Automated Wound Image Segmentation: Transfer Learning from Human to Pet via Active Semi-Supervised Learning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Method
2.1. Patient Selection
2.2. Data Acquisition
2.3. Training Strategy
2.4. Training Metrics
3. Results
3.1. Transfer Learning on EfficientNet-b3
3.2. Transfer Learning on MobileNet-v2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gottrup, F. A specialized wound-healing center concept: Importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. Am. J. Surg. 2004, 187, S38–S43. [Google Scholar] [CrossRef] [PubMed]
- Anisuzzaman, D.M.; Wang, C.; Rostami, B.; Gopalakrishnan, S.; Niezgoda, J.; Yu, Z. Image-Based Artificial Intelligence in Wound Assessment: A Systematic Review. Adv. Wound Care 2022, 11, 687–709. [Google Scholar] [CrossRef]
- Yanase, J.; Triantaphyllou, E. A systematic survey of computer-aided diagnosis in medicine: Past and present developments. Expert Syst. Appl. 2019, 138, 112821. [Google Scholar] [CrossRef]
- Lucas, Y.; Niri, R.; Treuillet, S.; Douzi, H.; Castaneda, B. Wound Size Imaging: Ready for Smart Assessment and Monitoring. Adv. Wound Care 2021, 10, 641–661. [Google Scholar] [CrossRef] [PubMed]
- Barrett, P.M.; Topol, E.J. Smartphone Medicine. IT Prof. 2016, 18, 52–54. [Google Scholar] [CrossRef]
- Hernández-Neuta, I.; Neumann, F.; Brightmeyer, J.; Tis, T.B.; Madaboosi, N.; Wei, Q.; Ozcan, A.; Nilsson, M. Smartphone-based clinical diagnostics: Towards democratization of evidence-based health care. J. Intern. Med. 2019, 285, 19–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basran, P.S.; Appleby, R.B. The unmet potential of artificial intelligence in veterinary medicine. Ajvr 2022, 83, 385–392. [Google Scholar] [CrossRef]
- Leary, D.; Basran, P.S. The role of artificial intelligence in veterinary radiation oncology. Vet Radiol. Ultrasound 2022, 63, 903–912. [Google Scholar] [CrossRef]
- Hennessey, E.; DiFazio, M.; Hennessey, R.; Cassel, N. Artificial intelligence in veterinary diagnostic imaging: A literature review. Vet Radiol. Ultrasound 2022, 63, 851–870. [Google Scholar] [CrossRef]
- Carrión, H.; Jafari, M.; Bagood, M.D.; Yang, H.Y.; Isseroff, R.R.; Gomez, M. Automatic wound detection and size estimation using deep learning algorithms. PLoS Comput. Biol. 2022, 18, e1009852. [Google Scholar] [CrossRef]
- Tajbakhsh, N.; Jeyaseelan, L.; Li, Q.; Chiang, J.N.; Wu, