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Simple Summary: This study combined Internet of Things technology with dairy farm management
to set up a smart dairy farm system (SDFS). All kinds of data in the dairy farm will be intelligently
captured by various sensors and transmitted to the SDFS in time for corresponding integration
analysis. Nutritional grouping was demonstrated to improve production performance and methane
and carbon dioxide emission reduction, which is also a hotspot of concern for the public and scientific
research. The information from dairy herd improvement (DHI) analysis was used to predict the
incidence of mastitis in dairy cows, which would lead to a new way to predict individual mastitis. By
fully interpreting the hidden value of dairy farm data, SDFS could help in the better management of
dairy farms and promote the application of intelligent systems in dairy farm production.

Abstract: In order to study the smart management of dairy farms, this study combined Internet of
Things (IoT) technology and dairy farm daily management to form an intelligent dairy farm sensor
network and set up a smart dairy farm system (SDFS), which could provide timely guidance for
dairy production. To illustrate the concept and benefits of the SDFS, two application scenarios were
sampled: (1) Nutritional grouping (NG): grouping cows according to the nutritional requirements by
considering parities, days in lactation, dry matter intake (DMI), metabolic protein (MP), net energy of
lactation (NEL), etc. By supplying feed corresponding to nutritional needs, milk production, methane
and carbon dioxide emissions were compared with those of the original farm grouping (OG), which
was grouped according to lactation stage. (2) Mastitis risk prediction: using the dairy herd improve-
ment (DHI) data of the previous 4 lactation months of the dairy cows, logistic regression analysis
was applied to predict dairy cows at risk of mastitis in successive months in order to make suitable
measurements in advance. The results showed that compared with OG, NG significantly increased
milk production and reduced methane and carbon dioxide emissions of dairy cows (p < 0.05). The
predictive value of the mastitis risk assessment model was 0.773, with an accuracy of 89.91%, a
specificity of 70.2%, and a sensitivity of 76.3%. By applying the intelligent dairy farm sensor network
and establishing an SDFS, through intelligent analysis, full use of dairy farm data would be made
to achieve higher milk production of dairy cows, lower greenhouse gas emissions, and predict in
advance the occurrence of mastitis of dairy cows.

Keywords: smart dairy farm system; nutritional grouping; greenhouse gas reduction; mastitis
prediction; dairy cows

1. Introduction

With the rapid development of modern science and technology and the continuous
improvement of communication technology, the development and application of the Inter-
net of Things (IoT) have gradually been penetrating every aspect of life [1]. It is estimated
that there would be about 2.5 billion bytes of data every day, which is beyond the capacity
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of human computing. Artificial intelligence (AI), big data, and machine learning (ML)
emerged as the times require [2]. Traditional agriculture has gradually entered the era of
intelligent agriculture after the era of mechanization and automation [3]. Smart animal
husbandry combines farm management with technologies such as IoT, 5G, ML, and AI
to improve the production level of animal husbandry and promote profound changes in
animal husbandry [4,5]. Smart dairy farming is a specific application of animal husbandry
intelligence, and it is also the mainstream trend in the modernization of dairy farms. Nowa-
days, ever more dairy farms are covered with large areas of 5G networks and sensors [6].
Precise feeding is performed regularly and quantitatively using automated technology [7],
and dairy farms are managed automatically and intelligently using technologies such as
automatic ventilation and drainage [8] and air quality detection [9]. Dairy farms generate
more and more data while the dairy farm scale expands [10]. For example, radio frequency
identification technology is used to recognize individual dairy cows and obtain informa-
tion such as the location and body temperature [11]. Different models (Wood model, Ali
Schaeffer model, etc.) are used to predict 305d milk yield of cows and then evaluate the
effect of genetic evaluation of dairy cows [12]. The movement of dairy cows can be pre-
cisely calculated by a collar monitoring system to reveal whether animals are in heat [13].
Different data streams represent different information, and most have their own collection
and analysis systems. Most dairy farms are not able to effectively utilize data streams
from different sources to extract their full value. Determining how to effectively integrate
and utilize these data streams for dairy farm management has become a challenge [14].
Studies have shown that the management of the entire farm can be improved by integrating
these data streams in real time, which in turn enables data-driven decision making on the
farm [15,16].

In China, almost every large dairy farm has 2–3 management systems. The levels of
dairy farm management systems are uneven and there is no well-recognized system that
can efficiently integrate different sources of data flow and propose corresponding improve-
ment measures for dairy farms. In order to solve this problem, we developed a system for
data collection, processing, and analysis, namely a smart dairy farm system (SDFS), and
illustrated the concept of the SDFS through two application scenarios: (1) nutritional group-
ing of dairy cows through cluster analysis for precise nutritional management, improving
milk production and reducing greenhouse gas (GHG) emissions; (2) risk prediction of dairy
cow mastitis through logistic regression to identify the dairy cows with mastitis risk in
order to take measurements in advance. Through the overall analysis of dairy farm data,
the SDFS could make better use of dairy farm data and improve the management level
of dairy farms. However, farm data are a huge treasure, and the data used in this paper
are only a part of the huge data of farms, so we need to constantly excavate, analyze, and
interpret the data behind the farms and constantly promote the application of intelligent
systems in farm production management.

2. Materials and Methods
2.1. SDFS Establishment and Data Collection
2.1.1. Setup of SDFS

A dairy farm in the Beijing area with a herd of 2500 cows, including 1256 lactating
cows, was selected. The dairy farm is designed with an intelligent sensor network struc-
ture, and dairy farm managers can achieve remote and precise monitoring and control via
computer and mobile phone. The dairy farm was equipped with a large number of diver-
sified intelligent devices for cow monitoring and management, such as radio frequency
identification (RFID) electronic ear tags [17]. A weighing system is combined with RFID
technology to obtain the weight information of individual cows, which is sent to a manage-
ment computer, providing management staff with basic information for the management
of cattle farms. The farm also has a total mixed ration (TMR) precision feeding system [18]
and unmanned aerial vehicle (UAV) photography system [19]. The installation of sensors
for monitoring temperature, humidity, wind speed, and GHGs (such as methane (CH4)
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and carbon dioxide (CO2)) [20] enables the monitoring of environmental parameters in
the dairy farm (Figure 1). The dairy farm data are transmitted to the computer terminal
of the SDFS (as a database) through sensors, and the relevant data can be extracted from
the database for advanced analysis and visual presentation. The system enables the timely
collection and analysis of data collected by the dairy farm sensor network. The SDFS
includes automatic monthly reports, annual reports, growth performance, DHI data, repro-
ductive performance, individual cow value display and analysis, nitrogen and phosphorus
emissions, and GHG emissions. Two application examples (nutrient grouping and mastitis
prediction) ae used below to illustrate the application of the SDFS.
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Figure 1. Structure of smart dairy farm sensing network.

2.1.2. Data Collection in Dairy Farm

The data collected mainly included the following: (1) individual information: cattle
pedigree information, body weight, appearance score, body condition score, etc.; (2) farm
information: farm location, stalls, cattle barns, environment, etc.; (3) cattle management:
recording routine events in herds, such as heat, insemination, calving, and disease pre-
vention and control events; (4) feed: including diet composition, average delivery and
feed residues per day, and dry matter intake (DMI); (5) dairy herd improvement (DHI)
parameters: milk yield, milk fat percentage, milk protein percentage, fat/protein ratio, milk
fat content, milk protein content, and somatic cell count (SCC) were recorded on monthly
test days [21].

2.2. Application Scene of Smart Dairy Farm System
2.2.1. Nutrition Grouping

Based on the individual cow information, DMI, and DHI data collected by the SDFS,
Nutrient Dynamic System Professional Software (NDS, developed by Rum&n srl), which
adopted the Cornell Net Carbohydrate and Protein System (CNCPS6.55) [22], was used
to calculate metabolic protein (MP) and metabolic energy (ME) as two of references for
nutritional grouping. Two hundred seventy lactating cows were divided into 9 pens by
cluster analysis as the nutritional group (NG). The control groups were assigned to 9 pens
with 30 cows in each pen according to the original grouping (OG; divided according to
milk production of cows) method in the farm, in which cows were grouped according to
lactation stages. The corresponding diets calculated by NDS were provided for each pen
(Tables 1 and 2). Since the monitoring of methane and carbon dioxide is greatly influenced
by the environment, space, and air flow, the stability of the data detected by this sensor
needs to be further improved. Therefore, the methane and carbon dioxide data in this
study mainly used the predicted value of CNCPS system, and the stability was guaranteed
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to a certain extent [23]. N intake was calculated and CH4 and CO2 emissions were also
estimated by NDS [24].

