Association between Rumination Times Detected by an Ear Tag-Based Accelerometer System and Rumen Physiology in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Feeding
2.2. Health Alerts Generated by the Accelerometer-Based Monitoring System
2.3. Selection of Animals
2.4. Rumen Fluid Collection
2.5. Rumen Fluid Examination
2.6. Statistics
3. Results
3.1. Case Selection and Intra-Rater Agreement
3.2. Description of Health Alert and Rumen Fluid Collection
3.3. Rumen Fluid Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchemin, K.A. Ingestion and mastication of feed by dairy cattle. Vet. Clin. N. Am. Food Anim. Pract. 1991, 7, 439–463. [Google Scholar] [CrossRef]
- DePeters, E.J.; George, L.W. Rumen transfaunation. Immunol. Lett. 2014, 162, 69–76. [Google Scholar] [CrossRef]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constable, P.D.; Hinchcliff, K.W.; Done, S.H.; Grünberg, W. Veterinary Medicine–A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs, and Goats, 11th ed.; Elsevier: St. Louis, MI, USA, 2017; pp. 448–449. [Google Scholar]
- Steiner, S.; Linhart, N.; Neidl, A.; Baumgartner, W.; Tichy, A.; Wittek, T. Evaluation of the therapeutic efficacy of rumen transfaunation. J. Anim. Physiol. Anim. Nutr. 2020, 104, 56–63. [Google Scholar] [CrossRef]
- Steen, A. Field study of dairy cows with reduced appetite in early lactation: Clinical examinations, blood and rumen fluid analyses. Acta Vet. Scand. 2001, 42, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Marden, J.P.; Julien, C.; Bayourthe, C. Redox potential: An intrinsic parameter of the rumen environment. J. Anim. Physiol. Anim. Nutr. 2018, 102, 393–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, K.M.; Oetzel, G.R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 2006, 126, 215–236. [Google Scholar] [CrossRef]
- Liboreiro, D.N.; Machado, K.S.; Silva, P.R.B.; Maturana, M.M.; Nishimura, T.K.; Brandão, A.P.; Endres, M.I.; Chebel, R.C. Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J. Dairy Sci. 2015, 98, 6812–6827. [Google Scholar] [CrossRef] [Green Version]
- Gusterer, E.; Kanz, P.; Krieger, S.; Schweinzer, V.; Süss, D.; Lidauer, L.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Drillich, M.; et al. Sensor technology to support herd health monitoring: Using rumination duration and activity measures as unspecific variables for the early detection of dairy cows with health deviations. Theriogenology 2020, 157, 61–69. [Google Scholar] [CrossRef]
- Bell, A.W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 1995, 73, 2804–2819. [Google Scholar] [CrossRef]
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- LeBlanc, S. Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 2010, 56, S29–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hut, P.R.; Kuiper, S.E.M.; Nielen, M.; Hulsen, J.H.J.L.; Stassen, E.N.; Hostens, M.M. Sensor based time budgets in commercial Dutch dairy herds vary over lactation cycles and within 24 hours. PLoS ONE 2022, 17, e0264392. [Google Scholar] [CrossRef]
- Minuti, A.; Palladino, A.; Khan, M.J.; Alqarni, S.; Agrawal, A.; Piccioli-Capelli, F.; Hidalgo, F.; Cardoso, F.C.; Trevisi, E.; Loor, J.J. Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows. J. Dairy Sci. 2015, 98, 8940–8951. [Google Scholar] [CrossRef] [Green Version]
