Dry Matter Intake Prediction from Milk Spectra in Sarda Dairy Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seymour, D.J.; Cánovas, A.; Chud, T.C.S.; Cant, J.P.; Osborne, V.R.; Baes, C.F.; Schenkel, F.S.; Miglior, F. The dynamic behavior of feed efficiency in primiparous dairy cattle. J. Dairy Sci. 2020, 103, 1528–1540. [Google Scholar] [CrossRef]
- Cannas, A.; Tedeschi, L.O.; Atzori, A.S.; Lunesu, M.F. How can nutrition models increase the production efficiency of sheep and goat operations? Anim. Front. 2019, 9, 33–44. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Zhang, X.X.; Li, F.D.; Li, C.; Li, G.Z.; Zhang, D.Y.; Zhao, Y.; Wang, W.M. Characterization of the rumen microbiota and its relationship with residual feed intake in sheep. Animal 2021, 15, 100161. [Google Scholar] [CrossRef] [PubMed]
- Degabriele, R.; Fell, L.R. Changes in behaviour, cortisol and lymphocyte types during isolation and group confinement of sheep. Immunol. Cell Biol. 2001, 79, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Matthews, L. The social behaviour of sheep. In Social Behaviour in Farm Animals; Keeling, L.J., Gonyou, H., Eds.; CAB International: Wallingford, UK, 2001; pp. 211–239. [Google Scholar]
- Hutson, G.D. Behavioural principles of sheep handling. In Livestock Handling and Transport, 3rd ed.; CAB International: Boston, MA, USA, 2007; pp. 155–174. [Google Scholar]
- Penning, P.D.; Parsons, A.J.; Newman, J.A.; Orr, R.J.; Harvey, A. The effects of group size on grazing time in sheep. Appl. Anim. Behav. Sci. 1993, 37, 101–109. [Google Scholar] [CrossRef]
- Robinson, D.L.; Hegarty, R.S.; Miller, J.; Perdok, H. Use of autofeeders vs. bunk feeding systems affects feed intake and efficiency but not carcass attributes of feedlot cattle. In Proceedings of the Greenhouse Gases and Animal Agriculture Conference, Dublin, Ireland, 23–26 June 2013; p. 553. [Google Scholar]
- Chizzotti, M.L.; Machado, F.S.; Valente, E.E.; Pereira, L.G.; Campos, M.M.; Tomich, T.R.; Coelho, S.G.; Ribas, M.N. Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle. J. Dairy Sci. 2015, 98, 3438–3442. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.K.; Linden, N.P.; Kennedy, A.; Calder, G.; Kearney, G.; Roberts, R.; Knight, M.I.; Behrendt, R. Validation of an automated feeding system for measuring individual animal feed intake in sheep housed in groups. Transl. Anim. Sci. 2020, 4, 1006–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanzin, A.; Degano, L.; Vicario, D.; Spanghero, M. Feeding efficiency and behavior of young Simmental bulls selected for high growth capacity: Comparison of bulls with high vs. low residual feed intake. Livest. Sci. 2021, 249, 104525. [Google Scholar] [CrossRef]
- Dórea, J.R.R.; Rosa, G.J.M.; Weld, K.A.; Armentano, L.E. Mining data from milk infrared spectroscopy to improve feed intake predictions in lactating dairy cows. J. Dairy Sci. 2018, 101, 5878–5889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soyeurt, H.; Dardenne, P.; Dehareng, F.; Lognay, G.; Veselko, D.; Marlier, M.; Bertozzi, C.; Mayeres, P.; Gengler, N. Estimating fatty acid content in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2006, 89, 3690–3695. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, M.; Penasa, M.; Cecchinato, A.; Mele, M.; Secchiari, P.I.E.R.; Bittante, G. Effectiveness of mid-infrared spectroscopy to predict fatty acid composition of Brown Swiss bovine milk. Animal 2011, 5, 1653–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovere, G.; de Los Campos, G.; Lock, A.L.; Worden, L.; Vazquez, A.I.; Lee, K.; Tempelman, R.J. Prediction of fatty acid composition using milk spectral data and its associations with various mid-infrared spectral regions in Michigan Holsteins. J. Dairy Sci. 2021, 104, 11242–11258. [Google Scholar] [CrossRef] [PubMed]
