Naked Mole-Rats Demonstrate Profound Tolerance to Low Oxygen, High Carbon Dioxide, and Chemical Pain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Tolerance to Oxygen Deprivation
3. Tolerance to High Concentrations of CO2
4. Insensitivity to Chemical Pain
5. Sensory Vibrissae Mediate Orientation to Touch
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brett, R.A. The ecology of naked mole-rat colonies: Burrowing, food and limiting factors. In The Biology of the Naked Mole-Rat; Sherman, P.W., Jarvis, J.U., Alexander, R.D., Eds.; Princeton University Press: Princeton, NJ, USA, 1991; pp. 137–184. [Google Scholar]
- Buffenstein, R.; Amoroso, V.; Andziak, B.; Avdieiev, S.; Azpurua, J.; Barker, A.J.; Bennett, N.C.; Brieño-Enríquez, M.A.; Bronner, G.N.; Coen, C.; et al. The naked truth: A comprehensive clarification and classification of current ’myths’ in naked mole-rat biology. Biol. Rev. Camb. Philos. Soc. 2022, 97, 115–140. [Google Scholar] [CrossRef] [PubMed]
- Lavocat, R. Rodentia and Lagomorpha. In Evolution of African Mammals; Maglio, V.J., Cooke, H.B.S., Eds.; Harvard University Press: Cambridge, MA, USA, 1978; pp. 69–89. [Google Scholar]
- Bishop, W.W. The mammalian fauna and geomorphological relations of the Napak volcanics, Karamoja. Uganda Geol. Surv. Rec. 1962, 58, 1–18. [Google Scholar]
- Buffenstein, R.; Craft, W. The Idiosyncratic Physiological Traits of the Naked Mole-Rat; a Resilient Animal Model of Aging, Longevity, and Healthspan. Adv. Exp. Med. Biol. 2021, 1319, 221–254. [Google Scholar] [CrossRef] [PubMed]
- Buffenstein, R.; Yahav, S. Is the naked mole-rat; Heterocephalus glaber; a poikilothermic or poorly thermoregulating endothermic mammal? J. Therm. Biol. 1991, 16, 227–232. [Google Scholar] [CrossRef]
- Holmes, M.M.; Goldman, B.D. Social Behavior in Naked Mole-Rats: Individual Differences in Phenotype and Proximate Mechanisms of Mammalian Eusociality. Adv. Exp. Med. Biol. 2021, 1319, 35–58. [Google Scholar] [CrossRef]
- Jarvis, J.U. Eusociality in a mammal: Cooperative breeding in naked mole-rat colonies. Science 1981, 212, 571–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, A.J.; Veviurko, G.; Bennett, N.C.; Hart, D.W.; Mograby, L.; Lewin, G.R. Cultural transmission of vocal dialect in the naked mole-rat. Science 2021, 371, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Pyott, S.J.; van Tuinen, M.; Screven, L.A.; Schrode, K.M.; Bai, J.-P.; Price, S.D.; Lysakowski, A.; Barone, C.M.; Santos-Sacchi, J.; Lauer, A.M.; et al. Functional; Morphological; and Evolutionary Characterization of Hearing in Subterranean; Eusocial African Mole-Rats. Curr. Biol. 2020, 30, 4329–4341.e4. [Google Scholar] [CrossRef]
- Ruby, J.G.; Smith, M.; Buffenstein, R. Naked Mole-Rat mortality rates defy Gompertzian laws by not increasing with age. eLife 2018, 7, e31157. [Google Scholar] [CrossRef]
- Can, E.; Smith, M.; Boukens, B.J.; Coronel, R.; Buffenstein, R.; Riegler, J. Naked mole-rats maintain cardiac function and body composition well into their fourth decade of life. Geroscience 2022, 44, 731–746. [Google Scholar] [CrossRef]
- Buffenstein, R.; Lewis, K.N.; Gibney, P.A.; Narayan, V.; Grimes, K.M.; Smith, M.; Lin, T.D.; Brown-Borg, H.M. Probing pedomorphy and prolonged lifespan in naked mole-rats and dwarf mice. Physiology 2020, 35, 96–111. [Google Scholar] [CrossRef]