- Trevisi, E.; Riva, F.; Filipe, J.F.S.; Massara, M.; Minuti, A.; Bani, P.; Amadori, M. Innate immune responses to metabolic stress can be detected in rumen fluids. Res. Vet. Sci. 2018, 117, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Knoblock, C.E.; Yoon, I.; Oba, M. Effects of supplementing a Saccharomyces cerevisiae fermentation product during the transition period on rumen fermentation of dairy cows fed fresh diets differing in starch content. J. Dairy Sci. 2019, 102, 9943–9955. [Google Scholar] [CrossRef] [Green Version]
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef] [PubMed]
- Eckelkamp, E.A.; Bewley, J.M. On-farm use of disease alerts generated by precision dairy technology. J. Dairy Sci. 2020, 103, 1566–1582. [Google Scholar] [CrossRef] [PubMed]
- Soriani, N.; Trevisi, E.; Calamari, L. Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. J. Anim. Sci. 2012, 90, 4544–4554. [Google Scholar] [CrossRef] [PubMed]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part III. Metritis. J. Dairy Sci. 2016, 99, 7422–7433. [Google Scholar] [CrossRef] [Green Version]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part II. Mastitis. J. Dairy Sci. 2016, 99, 7411–7421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.A.; Veronese, A.; Belli, A.; Madureira, E.H.; Galvão, K.N.; Chebel, R.C. Effects of adding an automated monitoring device to the health screening of postpartum Holstein cows on survival and productive and reproductive performances. J. Dairy Sci. 2021, 104, 3439–3457. [Google Scholar] [CrossRef]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. J. Dairy Sci. 2016, 99, 7395–7410. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Gallo, L.; Bittante, G.; Schiavon, S.; Bergamaschi, M.; Gianesella, M.; Fiore, E. A study on the effects of rumen acidity on rumination time and yield, composition, and technological properties of milk from early lactating Holstein cows. Animals. 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Sprecher, D.J.; Hostetler, D.E.; Kaneene, J.B. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology 1997, 47, 1179–1187. [Google Scholar] [CrossRef]
- Muizelaar, W.; Bani, p.; Kuhla, B.; Larsen, M.; Tapio, I.; Yáñez-Ruiz, D.; van Gastelen, S. Rumen fluid sampling via oral stomach tubing method. In Methods in Cattle Physiology and Behaviour–Recommendations from the SmartCow, 1st ed.; Mesgaran, S.D., Baumont, R., Munksgaard, L., Humphries, D., Kennedy, E., Dijkstra, J., Dewhurst, R., Ferguson, H., Terré, M., Kuhla, B., Eds.; PUBLISSO: Cologne, Germany, 2020. [Google Scholar]
- Dirksen, G.; Smith, M.C. Acquisition and analysis of bovine rumen fluid. Bov. Pract. 1987, 22, 108–116. [Google Scholar] [CrossRef]
- Owens, F.N.; Secrist, D.S.; Hill, W.J.; Gill, D.R. Acidosis in cattle: A review. J. Anim. Sci. 1998, 76, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Enemark, J.M. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Vet. J. 2008, 176, 32–43. [Google Scholar] [CrossRef]
- Souza, J.G.; Ribeiro, C.V.D.M.; Harvatine, K.J. Meta-analysis of rumination behavior and its relationship with milk and milk fat production, rumen pH, and total-tract digestibility in lactating dairy cows. J. Dairy Sci. 2022, 105, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Denwood, M.J.; Kleen, J.L.; Jensen, D.B.; Jonsson, N.N. Describing temporal variation in reticuloruminal pH using continuous monitoring data. J. Dairy Sci. 2018, 101, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Nagaraja, T.G.; Titgemeyer, E.C. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 2007, 90 (Suppl. S1), E17–E38. [Google Scholar] [CrossRef] [Green Version]