- Dehareng, F.; Delfosse, C.; Froidmont, E.; Soyeurt, H.; Martin, C.; Gengler, N.; Vanlierde, A.; Dardenne, P. Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal 2012, 6, 1694–1701. [Google Scholar] [CrossRef] [Green Version]
- Requena, F.; Peña, F.; Agüera, E.; Marín, A.M. A meta-analytic approach to predict methane emissions from dairy goats using milk fatty acid profile. Sustainability 2020, 12, 4834. [Google Scholar] [CrossRef]
- Soyeurt, H.; Bruwier, D.; Romnee, J.M.; Gengler, N.; Bertozzi, C.; Veselko, D.; Dardenne, P. Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2009, 9, 2444–2454. [Google Scholar] [CrossRef] [Green Version]
- Klaffenböck, M.; Steinwidder, A.; Fasching, C.; Terler, G.; Gruber, L.; Mészáros, G.; Sölkner, J. The use of mid-infrared spectrometry to estimate the ration composition of lactating dairy cows. J. Dairy Sci. 2017, 100, 5411–5421. [Google Scholar] [CrossRef] [Green Version]
- McParland, S.; Banos, G.; Wall, E.; Coffey, M.P.; Soyeurt, H.; Veerkamp, R.F.; Berry, D.P. The use of mid-infrared spectrometry to predict body energy status of Holstein cows. J. Dairy Sci. 2011, 94, 3651–3661. [Google Scholar] [CrossRef] [Green Version]
- McParland, S.; Lewis, E.; Kennedy, E.; Moore, S.G.; McCarthy, B.; O’Donovan, M.; Butler, S.T.; Pryce, J.E.; Berry, D.P. Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows. J. Dairy Sci. 2014, 97, 5863–5871. [Google Scholar] [CrossRef] [Green Version]
- Shetty, N.; Løvendahl, P.; Lund, M.S.; Buitenhuis, A.J. Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk. J. Dairy Sci. 2017, 100, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Lahart, B.; McParland, S.; Kennedy, E.; Boland, T.M.; Condon, T.; Williams, M.; Galvin, N.; McCarthy, B.; Buckley, F. Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis. J. Dairy Sci. 2019, 102, 8907–8918. [Google Scholar] [CrossRef]
- Correddu, F.; Cellesi, M.; Serdino, J.; Manca, M.G.; Contu, M.; Dimauro, C.; Ibba, I.; Macciotta, N.P.P. Genetic parameters of milk fatty acid profile in sheep: Comparison between gas chromatographic measurements and Fourier-transform IR spectroscopy predictions. Animal 2019, 13, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Cellesi, M.; Correddu, F.; Manca, M.G.; Serdino, J.; Gaspa, G.; Dimauro, C.; Macciotta, N.P.P. Prediction of milk coagulation properties and individual cheese yield in sheep using partial least squares regression. Animals 2019, 9, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesarani, A.; Gaspa, G.; Correddu, F.; Cellesi, M.; Dimauro, C.; Macciotta, N.P.P. Genomic selection of milk fatty acid composition in Sarda dairy sheep: Effect of different phenotypes and relationship matrices on heritability and breeding value accuracy. J. Dairy Sci. 2019, 102, 3189–3203. [Google Scholar] [CrossRef] [Green Version]
- Pulina, G.; Avondo, M.; Molle, G.; Francesconi, A.H.D.; Atzori, A.S.; Cannas, A. Models for estimating feed intake in small ruminants. Rev. Bras. Zootec. 2013, 42, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Liland, K.; Mevik, B.; Wehrens, R. pls: Partial Least Squares and Principal Component Regression_. R Package Version 2.8-1. 2022. Available online: https://CRAN.R-project.org/package=pls (accessed on 14 February 2023).
- Cabiddu, A.; Canu, M.; Decandia, M.; Molle, G.; Pompel, R. The intake and performance of dairy ewes fed with different levels of olive cake silage in late pregnancy and suckling periods. In Nutrition and Feeding Strategies of Sheep and Goats under Harsh Climates; Ben Salem, H., Nefzaoui, A., Morand-Fehr, P., Eds.; Options Méditerranéennes: Zaragoza, Spain, 2004; pp. 197–201. [Google Scholar]
- Lunesu, M.F.; Decandia, M.; Molle, G.; Atzori, A.S.; Bomboi, G.C.; Cannas, A. Dietary starch concentration affects dairy sheep and goat performances differently during mid-lactation. Animals 2021, 11, 1222. [Google Scholar] [CrossRef] [PubMed]
- Carta, S.; Nudda, A.; Cappai, M.G.; Lunesu, M.F.; Atzori, A.S.; Battacone, G.; Pulina, G. Cocoa husks can effectively replace soybean hulls in dairy sheep diets—Effects on milk production traits and hematological parameters. J. Dairy Sci. 2020, 103, 1553–1558. [Google Scholar] [CrossRef]
- Muir, S.K.; Linden, N.; Kennedy, A.; Knight, M.I.; Paganoni, B.; Kearney, G.; Thompson, A.N.; Behrendt, R. Correlations between feed intake, residual feed intake and methane emissions in Maternal Composite ewes at post weaning, hogget and adult ages. Small Rumin. Res. 2020, 192, 106241. [Google Scholar] [CrossRef]
- Hammond, K.J.; Burke, J.L.; Koolaard, J.P.; Muetzel, S.; Pinares-Patiño, C.S.; Waghorn, G.C. Effects of feed intake on enteric methane emissions from sheep fed fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne) forages. Anim. Feed Sci. Technol. 2013, 179, 121–132. [Google Scholar] [CrossRef]
- Rogers, J.A.; Krishnamoorthy, U.; Sniffen, C.J. Plasma amino acids and milk protein production by cows fed rumen-protected methionine and lysine. J. Dairy Sci. 1987, 70, 789–798. [Google Scholar] [CrossRef]
- Martin, O.; Sauvant, D. Metaanalysis of input/output kinetics in lactating dairy cows. J. Dairy Sci. 2002, 85, 3363–3381. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Price, W.J.; Shafii, B. A meta-analysis on the relationship between intake of nutrients and body weight with milk volume and milk protein yield in dairy cows. J. Dairy Sci. 2005, 88, 2860–2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, S.; Wu, C.; Peng, W.; Liu, J.X.; Sun, H.Z. Predicting Daily Dry Matter Intake Using Feed Intake of First Two Hours after Feeding in Mid and Late Lactation Dairy Cows with Fed Ration Three Times Per Day. Animals 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Zamuner, F.; Cameron, A.W.N.; Carpenter, E.K.; Leury, B.J.; DiGiacomo, K. Endocrine and metabolic responses to glucose, insulin, and adrenocorticotropin infusions in early-lactation dairy goats of high and low milk yield. J. Dairy Sci. 2020, 103, 12045–12058. [Google Scholar] [CrossRef] [PubMed]
- Ouweltjes, W.; Veerkamp, R.; van Burgsteden, G.; van der Linde, R.; de Jong, G.; van Knegsel, A.; de Haas, Y. Correlations of feed intake predicted with milk infrared spectra and breeding values in the Dutch Holstein population. J. Dairy Sci. 2022, 105, 5271–5282. [Google Scholar] [CrossRef]
- De Marchi, M.; Toffanin, V.; Cassandro, M.; Penasa, M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. J. Dairy Sci. 2014, 97, 1171–1186. [Google Scholar] [CrossRef] [Green Version]
- Grelet, C.; Dardenne, P.; Soyeurt, H.; Fernandez, J.A.; Vanlierde, A.; Stevens, F.; Gengler, N.; Dehareng, F. Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions. Methods 2021, 186, 97–111. [Google Scholar] [CrossRef]