- Fang, X.; Seim, I.; Huang, Z.; Gerashchenko, M.V.; Xiong, Z.; Turanov, A.A.; Zhu, Y.; Lobanov, A.V.; Fan, D.; Yim, S.H.; et al. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep. 2014, 8, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Keane, M.; Craig, T.; Alföldi, J.; Berlin, A.M.; Johnson, J.; Seluanov, A.; Gorbunova, V.; Di Palma, F.; Lindblad-Toh, K.; Church, G.M.; et al. The Naked Mole Rat Genome Resource: Facilitating analyses of cancer and longevity-related adaptations. Bioinformatics 2014, 30, 3558–3560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.B.; Fang, X.; Fushan, A.A.; Huang, Z.; Lobanov, A.V.; Han, L.; Marino, S.M.; Sun, X.; Turanov, A.A.; Yang, P.; et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 2011, 479, 223–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerepesi, C.; Meer, M.V.; Ablaeva, J.; Amoroso, V.G.; Lee, S.-G.; Zhang, B.; Gerashchenko, M.V.; Trapp, A.; Yim, S.H.; Lu, A.T.; et al. Epigenetic aging of the demographically non-aging naked mole-rat. Nat. Commun. 2022, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Pamenter, M.E. Adaptations to a hypoxic lifestyle in naked mole-rats. J. Exp. Biol. 2022, 225, jeb196725. [Google Scholar] [CrossRef]
- Park, T.J.; Reznick, J.; Peterson, B.L.; Blass, G.; Omerbašić, D.; Bennett, N.C.; Kuich, P.H.J.L.; Zasada, C.; Browe, B.M.; Hamann, W.; et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 2017, 356, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Eigenbrod, O.; Debus, K.Y.; Reznick, J.; Bennett, N.C.; Omerbašić, D.; Sánchez-Carranza, O.; Hart, D.W.; Barker, A.J.; Lutermann, H.; Lewin, G.R.; et al. Rapid molecular evolution of pain insensitivity in multiple African rodents. Science 2019, 364, 852–859. [Google Scholar] [CrossRef]
- Omerbašić, D.; Smith, E.S.; Moroni, M.; Homfeld, J.; Eigenbrod, O.; Bennett, N.C.; Reznick, J.; Faulkes, C.G.; Selbach, M.; Lewin, G.R. Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat. Cell Rep. 2016, 17, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Park, T.J.; Lu, Y.; Jüttner, R.; Smith, E.S.; Hu, J.; Brand, A.; Wetzel, C.; Milenkovic, N.; Erdmann, B.; Heppenstall, P.A.; et al. Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber). PLoS Biol. 2008, 6, e13. [Google Scholar] [CrossRef]
- Smith, E.S.; Omerbašić, D.; Lechner, S.G.; Anirudhan, G.; Lapatsina, L.; Lewin, G.R. The molecular basis of acid insensitivity in the African naked mole-rat. Science 2011, 334, 1557–1560. [Google Scholar] [CrossRef]
- Ilacqua, A.N.; Kirby, A.M.; Pamenter, M.E. Behavioural responses of naked mole rats to acute hypoxia and anoxia. Biol. Lett. 2017, 13, 20170545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, T.J.; Smith, E.S.J.; Reznick, J.; Bennett, N.C.; Applegate, D.T.; Larson, J.; Lewin, G.R. African Naked Mole-Rats Demonstrate Extreme Tolerance to Hypoxia and Hypercapnia. Adv. Exp. Med. Biol. 2021, 1319, 255–269. [Google Scholar] [CrossRef]
- Park, T.J.; Reznick, J. Journal of muscle research and cell motility, focus on Extreme Physiology Extreme Tolerance to Hypoxia, Hypercapnia, and Pain in the Naked Mole-Rat. J. Muscle Res. Cell Motil. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.; Park, T.J. Extreme Hypoxia Tolerance of Naked Mole-Rat Brain. NeuroReport 2009, 20, 1634–1637. [Google Scholar] [CrossRef]