- Heirbaut, S.; Børge Jensen, D.; Jing, X.P.; Stefańska, B.; Lutakome, P.; Vandaele, L.; Fievez, V. Different reticuloruminal pH metrics of high-yielding dairy cattle during the transition period in relation to metabolic health, activity, and feed intake. J. Dairy Sci. 2022, 105, 6880–6894. [Google Scholar] [CrossRef] [PubMed]
- Geishauser, T.; Linhart, N.; Neidl, A.; Reimann, A. Factors associated with ruminal pH at herd level. J. Dairy Sci. 2012, 95, 4556–4567. [Google Scholar] [CrossRef]
- Dijkstra, J.; van Gastelen, S.; Dieho, K.; Nichols, K.; Bannink, A. Review: Rumen sensors: Data and interpretation for key rumen metabolic processes. Animals 2020, 14, s176–s186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marden, J.P.; Bayourthe, C.; Enjalbert, F.; Moncoulon, R. A new device for measuring kinetics of ruminal pH and redox potential in dairy cattle. J. Dairy Sci. 2005, 88, 277–281. [Google Scholar] [CrossRef]
- Rings, D.M.; Rings, M.B. Rumen fluid analysis. Agri-Pract. 1993, 14, 26–29. [Google Scholar]
- Malmuthuge, N.; Le Guan, L. Understanding host-microbial interactions in rumen: Searching the best opportunity for microbiota manipulation. J. Anim. Sci. Biotechnol. 2017, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairfield, A.M.; Plaizier, J.C.; Duffield, T.F.; Lindinger, M.I.; Bagg, R.; Dick, P.; McBride, B.W. Effects of prepartum administration of a monensin controlled release capsule on rumen pH, feed intake, and milk production of transition dairy cows. J. Dairy Sci. 2007, 90, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Wittek, T.; Kricziokat, J.; Fürll, M. Buffer capacity of rumen fluid and rumen-pH in dairy cattle during dry period and different times of lactation. Tierarztl. Prax./G. 2010, 38, 141–146. [Google Scholar] [CrossRef]
- Duffield, T.; Plaizier, J.C.; Fairfield, A.; Bagg, R.; Vessie, G.; Dick, P.; Wilson, J.; Aramini, J.; McBride, B. Comparison of techniques for measurement of rumen pH in lactating dairy cows. J. Dairy Sci. 2004, 87, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, S.; Neidl, A.; Linhart, N.; Tichy, A.; Gasteiner, J.; Gallob, K.; Baumgartner, W.; Wittek, T. Randomised prospective study compares efficacy of five different stomach tubes for rumen fluid sampling in dairy cows. Vet. Rec. 2015, 176, 50. [Google Scholar] [CrossRef] [PubMed]
Feed Ingredients or Nutrients | TMR Fed in the Study Period | |
---|---|---|
Early Lactation | Mid to Late Lactation | |
DMI ¹ per cow (kg) | 21 | 25 |
Dry matter (DM, %) | 40.9 | 40.7 |
Ingredients (% of DM) | ||
Agf 2 me ² | 6.5 | 7.6 |
Corn mix | 4.8 | 5.6 |
Corn-Cob-Mix | 5.4 | 6.4 |
Corn silage | 23.7 | 25.4 |
Grass silage | 26.5 | 24.6 |
Forage rye silage | 10.0 | 9.3 |
Rape seed meal | 3.6 | 4.3 |
Rape expeller | 5.6 | 6.6 |
Soybean hulls | 1.2 | 1.4 |
Soybean meal | 4.6 | 5.3 |
Vinasse | 2.8 | 3.3 |
Chopped straw | 2.2 | |
Fresh cow 1 3 | 3.0 | |
Nutrients (g per kg DM) | ||
Net energy lactation (MJ) | 6.92 | 7.09 |
Crude protein | 158 | 167 |
Crude fat | 38 | 34 |
Crude fiber | 190 | 180 |
Starch | 125 | 140 |
Sugar | 36 | 38 |
Calcium | 10.07 | 8.43 |
Phosphorus | 4.08 | 3.99 |
Potassium | 18.47 | 18.54 |
Magnesium | 3.4 | 3.13 |
Sodium | 5.94 | 4.87 |
Rumen Fluid Parameters | Number of Samples | ҡ | rs |
---|---|---|---|
Ordinal data | |||
Color | 20 | 0.84 | 0.86 |
Odor | 20 | 0.77 | 0.60 |
Consistency | 20 | 0.70 | 0.83 |
Metric data | |||
Rumen pH | 20 | 0.98 | |
Redox potential | 20 | 0.96 | |
Sedimentation flotation time | 20 | 0.97 | |