Table 1. Diet composition and routine nutrient composition—original farm grouping.

Ingredient
TMR Diet Formulation (kg) Pens (OG)

1 2 and 3 4 and 7 5 and 8 6 and 9

Corn silage 23.00 23.00 23.31 23.32 23.21
Alfalfa hay 2.34 2.20 2.31 2.40 2.31

Oat hay 2.38 2.18 2.39 2.50 2.39
Corn grain fine 3.10 2.70 3.35 2.92 3.21
Soybean meal 2.93 2.66 3.32 3.00 3.12

Soft wheat bran 1.294 1.263 1.45 1.38 1.32
Soybean steam flaked 1.280 1.291 1.44 1.38 1.32

Beet pulp pellet 1.287 1.312 1.46 1.37 1.36
Calcium salt of fatty acids 0.10 0.00 0.40 0.10 0.15

Sugarcane molasses 0.51 0.35 0.60 0.30 0.56
Cottonseed meal 0.50 0.40 0.62 0.30 0.60

Premix 0.40 0.55 0.45 0.55 0.40
Nutritional composition

ME (Mcal/day) 56.29 52.87 61.51 56.21 58.28
MP (g/day) 2518.80 2344.80 2732.50 2484.10 2604.02

CP (%) 16.76 16.46 17.10 16.63 17.02
Crude fat (%) 4.00 3.69 4.97 4.04 4.14

NFC (%) 37.85 37.32 37.34 37.02 37.80
NDF (%) 33.98 34.49 32.97 34.30 33.65

peNDF (%) 24.77 25.23 24.03 25.01 24.23
Starch (%) 24.26 24.15 24.24 23.92 24.14

Predicted DMI
(kg/cow per day) 21.66 20.60 23.30 21.81 22.60

1–3 stand for diets for early, middle, and late stages of first lactation, respectively; 4–6 stand for early, middle,
and late stages of second lactation, respectively; 7–9 stand for early, middle, and late stages of third lactation and
over, respectively.

Table 2. Diet composition and routine nutrient composition—nutrient grouping.

Ingredient
TMR Diet Formulation (kg) Pen (NG)

1 2 3 4 5 6 7 8 9

Corn silage 22.00 22.15 22.00 22.20 22.20 22.30 22.60 22.43 22.41
Alfalfa hay 2.20 2.20 2.00 2.21 2.21 2.31 2.40 2.28 2.28

Oat hay 2.00 2.00 2.00 2.34 2.34 2.32 2.52 2.22 2.28
Corn grain fine 3.32 3.14 2.84 3.54 3.43 3.22 3.66 3.57 3.36
Soybean meal 3.34 3.20 2.87 3.54 3.44 3.24 3.69 3.58 3.34

Soft wheat bran 1.17 1.20 1.27 1.57 1.37 1.16 1.44 1.38 1.36
Soybean steam flaked 1.13 1.11 1.27 1.43 1.23 1.13 1.54 1.37 1.27

Beet pulp pellet 1.30 1.30 1.21 1.40 1.20 1.11 1.46 1.36 1.26
Calcium salt of fatty acids 0.40 0.25 0.10 0.44 0.33 0.25 0.50 0.43 0.25

Sugarcane molasses 0.62 0.60 0.40 0.62 0.60 0.60 0.60 0.56 0.56
Cottonseed meal 0.58 0.50 0.40 0.60 0.54 0.58 0.60 0.60 0.60

Premix 0.41 0.45 0.40 0.43 0.43 0.35 0.40 0.38 0.38
Nutritional composition of diet

ME (Mcal/day) 57.85 55.90 52.82 61.55 58.99 57.01 63.75 61.76 58.62
MP (g/day) 2572.00 2491.80 2336.40 2764.50 2630.60 2526.70 2863.90 2766.10 2622.80

CP (%) 17.25 17.07 16.98 17.46 17.28 17.18 17.56 17.57 17.37
Crude fat (%) 4.91 4.39 4.09 5.11 4.71 4.43 5.28 5.06 4.46

NFC (%) 38.01 38.04 37.83 37.52 37.90 38.05 37.33 37.74 37.90
NDF (%) 32.19 32.77 33.63 32.35 32.52 33.00 32.36 32.26 32.91

peNDF (%) 22.93 23.52 24.28 22.44 23.29 24.26 22.67 22.65 23.51
Starch (%) 24.47 24.37 24.59 23.96 24.28 24.23 23.70 24.25 24.29

