Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Nestling Blood Samples
2.4. Cytokine Gene Expression Analysis
2.5. Plasma IGF-1 Analysis
2.6. Statistical Analysis
3. Results
3.1. Blood Cell Cytokine Gene Expression of Nestlings
3.2. Plasma IGF-1 Levels and Body Mass of Nestlings
3.3. Correlation between Blood Cell Cytokine Gene Expression and Plasma IGF-1 of Nestlings
3.4. Fledge Rate of Nestlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keller, L.F.; Van Noordwijk, A.J. A method to isolate environmental effects on nestling growth, illustrated with examples from the Great Tit (Parus major). Funct. Ecol. 1993, 7, 493–502. [Google Scholar] [CrossRef]
- Dias, P.C.; Blondel, J. Breeding time, food supply and fitness components of Blue Tits (Parus caeruleus) in Mediterranean habitats. Ibis 1996, 38, 644–649. [Google Scholar] [CrossRef]
- Naef-Daenzer, B.; Keller, L.F. The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to cater-pillar development, and its consequences for nestling growth and fledging weight. J. Anim. Ecol. 1999, 68, 708–718. [Google Scholar] [CrossRef]
- Rossmanith, E.; Höntsch, K.; Blaum, N.; Jeltsch, F. Reproductive success and nestling diet in the Lesser spotted woodpecker (Picoides minor): The early bird gets the caterpillar. J. Ornithol. 2007, 148, 323–332. [Google Scholar] [CrossRef]
- Murray, M.H.; Kidd, A.D.; Curry, S.E.; Hepinstall, J.A.; Yabsley, M.; Adams, H.C.; Ellison, T.; Welch, C.; Hernandez, S.M. From wetland specialist to hand-fed generalist: Shifts in diet and condition with provisioning for a recently urbanized wading bird. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170100. [Google Scholar] [CrossRef] [Green Version]
- Buse, A.; Dury, S.; Woodburn, R.J.W.; Perrins, C.M.; Good, J.E.G. Effects of elevated temperature on multi-species interactions: The case of Pedunculate Oak, Winter Moth and Tits. Funct. Ecol. 1999, 13, 74–82. [Google Scholar] [CrossRef]
- Visser, M.E.; van Noordwijk, A.J.; Tinbergen, J.M.; Lessells, C.M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B-Biol. Sci. 1998, 265, 1867–1870. [Google Scholar] [CrossRef] [Green Version]
- van Gils, J.A.; Lisovski, S.; Lok, T.; Meissner, W.; Ożarowska, A.; de Fouw, J.; Rakhimberdiev, E.; Soloviev, M.Y.; Piersma, T.; Klaassen, M. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 2016, 352, 819–821. [Google Scholar] [CrossRef] [Green Version]
- Both, C.; Bouwhuis, S.; Lessells, C.M.; Visser, M.E. Climate change and population declines in a long-distance migratory bird. Nature 2006, 441, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Miller-Rushing, A.J.; Høye, T.T.; Inouye, D.W.; Post, E. The effects of phenological mismatches on demography. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3177–3186. [Google Scholar] [CrossRef] [Green Version]
- Saino, N.; Ambrosini, R.; Rubolini, D.; von Hardenberg, J.; Provenzale, A.; Hüppop, K.; Hüppop, O. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B-Biol. Sci. 2011, 278, 835–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M.E.; Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B-Biol. Sci. 2005, 272, 2561–2569. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, N.F.; de Camargo, W.R.F.; Corrêa, D.C.V.; de Camargo, A.J.A.; Vieira, E.M. Adult feeding moths (Sphingidae) differ from non-adult feeding ones (Saturniidae) in activity-timing overlap and temporal niche width. Oecologia 2016, 180, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz-Garcia, A.; Williams, J.B. Developmental plasticity of cutaneous water loss and lipid composition in stratum corneum of desert and mesic nestling house sparrows. Proc. Natl. Acad. Sci. USA 2008, 105, 15611–15616. [Google Scholar] [CrossRef] [Green Version]
- Honarmand, M.; Goymann, W.; Naguib, M. Stressful Dieting: Nutritional conditions but not compensatory growth elevate corticosterone levels in Zebra finch nestlings and fledglings. PLoS ONE 2010, 5, e12930. [Google Scholar] [CrossRef]
- Killpack, T.L.; Karasov, W.H. Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. J. Exp. Biol. 2012, 215, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Gatica-Sosa, C.; Brzezk, P.; Chediack, J.G.; Cid, F.D.; Karasov, W.H.; Caviedes-Vidal, E. Differential transcriptional responses underlie dietary induction of intestinal carbohydrase activities in house sparrow nestlings. J. Anim. Physiol. Anim. Nutr. 2016, 100, 236–242. [Google Scholar] [CrossRef]
- Nelson, R.J.; Demas, G.E. Seasonal changes in immune function. Q. Rev. Biol. 1996, 71, 512–548. [Google Scholar] [CrossRef]
- Martin, L.B.; Weil, Z.M.; Nelson, R.J. Seasonal changes in vertebrate immune activity: Mediation by physiological trade-offs. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 321–339. [Google Scholar] [CrossRef] [Green Version]
- Harshman, L.G.; Zera, A.J. The cost of reproduction: The devil in the details. Trends Ecol. Evol. 2006, 22, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Knowles, S.C.L.; Nakagawa, S.; Sheldon, B.C. Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: A meta-regression approach. Funct. Ecol. 2009, 23, 405–415. [Google Scholar] [CrossRef]
- Sheldon, B.C.; Verhulst, S. Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 1996, 11, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Owens, I.; Wilson, K. Immunocompetence: A neglected life history trait or conspicuous red herring? Trends Ecol. Evol. 1999, 14, 170–172. [Google Scholar] [CrossRef]
- Saino, N.; Calza, S.; Møller, A.P. Effects of a dipteran ectoparasite on immune response and growth trade-offs in barn swallow, Hirundo rustica, nestling. Oikos 1998, 81, 217–228. [Google Scholar] [CrossRef]
- Fair, J.M.; Hansen, E.S.; Ricklefs, R.E. Growth, developmental stability and immune response in juvenile Japanese quails (Coturnix coturnixjaponica). Proc. R. Soc. B-Biol. Sci. 1999, 266, 1735–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lochmiller, R.L.; Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos 2000, 88, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Hoi-Leitner, M.; Romero-Pujante, M.; Hoi, H.; Pavlova, A. Food availability and immune capacity in serin (Serinus serinus) nestlings. Behav. Ecol. Sociobiol. 2001, 49, 333–339. [Google Scholar] [CrossRef]
- Soler, J.J.; Neve, L.D.; Pérez-Contreras, T.; Soler, M.; Sorci, G. Trade off between immunocompetence and growth in magpies: An experimental study. Proc. R. Soc. B-Biol. Sci. 2003, 270, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Eraud, C.; Jacquet, A.; Faivre, B. Survival cost of an early immune soliciting in nature. Evolution 2009, 63, 1036–1043. [Google Scholar] [CrossRef]
- Brommer, J.E. Immunocompetence and its costs during development: An experimental study in blue tit nestlings. Proc. R. Soc. B-Biol. Sci. 2004, 271, S110–S113. [Google Scholar] [CrossRef]
- Brzek, P.; Konarzewski, M. Relationship between avian growth rate and immune response depends on food availability. J. Exp. Biol. 2007, 210, 2361–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Killpack, T.L.; Carrel, E.; Karasov, W.H. Impacts of short-term food restriction on immune development in altricial House sparrow nestlings. Physiol. Biochem. Zool. 2015, 88, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, Z.M.A.; Luz, R.A.; Victal, S.H.; Kurdian, B.; Fonseca, V.M.; Fitting, C.; Câmara, E.P. Increased production of tumor necrosis factor-α in whole blood cultures from children with primary malnutrition. Braz. J. Med. Biol. Res. 2005, 38, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Venkatraman, J.T.; Pendergast, D.R. Effect of dietary intake on immune function in athletes. Sports Med. 2002, 32, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Monteleone, M.; Stow, J.L.; Schroder, K. Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine 2015, 74, 213–218. [Google Scholar] [CrossRef]
- Peng, C.; Sun, J.; Dai, L.; Shan, A. Effects of recombinant chicken Interferon-γ on growth performance immune function of broilers. China Poult. 2011, 33, 11–14. [Google Scholar]
- Lupu, F.; Terwilliger, J.D.; Lee, K.; Segre, G.V.; Efstratiadis, A. Roles of growth hormone and Insulin-like Growth Factor 1 in mouse postnatal growth. Dev. Biol. 2001, 229, 141–162. [Google Scholar] [CrossRef] [Green Version]
- Schlueter, P.J.; Sang, X.; Duan, C.; Wood, A.W. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival. Dev. Biol. 2007, 305, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Stratikopoulos, E.; Szabolcs, M.; Dragatsis, I.; Klinakis, A.; Efstratiadis, A. The hormonal action of IGF-1 in postnatal mouse growth. Proc. Natl. Acad. Sci. USA 2008, 105, 19378–19383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodjak, J.; Mägi, M.; Tilgar, V. Insulin-like growth factor 1 and growth rate in nestlings of a wild passerine bird. Funct. Ecol. 2014, 28, 159–166. [Google Scholar] [CrossRef]
- Lodjak, J.; Mägi, M.; Sild, E.; Mänd, R. Causal link between insulin-like growth factor 1 and growth in nestlings of a wild passerine bird. Funct. Ecol. 2017, 31, 184–191. [Google Scholar] [CrossRef]
- Fingar, D.C.; Blenis, J. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004, 23, 3151–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hack, N.L.; Cordova, K.L.; Glaser, F.L.; Journey, M.L.; Resner, E.J.; Hardy, K.M.; Beckman, B.R.; Lema, S.C. Interactions of long-term food ration variation and short-term fasting on insulin-like growth factor-1 (IGF-1) pathways in copper rockfish (Sebastes caurinus). Gen. Comp. Endocrinol. 2019, 280, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.D.; Janszen, A.W.; Wouterlood, F.G.; Tilders, F.J. Interleukin-1-induced long-lasting changes in hypothalamic corticotropin-releasing hormone (CRH)-neurons and hyperre-sponsiveness of the hypothalamus-pituitary-adrenal axis. J. Neurosci. 1995, 15, 7417–7426. [Google Scholar] [CrossRef] [Green Version]
- Klasing, K.C.; Korver, D.R. Leukocytic cytokines regulate growth rate and composition following activation of the immune system. J. Anim. Sci. 1997, 75, 58–67. [Google Scholar]
- Johnson, J.D.; O’Connor, K.A.; Watkins, L.R.; Maier, S.F. The role of IL-1β in stress-induced sensitization of proinflammatory cytokine and corticosterone responses. Neuroscience 2004, 127, 569–577. [Google Scholar] [CrossRef]
- Lodjak, J.; Tilgar, V.; Mägi, M. Does the interaction between glucocorticoids and insulin-like growth factor 1 predict nestling fitness in a wild passerine? Gen. Comp. Endocrinol. 2016, 225, 149–154. [Google Scholar] [CrossRef]
- Verhulst, S.; Tinbergen, J.M.; Daan, S. Multiple breeding in the Great Tit. A trade-off between successive reproductive attempts? Funct. Ecol. 2010, 11, 714–722. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, L.; Yang, W.; Xu, X.; Wang, W.; Liang, W.; Zhang, S. Do migrant and resident species differ in the timing of increases in reproductive and thyroid hormone secretion and body mass? A case study in the comparison of pre-breeding physiological rhythms in the Eurasian Skylark and Asian Short-toed Lark. Avian Res. 2017, 8, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xu, X.; Wang, W.; Yang, W.; Liang, W. Clock gene is associated with individual variation in the activation of reproductive endocrine and behavior of Asian short toed lark. Sci. Rep. 2017, 7, 15002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, L.; Liu, Y.; Osmond, H.L.; Cockburn, A.; Kruuk, L.E.B. When to start and when to stop: Effects of climate on breeding in a multi-brooded songbird. Glob. Chang. Biol. 2019, 26, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.; Presley, S.J. Niche overlap and temporal activity patterns of social wasps (Hymenoptera: Vespidae) in a Brazilian cashew orchard. Sociobiology 2010, 56, 121–131. [Google Scholar]
- Mckinnon, L.; Picotin, M.; Bolduc, E.; Juillet, C.; Bêty, J. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can. J. Zool. 2012, 90, 961–971. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, L.; Zhang, X.; Liang, W. Predicting the vulnerability of birds to trophic threat posed by phenological mismatch based on nutritional and physiological status of nestlings. Conserv. Physiol. 2019, 7, coz096. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, X.; Wang, W.; Zhao, L.; Gao, L.; Yang, W. Annual variation in the reproductive hormone and behavior rhythm in a population of the Asian short-toed lark: Can spring temperature influence activation of the HPG axis of wild birds? Horm. Behav. 2017, 95, 76–84. [Google Scholar] [CrossRef]
- Durant, S.E.; Hopkins, W.A.; Hepp, G.R.; Walters, J.R. Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biol. Rev. 2013, 88, 499–509. [Google Scholar] [CrossRef]
- Sparkman, A.M.; Vleck, C.M.; Bronikowski, A.M. Evolutionary ecology of endocrine-mediated life-history variation in the garter snake Thamnophis elegans. Ecology 2009, 90, 720–728. [Google Scholar] [CrossRef] [Green Version]
- Thapa, B.; Lee, K. Metabolic influence on macrophage polarization and pathogenesis. BMB Rep. 2019, 52, 360–372. [Google Scholar] [CrossRef]
- Semba, H.; Takeda, N.; Isagawa, T.; Sugiura, Y.; Honda, K.; Wake, M.; Miyazawa, H. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat. Commun. 2016, 7, 11635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Chen, Q.; Rong, P.; Wang, H.Y.; Chen, S. The energy sensing LKB1-AMPKα1 pathway regulates IGF1 secretion and consequent activation of the IGF1R-PKB pathway in primary hepatocytes. FEBS J. 2017, 284, 2096–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasselquist, D.; Nilsson, J.A. Physiological mechanisms mediating costs of immune responses: What can we learn from studies of birds? Anim. Behav. 2012, 83, 1303–1312. [Google Scholar] [CrossRef]
- Iseri, V.J.; Klasing, K.C. Dynamics of the systemic components of the chicken (Gallus gallus domesticus) immune system following activation by Escherichia coli: Implications for the costs of immunity. Dev. Comp. Immunol. 2013, 40, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Saino, N.; Calza, S.; Møller, A.P. Immunocompetence of nestling Barn swallows in relation to brood size and parental effort. J. Anim. Ecol. 1997, 66, 827–836. [Google Scholar] [CrossRef]
- Straile, D.; Kerimoglu, O.; Peeters, F. Trophic mismatch requires seasonal heterogeneity of warming. Ecology 2015, 96, 2794–2805. [Google Scholar] [CrossRef] [Green Version]
- Shipley, J.R.; Twining, C.W.; Taff, C.C.; Vitousek, M.N.; Flack, A.; Winkler, D.W. Birds advancing lay dates with warming springs face greater risk of chick mortality. Proc. Natl. Acad. Sci. USA 2020, 117, 25590–25594. [Google Scholar] [CrossRef]