- Andersen, S.K.; Hansen, P.W.; Andersen, H.V. Vibrational spectroscopy in the analysis of dairy products and wine. Handb. Vib. Spectrosc. 2002, 5, 3672–3682. [Google Scholar]
- Lei, Y.; Zhou, Q.; Zhang, Y.L.; Chen, J.B.; Sun, S.Q.; Noda, I. Analysis of crystallized lactose in milk powder by Fourier-transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy. J. Mol. Struct. 2010, 974, 88–93. [Google Scholar] [CrossRef]
- Lynch, J.M.; Barbano, D.M.; Schweisthal, M.; Fleming, J.R. Precalibration evaluation procedures for mid-infrared milk analyzers. J. Dairy Sci. 2006, 89, 2761–2774. [Google Scholar] [CrossRef]
- Ferragina, A.; de Los Campos, G.; Vazquez, A.I.; Cecchinato, A.; Bittante, G. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. J. Dairy Sci. 2015, 98, 8133–8151. [Google Scholar] [CrossRef] [Green Version]
- Correddu, F.; Gaspa, G.; Cesarani, A.; Macciotta, N.P.P. Phenotypic and genetic characterization of the occurrence of noncoagulating milk in dairy sheep. J. Dairy Sci. 2022, 105, 6773–6782. [Google Scholar] [CrossRef] [PubMed]
FPCM Class | |||
---|---|---|---|
Trait | All | Low | High |
FPCM yield | 1.56 ± 0.39 | 1.25 ± 0.17 | 1.88 ± 0.26 |
Dry matter intake | |||
Day of milking | 2.00 ± 0.63 | 1.94 ± 0.58 | 2.07 ± 0.68 |
1 d before milking | 1.93 ± 0.67 | 1.88 ± 0.57 | 1.98 ± 0.76 |
2 d before milking | 2.07 ± 0.62 | 2.00 ± 0.55 | 2.15 ± 0.68 |
Feed efficiency | |||
Day of milking | 0.87 ± 0.41 | 0.71 ± 0.28 | 1.04 ± 0.46 |
1 d before milking | 0.96 ± 0.61 | 0.73 ± 0.29 | 1.18 ± 0.76 |
2 d before milking | 0.84 ± 0.43 | 0.67 ± 0.24 | 1.01 ± 0.51 |
Dry Matter Intake | |||
---|---|---|---|
FPCM Class | Same Day | 1 d Before | 2 d Before |
All | 0.11 NS | 0.17 NS | 0.06 NS |
Low | 0.40 *** | 0.54 *** | 0.34 ** |
High | −0.14 NS | −0.16 NS | −0.27 * |
Raw Spectra | Without Water | ||||||
---|---|---|---|---|---|---|---|
Validation | PCR 1 | PLSR 2 | SR 3 | PCR | PLSR | SR | |
Number of variables | |||||||
Observations | 11 (1) | 2 (0) | 88 (7) | 18 (1) | 6 (0) | 61 (7) | |
Ewes | 11 (2) | 2 (0) | 79 (15) | 17 (0) | 7 (0) | 54 (14) | |
Day | 11 (3) | 3 (0) | 76 (27) | 18 (3) | 8 (2) | 47 (19) | |
Correlation between real and estimated dry matter intake | Average | ||||||
Observations | 0.26 (0.02) | 0.38 (0.02) | 0.31 (0.02) | 0.36 (0.02) | 0.33 (0.02) | 0.33 (0.02) | 0.33 |
Ewes | 0.29 (0.06) | 0.38 (0.06) | 0.30 (0.07) | 0.35 (0.06) | 0.29 (0.05) | 0.32 (0.06) | 0.32 |
Day | 0.22 (0.06) | 0.28 (0.05) | 0.29 (0.11) | 0.20 (0.06) | 0.16 (0.05) | 0.23 (0.07) | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledda, A.; Carta, S.; Correddu, F.; Cesarani, A.; Atzori, A.S.; Battacone, G.; Macciotta, N.P.P. Dry Matter Intake Prediction from Milk Spectra in Sarda Dairy Sheep. Animals 2023, 13, 763. https://doi.org/10.3390/ani13040763
Ledda A, Carta S, Correddu F, Cesarani A, Atzori AS, Battacone G, Macciotta NPP. Dry Matter Intake Prediction from Milk Spectra in Sarda Dairy Sheep. Animals. 2023; 13(4):763. https://doi.org/10.3390/ani13040763
Chicago/Turabian StyleLedda, Antonello, Silvia Carta, Fabio Correddu, Alberto Cesarani, Alberto Stanislao Atzori, Gianni Battacone, and Nicolò Pietro Paolo Macciotta. 2023. "Dry Matter Intake Prediction from Milk Spectra in Sarda Dairy Sheep" Animals 13, no. 4: 763. https://doi.org/10.3390/ani13040763
APA StyleLedda, A., Carta, S., Correddu, F., Cesarani, A., Atzori, A. S., Battacone, G., & Macciotta, N. P. P. (2023). Dry Matter Intake Prediction from Milk Spectra in Sarda Dairy Sheep. Animals, 13(4), 763. https://doi.org/10.3390/ani13040763