Protozoa in number | 20 | 0.98 |
Repeated Measurements | N | TIME1 | TIME2 | ||||
---|---|---|---|---|---|---|---|
Mean ± SEM | Median | IQR | Mean ± SEM | Median | IQR | ||
Rumen pH | |||||||
ALRT_eL | 15 | 6.78 ± 0.08 | 6.72 | 0.39 | 6.55 ± 0.09 | 6.47 | 0.44 |
NALRT_eL | 15 | 6.53 ± 0.05 | 6.52 | 0.17 | 6.54 ± 0.04 | 6.55 | 0.21 |
ALRT_mlL | 36 | 6.92 ± 0.05 | 6.96 | 0.40 | 6.63 ± 0.04 | 6.63 | 0.38 |
NALRT_mlL | 36 | 6.58 ± 0.05 | 6.64 | 0.49 | 6.64 ± 0.04 | 6.73 | 0.38 |
Redox potential (mV) | |||||||
ALRT_eL | 15 | −339 ± 8 | −331 | 33 | −319 ± 6 | −314 | 19 |
NALRT_eL | 15 | −329 ± 7 | −323 | 19 | −327 ± 8 | −320 | 39 |
ALRT_mlL | 36 | −357 ± 5 | −353 | 44 | −338 ± 7 | −328 | 45 |
NALRT_mlL | 36 | −339 ± 7 | −327 | 44 | −334 ± 6 | −329 | 40 |
Sed.Flot. time * (s) | |||||||
ALRT_eL | 15 | 429 ± 70 | 355 | 208 | 282 ± 24 | 265 | 100 |
NALRT_eL | 15 | 284 ± 13 | 291 | 59 | 254 ± 11 | 244 | 61 |
ALRT_mlL | 36 | 511 ± 36 | 485 | 241 | 316 ± 13 | 297 | 115 |
NALRT_mlL | 36 | 321 ± 15 | 299 | 77 | 327 ± 20 | 310 | 115 |
Protozoa (n × 103/mL) | |||||||
ALRT_eL | 15 | 108 ± 8 | 101 | 51 | 127 ± 11 | 125 | 94 |
NALRT_eL | 15 | 123 ± 10 | 120 | 51 | 135 ± 6 | 138 | 42 |
ALRT_mlL | 36 | 96 ± 6 | 93 | 55 | 114 ± 7 | 116 | 62 |
NALRT_mlL | 36 | 141 ± 6 | 138 | 44 | 140 ± 6 | 141 | 42 |
Measurements, Groups | n | Rumen Fluid Collection | p-Value | ||||
---|---|---|---|---|---|---|---|
TIME1 | TIME2 | Alert Status | LS | Alert Status × RF Time | Alert Status × LS | ||
Rumen pH | < 0.01 | 0.05 | < 0.01 | 0.74 | |||
ALRT | 51 | 6.87 ± 0.32 a | 6.61 ± 0.29 b | ||||
NALRT | 51 | 6.57 ± 0.26 | 6.61 ± 0.23 | ||||
p-value | <0.01 | 0.84 | |||||
Redox potential (mV) | 0.30 | 0.04 | < 0.01 | 0.36 | |||
ALRT | 51 | –352 ± 32 a | –333 ± 39 b | ||||
NALRT | 51 | –336 ± 37 | –332 ± 35 | ||||
p-value | <0.01 | 0.79 | |||||
Sed.Flot. time * (s) | < 0.01 | < 0.01 | < 0.01 | 0.85 | |||
ALRT | 51 | 487 ± 234 a | 306 ± 83 b | ||||
NALRT | 51 | 310 ± 80 | 306 ± 107 | ||||
p-value | <0.01 | 0.75 | |||||
Protozoa (n × 103/mL) | < 0.01 | 0.96 | 0.03 | 0.08 | |||
ALRT | 51 | 99 ± 36 a | 118 ± 42 b | ||||
NALRT | 51 | 136 ± 37 | 138 ± 34 | ||||
p-value | <0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simoni, A.; Hancock, A.; Wunderlich, C.; Klawitter, M.; Breuer, T.; König, F.; Weimar, K.; Drillich, M.; Iwersen, M. Association between Rumination Times Detected by an Ear Tag-Based Accelerometer System and Rumen Physiology in Dairy Cows. Animals 2023, 13, 759. https://doi.org/10.3390/ani13040759
Simoni A, Hancock A, Wunderlich C, Klawitter M, Breuer T, König F, Weimar K, Drillich M, Iwersen M. Association between Rumination Times Detected by an Ear Tag-Based Accelerometer System and Rumen Physiology in Dairy Cows. Animals. 2023; 13(4):759. https://doi.org/10.3390/ani13040759
Chicago/Turabian StyleSimoni, Anne, Andrew Hancock, Christian Wunderlich, Marcus Klawitter, Thomas Breuer, Felix König, Karina Weimar, Marc Drillich, and Michael Iwersen. 2023. "Association between Rumination Times Detected by an Ear Tag-Based Accelerometer System and Rumen Physiology in Dairy Cows" Animals 13, no. 4: 759. https://doi.org/10.3390/ani13040759
APA StyleSimoni, A., Hancock, A., Wunderlich, C., Klawitter, M., Breuer, T., König, F., Weimar, K., Drillich, M., & Iwersen, M. (2023). Association between Rumination Times Detected by an Ear Tag-Based Accelerometer System and Rumen Physiology in Dairy Cows. Animals, 13(4), 759. https://doi.org/10.3390/ani13040759