- Larson, J.; Drew, K.L.; Folkow, L.P.; Milton, S.L.; Park, T.J. No Oxygen? No Problem! Intrinsic Brain Tolerance to Hypoxia in Vertebrates. J. Exp. Biol. 2014, 217, 1024–1039. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.L.; Larson, J.; Buffenstein, R.; Park, T.J.; Fall, C.P. Blunted neuronal calcium response to hypoxia in naked mole-rat hippocampus. PLoS ONE 2012, 7, e31568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bickler, P.E. Clinical perspectives: Neuroprotection lessons from hypoxia-tolerant organisms. J. Exp. Biol. 2004, 207 Pt 18, 3243–3249. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, J.K.; Siesjö, B.K.; Wieloch, T. Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J. Cereb. Blood Flow Metab. 1987, 7, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.W. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988, 1, 623–634. [Google Scholar] [CrossRef]
- Bickler, P.E.; Fahlman, C.S.; Taylor, D.M. Oxygen sensitivity of NMDA receptors: Relationship to NR2 subunit composition and hypoxia tolerance of neonatal neurons. Neuroscience 2003, 118, 25–35. [Google Scholar] [CrossRef]
- Ewald, R.C.; Cline, H.T. NMDA Receptors and Brain Development. In Biology of the NMDA Receptor; Van Dongen, A.M., Ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Peterson, B.L.; Park, T.J.; Larson, J. Adult naked mole-rat brain retains the NMDA receptor subunit GluN2D associated with hypoxia tolerance in neonatal mammals. Neurosci. Lett. 2012, 506, 342–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, B.; Wang, S.; Yang, G.; Sun, X.; Zhao, S.; Lin, L.; Cheng, J.; Yang, W.; Cong, W.; Sun, W.; et al. HIF-1α contributes to hypoxia adaptation of the naked mole rat. Oncotarget 2017, 8, 109941–109951. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.L.; Jiang, B.-H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92, 5510–5514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, P.H.; Wiesener, M.S.; Chang, G.-W.; Clifford, S.C.; Vaux, E.C.; Cockman, M.E.; Wykoff, C.C.; Pugh, C.W.; Maher, E.R.; Ratcliffe, P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399, 271–275. [Google Scholar] [CrossRef]
- Weidemann, A.; Johnson, R.S. Biology of HIF-1alpha. Cell Death Differ. 2008, 15, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Activation of the HIF pathway in cancer. Curr. Opin. Genet. Dev. 2001, 11, 293–299. [Google Scholar] [CrossRef]
- Maher, E.R.; Webster, A.R.; Richards, F.M.; Green, J.S.; Crossey, P.A.; Payne, S.J.; Moore, A.T. Phenotypic expression in von Hippel-Lindau disease: Correlations with germline VHL gene mutations. J. Med. Genet. 1996, 33, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Olschwang, S.; Richard, S.; Boisson, C.; Giraud, S.; Laurent-Puig, P.; Resche, F.; Thomas, G. Germline mutation profile of the VHL gene in von Hippel-Lindau disease and in sporadic hemangioblastoma. Hum. Mutat. 1998, 12, 424–430. [Google Scholar] [CrossRef]
- Reznick, J.; Park, T.J.; Lewin, G.R. A Sweet Story of Metabolic Innovation in the Naked Mole-Rat. Adv. Exp. Med. Biol. 2021, 1319, 271–286. [Google Scholar] [CrossRef]
- Dehler, M.; Zessin, E.; Bärtsch, P.; Mairbäurl, H. Hypoxia causes permeability oedema in the constant-pressure perfused rat lung. Eur. Respir. J. 2006, 27, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Anton, F.; Euchner, I.; Handwerker, H.O. Psychophysical examination of pain induced by defined CO2 pulses applied to the nasal mucosa. Pain 1992, 49, 53–60. [Google Scholar] [CrossRef]
- Conlee, K.M.; Stephens, M.L.; Rowan, A.N.; King, L.A. Carbon dioxide for euthanasia: Concerns regarding pain and distress; with special reference to mice and rats. Lab. Anim. 2005, 39, 137–161. [Google Scholar] [CrossRef]
