and non-parasitized males. Proc. Biol. Sci. 1995, 261, 31–35. [Google Scholar]
- Kavaliers, M.; Colwell, D.D. Odours of parasitized males induce aversive responses in female mice. Anim. Behav. 1995, 50, 1161–1169. [Google Scholar] [CrossRef]
- Rossiter, H.; Copic, D.; Direder, M.; Gruber, F.; Zoratto, S.; Marchetti-Deschmann, M.; Kremslehner, C.; Sochorová, M.; Nagelreiter, I.M.; Mlitz, V.; et al. Autophagy protects murine preputial glands against premature aging, and controls their sebum phospholipid and pheromone profile. Autophagy 2022, 18, 1005–1019. [Google Scholar] [CrossRef]
- Zhang, J.X.; Liu, Y.J.; Zhang, J.H.; Sun, L. Dual role of preputial gland secretion and its major components in sex recognition of mice. Physiol. Behav. 2008, 95, 388–394. [Google Scholar] [CrossRef]
- Ilmonen, P.; Stundner, G.; Thoss, M.; Penn, D.J. Females prefer the scent of outbred males: Good-genes-as-heterozygosity? BMC Evol. Biol. 2009, 9, 104. [Google Scholar] [CrossRef]
- Zhang, J.X.; Sun, L.; Zhang, Y.H. Foxn1 gene knockout suppresses sexual attractiveness and pheromonal components of male urine in inbred mice. Chem. Senses 2010, 35, 47–56. [Google Scholar] [CrossRef]
- Suh, C.H.; Cho, N.K.; Lee, C.K.; Lee, C.H.; Kim, D.H.; Kim, J.H.; Son, B.C.; Lee, J.T. Perfluorooctanoic acid-induced inhibition of placental prolactin-family hormone and fetal growth retardation in mice. Mol. Cell. Endocrinol. 2011, 337, 7–15. [Google Scholar] [CrossRef]
- Cabaton, N.J.; Wadia, P.R.; Rubin, B.S.; Zalko, D.; Schaeberle, C.M.; Askenase, M.H.; Gadbois, J.L.; Tharp, A.P.; Whitt, G.S.; Sonnenschein, C.; et al. Perinatal exposure to environmentally relevant levels of bisphenol A decreases fertility and fecundity in CD-1 mice. Environ. Health Perspect. 2011, 119, 547–552. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, Y.; Lu, J.; Chen, L.; Wang, J.; Zhou, J.X. Selective breeding of mice strains with different sensitivity to isoflurane. Chin. Med. J. 2010, 123, 1315–1319. [Google Scholar]
- Charkoftaki, G.; Wang, Y.; McAndrews, M.; Bruford, E.A.; Thompson, D.C.; Vasiliou, V.; Nebert, D.W. Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an “evolutionary bloom”. Hum. Genom. 2019, 13, 11. [Google Scholar] [CrossRef]
- Logan, D.W.; Marton, T.F.; Stowers, L. Species specificity in major urinary proteins by parallel evolution. PLoS ONE 2008, 3, e3280. [Google Scholar] [CrossRef]
Gene Name | Sequence (5′-3′) | Length (bp) |
---|---|---|
MUP | 5′-GTGAGAAGCATGGAATCCTTAGAGA-3′ | 103 |
5′-TCAACACTGGAGGCTCAGGC-3′ | ||
β-actin | 5′-AGCCTTCCTTCTTGGGTATGG-3′ | 104 |
5′-TGTGTTGGCATAGAGGTCTTTACG-3′ |
Peak | Compound Name | Peak Area | % of Total | ||
---|---|---|---|---|---|
Control group | Infection group | Control group | Infection group | ||
1 | E-β-farnesene | 3.23 × 107 ± 3.54 × 106 | 2.9 × 107 ± 2.17 × 106 | 5.48 ± 0.29 | 6.44 ± 0.41 |
2 | 2-Heptanone | 1.92 × 107 ± 2.09 × 106 | 1.44 × 107 ± 1.27 × 106 | 3.27 ± 0.18 | 3.72 ± 0.24 |
3 | Z-7-tetradecen-1-ol | 7.76 × 106 ± 7.34 × 105 | 4.38 × 106 ± 5.06 × 105 | 1.36 ± 0.10 | 1.17 ± 0.16 |
4 | 1-Tetradecanol | 2.97 × 106 ± 3.30 × 105 | 1.95 × 106 ± 2.12 × 105 | 0.51 ± 0.04 | 0.51 ± 0.06 |