Predicted DMI
(kg/cow per day) 22.14 21.64 20.73 23.64 22.88 22.30 24.14 23.47 22.92

1–3 stand for diets for early, middle, and late stages of first lactation, respectively; 4–6 stand for early, middle,
and late stages of second lactation, respectively; 7–9 stand for early, middle, and late stages of third lactation and
over, respectively.
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2.2.2. Mastitis Prediction

The mastitis prediction was carried out using the original DHI records of the dairy
farm from 1 January 2019 to 31 December 2021. In general, SCC greater than 200,000/mL
was used as the criterion for subclinical mastitis in dairy cows [25]. From the original DHI
records, records without SCC were deleted. Due to the skewed distribution of the SCC
values and the heterogeneous variance, SCC was first transformed into somatic cell score
(SCS), which was close to a normal distribution, before the subsequent analysis [26]. The
conversion formula was as follows:

SCS = log2(SCC/100000) + 3.

To improve the accuracy of model predictions, the values of SCS ranging from 0 to 10
were used [27]. According to the SCC values, cows were divided into a healthy group and a
mastitis risk group (Table 3). According to the SCC in DHI data, when SCC ≤ 200,000/mL,
it indicates a healthy condition; when 200,000/mL < SCC ≤ 500,000/mL, it indicates
subclinical mastitis, when SCC > 500,000/mL, it indicates clinical mastitis [28]. In this
paper, both subclinical and clinical mastitis were named as the mastitis risk group.

Table 3. Disease grouping of Holstein cows.

Group SCC 1, 104/mL SCS 2

Health Group SCC ≤ 20 SCS ≤ 4
Risk Group SCC > 20 SCS > 4

1 SCC: somatic cell count. 2 SCS: somatic cell score.

Altogether, 2555 DHI records were used for regression analysis. The following in-
dependent variables were chosen: parity, days in milk (DIM), and milk indicators of the
previous four lactation months (milk yield, milk protein percentage, milk fat percentage,
lactose percentage, fat/protein ratio). A training set (70%) and a validation set (30%) were
created from the collected data. The training set was used to filter the independent variables
(equation 1) by bidirectional elimination stepwise regression. The parameters with statisti-
cally significant effects on the prediction of mastitis in dairy cows were obtained (Table 4),
and corresponding coefficients were substituted into the logistic regression equation for
further analysis using the validation set:

logit(P) = log
(

P
1 − P

)
= β0 + β1X1 + β2X2 + β3X3 + β4X4 + ...β26X26 (1)

where P represents the probability of positive results; 1 − P represents the probability of
non-positive results. P

1−P is the strength of the disease as a statistical indicator, called the
odds ratio (OR), used to estimate the effect of the independent variable on disease. X1 is
parity, X2–X5 represent the amount of milk produced during the first 1–4 lactation months,
X6–X9 represent milk fat percentage in the first 1–4 lactation months, X10–X13 represent
the protein rate of the first 1–4 lactation months, X14–X17 represent lactose rate in the first
1–4 lactation months, X18–X21 represent the fat-to-egg ratio of the first 1–4 lactation months,
X22–X26 represent the natural months of the first 1–5 lactation months; β0 is a constant, and
β1–β26 are the regression coefficients of each variable (X1–X26).
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Table 4. Risk factors of mastitis in Chinese Holstein cattle in the Beijing area.

Variable Abbreviation Name

State of illness
Health 0

Risk 1
Milk yield 2 cnl2 X3

Fat percentage 1 rzl1 X6
Fat percentage 2 rzl2 X7
Fat percentage 3 rzl3 X8

Protein percentage 1 dbl1 X10
Lactose percentage 4 rtl4 X17

Fat/protein ratio1 zdb1 X18
Fat/protein ratio 3 zdb3 X20

Month 5 yuefen5 X26

The receiver operating characteristic (ROC) curve was plotted to reflect the prediction
accuracy of predictive variables in the dairy cow mastitis risk assessment model. The X-axis
is specificity (percentage of healthy cows that tested negative) and the Y-axis is sensitivity
(the percentage of risk cows that correctly tested positive), The area under the curve (AUC)
was calculated. An AUC of the prediction model between 0.50 and 0.70 indicates that the
effect is average, an AUC between 0.70 and 0.90 is considered to indicate a good model,
and an AUC higher than 0.90 is considered to indicate an excellent model [29,30].