- Leibold, N.K.; van den Hove, D.L.; Viechtbauer, W.; Buchanan, G.F.; Goossens, L.; Lange, I.; Knuts, I.; Lesch, K.P.; Steinbusch, H.W.; Schruers, K.R. CO2 exposure as translational cross-species experimental model for panic. Transl. Psychiatry 2016, 6, e885. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.; Lykkeboe, G.; Weber, R.E.; Maloiy, G.M. Blood respiratory properties in the naked mole rat Heterocephalus glaber; a mammal of low body temperature. Respir. Physiol. 1976, 28, 303–314. [Google Scholar] [CrossRef]
- Zions, M.; Meehan, E.F.; Kress, M.E.; Thevalingam, D.; Jenkins, E.C.; Kaila, K.; Puskarjov, M.; McCloskey, D.P. Nest Carbon Dioxide Masks GABA-Dependent Seizure Susceptibility in the Naked Mole-Rat. Curr. Biol. 2020, 30, 2068–2077.e4. [Google Scholar] [CrossRef]
- Lee, J.; Taira, T.; Pihlaja, P.; Ransom, B.R.; Kaila, K. Effects of CO2 on excitatory transmission apparently caused by changes in intracellular pH in the rat hippocampal slice. Brain Res. 1996, 706, 210–216. [Google Scholar] [CrossRef]
- LaVinka, P.C.; Park, T.J. Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat. PLoS ONE 2012, 7, e45060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koltzenburg, M.; Stucky, C.L.; Lewin, G.R. Receptive properties of mouse sensory neurons innervating hairy skin. J. Neurophysiol. 1997, 78, 1841–1850. [Google Scholar] [CrossRef] [Green Version]
- Park, T.J.; Comer, C.M.; Carol, A.; Lu, Y.; Hong, H.-S.; Rice, F.L. Somatosensory organization and behavior in Naked Mole-Rats II: Peripheral Structures; Innervation; and Selective Lack of Neuropeptides Associated with Thermoregulation and Pain. J. Comp. Neurol. 2003, 465, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Jordt, S.E.; Bautista, D.M.; Chuang, H.H.; McKemy, D.D.; Zygmunt, P.M.; Högestätt, E.D.; Meng, I.D.; Julius, D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Crish, S.D.; Rice, F.L.; Park, T.J.; Comer, C.M. Somatosensory organization and behavior in naked mole-rats I: Vibrissa-like body hairs comprise a sensory array that mediates orientation to tactile stimuli. Brain Behav. Evol. 2003, 62, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Crish, S.D.; Dengler-Crish, C.M.; Comer, C.M. Population coding strategies and involvement of the superior colliculus in the tactile orienting behavior of naked mole-rats. Neuroscience 2006, 139, 1461–1466. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoroso, V.G.; Zhao, A.; Vargas, I.; Park, T.J. Naked Mole-Rats Demonstrate Profound Tolerance to Low Oxygen, High Carbon Dioxide, and Chemical Pain. Animals 2023, 13, 819. https://doi.org/10.3390/ani13050819
Amoroso VG, Zhao A, Vargas I, Park TJ. Naked Mole-Rats Demonstrate Profound Tolerance to Low Oxygen, High Carbon Dioxide, and Chemical Pain. Animals. 2023; 13(5):819. https://doi.org/10.3390/ani13050819
Chicago/Turabian StyleAmoroso, Vince G., Aishi Zhao, Isabel Vargas, and Thomas J. Park. 2023. "Naked Mole-Rats Demonstrate Profound Tolerance to Low Oxygen, High Carbon Dioxide, and Chemical Pain" Animals 13, no. 5: 819. https://doi.org/10.3390/ani13050819
APA StyleAmoroso, V. G., Zhao, A., Vargas, I., & Park, T. J. (2023). Naked Mole-Rats Demonstrate Profound Tolerance to Low Oxygen, High Carbon Dioxide, and Chemical Pain. Animals, 13(5), 819. https://doi.org/10.3390/ani13050819