5 | Dimethyl sulfone | 7.24 × 106 ± 7.14 × 105 | 3.57 × 106 ± 2.97 × 105 | 1.27 ± 0.11 | 0.94 ± 0.08 |
6 | 6-Hydroxy-6-methyl-3-heptanone | 5.34 × 106 ± 5.41 × 105 | 2.91 × 106 ± 3.03 × 105 | 0.92 ± 0.06 | 0.73 ± 0.03 |
7 | R,R-3,4-dehydro-exo-brevicomin | 1.24 × 106 ± 1.59 × 105 | 1.05 × 106 ± 1.97 × 105 | 0.21 ± 0.02 | 0.25 ± 0.04 |
8 | (S)-2-sec-butyl-4,5-dihydrothiazole | 5.60 × 105 ± 4.90 × 104 | 3.99 × 105 ± 9.37 × 104 | 0.10 ± 0.01 | 0.09 ± 0.02 |
9 | Z-9-Hexadecenol | 9.29 × 106 ± 1.21 × 106 | 6.86 × 106 ± 8.09 × 105 | 1.54 ± 0.09 | 1.73 ± 0.12 |
10 | 1-Hexadecanol | 1.07 × 108 ± 1.28 × 107 | 8.25 × 107 ± 9.34 × 106 | 17.85 ± 0.80 | 20.84 ± 1.24 |
11 | 1-Pentadecanol acetate | 1.81 × 106 ± 2.31 × 105 | 1.45 × 106 ± 1.84 × 105 | 0.30 ± 0.02 | 0.35 ± 0.01 |
12 | Z-9-Hexadecenol acetate | 3.88 × 106 ± 5.00 × 105 | 2.75 × 106 ± 3.03 × 105 | 0.64 ± 0.01 | 0.68 ± 0.02 |
13 | 1-Heptadecanol | 1.02 × 106 ± 1.24 × 105 | 9.47 × 105 ± 1.03 × 105 | 0.18 ± 0.02 | 0.25 ± 0.03 |
14 | 1-Hexadecanol acetate | 3.79 × 107 ± 5.01 × 106 | 2.37 × 107 ± 3.11 × 106 | 6.24 ± 0.20 | 5.68 ± 0.18 |
15 | Isomer of Z-11-Hexadecanol acetate | 1.26 × 107 ± 1.88 × 106 | 8.83 × 106 ± 1.50 × 106 | 2.10 ± 0.18 | 2.06 ± 0.14 |
16 | Z-11-Hexadecenol acetate | 2.71 × 106 ± 7.26 × 105 | 2.25 × 106 ± 4.96 × 105 | 0.59 ± 0.25 | 0.63 ± 0.15 |
17 | 1-Hexadecanol acetate | 3.14 × 108 ± 4.37 × 107 | 1.99 × 108 ± 3.09 × 107 | 50.96 ± 1.25 | 46.26 ± 2.23 |
18 | 1-Heptadecanol acetate | 2.38 × 106 ± 3.30 × 105 | 2.28 × 106 ± 2.46 × 105 | 0.39 ± 0.02 | 0.57 ± 0.03 |
19 | 1-Heptadecanol acetate | 4.30 × 106 ± 5.43 × 105 | 3.66 × 106 ± 4.16 × 105 | 0.71 ± 0.02 | 0.91 ± 0.02 |
20 | 1-Octadecanol | 6.11 × 106 ± 7.81 × 105 | 5.52 × 106 ± 6.21 × 105 | 1.01 ± 0.05 | 1.41 ± 0.10 |
21 | 1-Heptadecanol acetate | 4.68 × 106 ± 5.83 × 105 | 3.75 × 106 ± 5.25 × 105 | 0.77 ± 0.02 | 0.89 ± 0.02 |
22 | Z-7-Octadecenol acetate | 5.06 × 106 ± 7.17 × 105 | 3.91 × 106 ± 4.99 × 105 | 0.82 ± 0.03 | 0.98 ± 0.08 |
23 | Octadecanol acetate | 1.68 × 107 ± 2.08 × 106 | 1.23 × 107 ± 1.87 × 106 | 2.77 ± 0.08 | 2.92 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zhang, T.; Hu, B.; Han, S.; Xiang, C.; Yuan, G.; He, H. Infection with Cryptosporidium parvum Affects Secondary Sexual Characteristics of Male Mice by Altering the Pheromone Content in Preputial Gland. Animals 2023, 13, 756. https://doi.org/10.3390/ani13040756
Li G, Zhang T, Hu B, Han S, Xiang C, Yuan G, He H. Infection with Cryptosporidium parvum Affects Secondary Sexual Characteristics of Male Mice by Altering the Pheromone Content in Preputial Gland. Animals. 2023; 13(4):756. https://doi.org/10.3390/ani13040756
Chicago/Turabian StyleLi, Gaojian, Tao Zhang, Bin Hu, Shuyi Han, Chen Xiang, Guohui Yuan, and Hongxuan He. 2023. "Infection with Cryptosporidium parvum Affects Secondary Sexual Characteristics of Male Mice by Altering the Pheromone Content in Preputial Gland" Animals 13, no. 4: 756. https://doi.org/10.3390/ani13040756
APA StyleLi, G., Zhang, T., Hu, B., Han, S., Xiang, C., Yuan, G., & He, H. (2023). Infection with Cryptosporidium parvum Affects Secondary Sexual Characteristics of Male Mice by Altering the Pheromone Content in Preputial Gland. Animals, 13(4), 756. https://doi.org/10.3390/ani13040756