2.3. Statistical Analysis

First of all, the data were preliminarily sorted using Excel and SPSS 21.0.
Cluster analysis was performed using the hclust function in the stats package of Rx64

(version 4.0.5) for nutritional parameters (milk production, parity, DIM, MP, ME, etc.).
For mastitis prediction, the DHI data were analyzed using ANOVA in SPSS 21.0.

Logistic regression analysis was performed using the general linear model (GLM) function,
and the ROC curve was drawn using the PROC package of Rx64 software.

3. Results
3.1. Application of SDFS
3.1.1. Nutrient Grouping

As shown in Table 5, compared with OG, the milk production of NG increased signifi-
cantly (p < 0.05), except that the milk production in the mid-lactation group of the second
parity was not significantly different. In general, the use of NG can significantly improve
the milk yield of dairy cows at the same stage.

Table 5. Effects of farm group and nutrient group strategies on milk production of dairy cows.

Parity Pen Stage
Milk yield

p Value
OG 1 NG 2

1
1 Early 37.45 + 3.45 a 39.28 + 2.90 b 0.031
2 Mid 35.78 + 4.22 a 37.87 + 3.19 b 0.035
3 Late 33.10 ±2.90 a 34.84 ±2.33 b 0.013

2
4 Early 40.17 ±4.07 a 42.29 ± 2.98 b 0.025
5 Mid 38.34 ± 4.22 39.74 ± 3.47 0.165
6 Late 36.48 ± 3.70 a 38.20 ± 2.75 b 0.046

≥3
7 Early 41.22 ± 4.36 a 43.58 ± 3.83 b 0.030
8 Mid 39.20 ± 3.81 a 41.64 ± 4.55 b 0.029
9 Late 37.55 ± 3.38 a 39.31 ± 3.14 b 0.041

Different lowercase letters in the same row differ significantly (p < 0.05). 1 OG: original grouping. 2 NG:
nutritional grouping.
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As shown in Table 6, the N intake of dairy cows in NG was higher than that in OG;
N production and N efficiency in NG were highly significantly increased than that in OG
(p < 0.01). Compared to OG, overall N efficiency in NG increased by 1.98%. Generally
speaking, the N intake of cows increased after NG treatment.

Table 6. Effects of different grouping strategies on dietary N utilization.

Parity Pen Stage
N Intake (g) NG-

OG
N Production (g)

p Value
N Efficiency (%)

p Value
Changes in N
Efficiency 3

(%)OG 1 NG 2 OG NG OG NG

1
1 Early 598.88 617.10 18.22 201.94 ± 0.90 B 216.19 ± 0.76 A <0.001 33.72 ± 0.15 B 35.03 ± 0.12 A <0.001 3.88
2 Mid 579.68 597.89 18.21 197.86 ± 1.06 B 210.80 ± 1.06 A <0.001 34.13 ± 0.18 B 35.26 ± 0.18 A <0.001 3.31
3 Late 546.03 565.11 20.50 184.87 ± 0.90 B 194.38 ± 1.16 A <0.001 33.86 ± 0.17 B 34.40 ± 0.20 A <0.001 1.59

2
4 Early 654.1 666.13 12.03 224.40 ± 0.70 B 233.28 ± 0.83 A <0.001 34.31 ± 0.11 B 35.02 ± 0.12 A <0.001 2.07
5 Mid 624.9 634.84 9.94 215.92 ± 1.07 B 219.03 ± 1.07 A <0.001 34.55 ± 0.17 34.50 ± 0.17 0.248 −0.14
6 Late 598.03 610.95 12.92 203.08 ± 1.01 B 212.16 ± 0.95 A <0.001 33.96 ± 0.17 B 34.73 ± 0.15 A <0.001 2.27

≥3
7 Early 677.66 691.39 13.73 231.61 ± 1.09 B 237.45 ± 1.39 A <0.001 34.18 ± 0.16 B 34.37 ± 0.15 A <0.001 0.56
8 Mid 645.23 663.15 17.92 218.02 ± 0.96 B 228.40 ± 1.99 A <0.001 33.79 ± 0.15 B 34.49 ± 0.15 A <0.001 2.07
9 Late 623.76 635.36 11.6 210.00 ± 0.96 B 217.73 ± 1.53 A <0.001 33.67 ± 0.15 B 34.40 ± 0.14 A <0.001 2.17

Different uppercase letters in the same row differ highly significantly (p < 0.01). 1 OG: original grouping.
2 NG: nutritional grouping. 3 Changes in N efficiency = (NG–OG)/OG.