- Kitaysky, A.S.; Wingfield, J.C.; Piatt, J.F. Corticosterone facilitates begging and affects resource allocation in the black-legged kittiwake. Behav. Ecol. 2001, 12, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Brzek, P.; Konarzewski, M. Effect of food shortage on the physiology and competitive abilities of sand martin (Riparia riparia) nestlings. J. Exp. Biol. 2001, 204, 3065–3074. [Google Scholar] [CrossRef]
- Gil, D.; Bulmer, E.; Celis, P.; Lo’pez-Rull, I. Adaptive developmental plasticity in growing nestlings: Sibling competition induces differential gape growth. Proc. R. Soc. B-Biol. Sci. 2008, 275, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Lodjak, J.; Mägi, M.; Rooni, U.; Tilgar, V. Context-dependent effects of feather corticosterone on growth rate and fledging success of wild passerine nestlings in heterogeneous habitat. Oecologia 2015, 179, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Saino, N.; Incagli, M.; Martinelli, R.; Ambrosini, R.; Møller, A.P. Immunity, growth and begging behavior of nestling Barn Swallows Hirundo rustica in relation to hatching order. J. Avian Biol. 2001, 32, 263–270. [Google Scholar] [CrossRef]
- Sternalski, A.; Mougeot, F.; Bretagnolle, V. Phenotypic variation in nestlings of a bird of prey under contrasting breeding and diet conditions. Biol. J. Linn. Soc. 2012, 107, 799–812. [Google Scholar] [CrossRef] [Green Version]
- Loiseau, C.; Sorci, G.; Dano, S.; Chastel, O. Effects of experimental increase of corticosterone levels on begging behavior, immunity and parental provisioning rate in house sparrows. Gen. Comp. Endocr. 2008, 155, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Ancona, S.; Drummond, H. Life history plasticity of a tropical seabird in response to El Niño anomalies during early life. PLoS ONE 2013, 8, e72665. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Size (bp) | Accession No. |
---|---|---|---|
TNF-α | F:5-CCGCCCAGTTCAGATGAGTT-3 R:5-GCAACAACCAGCTATGCACC-3 | 130 | MF000729.1 |
IFN-γ | F:5-TGAGCCAGATTGTTTCGATG-3 R: 5-CTTGGCCAGGTCCATGATA-3 | 248 | NM_205149.1 |
IL-1β | F:5-ACTGGGCATCAAGGGCTACA-3 R:5-GCTGTCCAGGCGGTAGAAGA-3 | 142 | NM_204524.1 |
GAPDH | F:5-CACTGTCAAGGCTGAGAACG-3 R:5-GATAACACGCTTAGCACCA-3 | 187 | NM_204305.1 |
Response Variable | Explanatory Variable | F | p |
---|---|---|---|
IFN-γ | NBP | 64.015 | <0.001 |
Nest temperature | 1.004 | 0.323 | |
NBP × Nest temperature | 0.262 | 0.611 | |
TNF-α | NBP | 59.585 | <0.001 |
Nest temperature | 3.343 | 0.075 | |
NBP × Nest temperature | 0.049 | 0.826 | |
IL-1β | NBP | 53.372 | <0.001 |
Nest temperature | 3.584 | 0.066 | |
NBP × Nest temperature | 2.578 | 0.117 | |
IGF-1 | NBP | 20.675 | <0.001 |
Nest temperature | 2.342 | 0.134 | |
NBP × Nest temperature | 0.001 | 0.970 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Zhang, X.; Li, X.; Zhang, S. Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch? Animals 2023, 13, 860. https://doi.org/10.3390/ani13050860
Lu G, Zhang X, Li X, Zhang S. Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch? Animals. 2023; 13(5):860. https://doi.org/10.3390/ani13050860
Chicago/Turabian StyleLu, Guang, Xinjie Zhang, Xinyu Li, and Shuping Zhang. 2023. "Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch?" Animals 13, no. 5: 860. https://doi.org/10.3390/ani13050860
APA StyleLu, G., Zhang, X., Li, X., & Zhang, S. (2023). Immunity and Growth Plasticity of Asian Short-Toed Lark Nestlings in Response to Changes in Food Conditions: Can It Buffer the Challenge of Climate Change-Induced Trophic Mismatch? Animals, 13(5), 860. https://doi.org/10.3390/ani13050860