The GHG emissions are shown in Table 7. CH4 and CO2 emissions of dairy cows in
NG were lower than those in OG. In general, the use of NG resulted in a decrease in dairy
cow methane and carbon dioxide emissions.

Table 7. Methane and carbon dioxide emissions from cattle for group and nutrient group strategies.

Parity Pen Stage
CH4, g/d/Head Difference

(%) CO2, kg/d/Head Difference
(%)

OG 1 NG 2 OG NG

1
1 Early 451.46 450.78 −0.15 13.16 13.14 −0.15
2 Mid 445.10 443.55 −0.35 12.97 12.95 −0.15
3 Late 432.10 428.40 −0.86 12.51 12.46 −0.40

2
4 Early 474.76 472.24 −0.53 13.90 13.82 −0.58
5 Mid 461.90 459.06 −0.61 13.50 13.46 −0.30
6 Late 453.69 452.21 −0.33 13.23 13.10 −0.98

≥3
7 Early 486.24 485.58 −0.14 14.26 14.18 −0.56
8 Mid 475.23 469.33 −1.24 13.86 13.72 −1.01
9 Late 463.48 458.97 −0.97 13.56 13.39 −1.25

1 OG: original grouping. 2 NG: nutritional grouping.

3.1.2. Mastitis Prediction

The risk factors related to mastitis in the experimental dairy farm are shown in Ta-
ble 8. OR values indicated the fitting degree of the model was good (Hosmer–Lemeshow
(p > 0.05)). The results showed that milk yield in the second lactation month (p < 0.05),
fat percentage in the first and third lactation months (p < 0.05), and natural month in the
fifth lactation month (p < 0.05) had significant effects on mastitis risk in dairy cows. The
predictive value of the mastitis risk assessment model was 0.773. The accuracy was 89.9%,
the specificity was 70.2%, and the sensitivity was 76.3% (Figure 2).
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Table 8. Risk factors of mastitis.

Variable Abbreviation B 1 OR 2 95%CI 3 p Value

Milk yield 2 cnl2 0.14 1.15 1.01 1.31 0.031
Fat percentage 1 rzl1 1.90 6.72 0.93 48.79 0.036
Fat percentage 2 rzl2 0.95 2.60 0.77 8.71 0.127
Fat percentage 3 rzl3 1.20 3.32 1.41 7.81 0.003

Protein percentage 1 dbl1 −2.73 0.07 0.00 1.46 0.054
Lactose percentage 4 rtl4 −4.02 0.02 0.00 0.15 0.000
Fat/protein ratio 1 zdb1 −4.53 0.01 0.00 4.16 0.102
Fat/protein ratio 3 zdb3 −2.55 0.08 0.01 1.19 0.043

Month 5 yuefen5 0.14 1.15 1.02 1.30 0.021
1 β = regression coefficient. 2 OR = odds ratio. 3 CI = confidence interval.
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4. Discussion

Recently, the utilization of 5G and IoT technology has become a major trend in the
development of animal husbandry [31]. This study formed a large sensing network by
applying the concept of precision animal husbandry and installing various types of equip-
ment on dairy farms. Data are collected through various sensors, and IoT facilitates the
transmission of data from the network to the SDFS for data analysis, forming the basis for
the transformation of intelligent dairy farms into smart management.

4.1. Nutrition Grouping

Currently, most dairy farms usually only consider the lactation stage when grouping
cows to determine feed ration, resulting in less accurate feed nutrition on dairy farms [32].
Studies have shown that grouping dairy cows according to their actual nutritional needs
can increase the utilization rate of N in the diet [33], and milk production, so as to reduce
GHG emissions [34].

In this study, for dairy cows in NG, milk production significantly increased (p < 0.05).
The dairy cows with different needs were fed different TMR formulations, which greatly
improved the N efficiency and increased milk production. This is in agreement with
the results of Cabrera et al. [35]. Nutritional grouping of dairy cows could improve
the nutritional accuracy of diet, prevent nutrient loss, reduce dietary costs, and increase
milk production.

Nutritional grouping had better theoretical nutritional accuracy, thereby reducing
nutritional loss due to dietary and environmental influences [36]. GHG emissions (CH4,
N2O, CO2) are currently a research hotspot all over the world [37,38]. In this study, dairy
cows in NG had CH4 and CO2 emissions lower than those in OG, and the N efficiency
increased by 1.98% on average. Kalalantari et al. [39]. reported an increase in N efficiency
by 2.7% when cows were divided into multiple nutritional groups and fed with an average
MP lower than requirements. The methane emission also decreased. The reason for this
discrepancy could be that the authors fully considered the cow’s body weight (BW), BCS
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(the range of 2.0–4.5 to ensure the accuracy of the model), and NEL in their study, while
in this study these factors were not in consideration. Therefore, the nutritional grouping
of lactating dairy cows can fully consider the physical condition and nutritional needs of
dairy cows and provide different diets for different groups to better meet the nutritional
needs of dairy cows and lower GHG emissions [40].

4.2. Smart Prediction of Mastitis

As dairy cows produce ever more milk, cow mastitis has been becoming one of the
most important diseases that restrict the development of the global dairy industry [41]. It is
estimated that economic losses due to mastitis in dairy cows account for 38% of the total
direct cost of common production diseases on dairy farms [42]. Risk assessment and timely
prevention of mastitis in cows are essential to ensure the health of cows and the consistent
improvement of raw milk quality [43].

Recent studies on mastitis prediction have focused on factors such as year, month, and
farm [44,45]. Individual information about cows has not been taken into account, making
the prediction less practical. This study screened the factors that could predict the mastitis
risk in the fifth lactation month based on the previous four lactation months using DHI
data of individual cows. The milk yield in the second lactation month and fat percentage
in the first and third lactation months were influential risk factors for mastitis and could
accurately predict the risk of mastitis in the fifth lactation month. In this way, the incidence
of mastitis in the dairy farm could be predicted two months in advance. This is expected to
have a certain guiding significance for dairy farms.

The ROC curve is a comprehensive representation of a model’s accuracy. Sensitivity
and specificity are indispensable indicators that reflect authenticity [46]. The area under
the curve (AUC) is the diagnostic value of the model. The larger the area is, the better the
diagnostic performance of the model is [47]. The predictive specificity of this study was
similar to Cavero’s predictive specificity (74.9%), which was calculated for mastitis predic-
tion using data from 478 cows from neural networks and automated milking systems [18].
Sun et al. [48] reported a result of 87% true positives using artificial neural networks, which
was similar to this study. The predictive value of this study was lower than the predictive
value (AUC) of 0.93 reported by Jadhav et al. [49] based on a 214-cow dataset. This may
be due to the authors using more variables such as mammary and bedding hygiene and
milking methods in their study. In practice, bedding hygiene status, teat shape, and udder
hygiene also affect the occurrence of mastitis in dairy cows, interfering with the accuracy
of individual dairy cow mastitis risk assessment [50].

However, the prediction process could be always developing. With continuous accu-
mulation and aggregation of more data and real-time data streams, the accuracy of model
prediction could be improved over time. According to logistic regression and ROC curve
description, we can find the risk indicators of dairy mastitis. Significantly, this equation
does not apply to all cases; our team is still studying further, hoping to find a general
equation that can be updated automatically by continuously merging the past data to detect
the incidence of cow disease in time.

5. Conclusions

This study combined IoT technology with dairy farm management to set up an SDFS.
All kinds of data in the dairy farm will be intelligently captured by various sensors and
transmitted to the SDFS in time for corresponding integration analysis. The applications
of the SDFS were demonstrated in two aspects. NG according to the nutritional needs of
dairy cows could improve nutritional accuracy, thus leading to increased milk production
and N efficiency and reduced CH4 and CO2 emissions, so as to mitigate the environmental
impacts. A mastitis prediction model was established using DHI data to identify potential
cows at risk of mastitis in advance, thus reducing economic losses. By fully interpreting
the hidden value of dairy farm data, the SDFS could help in the better management of
dairy farms and promote the application of intelligent systems in dairy farm production.
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At present, our data mining of dairy farms is not comprehensive enough; we still need to
continue to work hard.
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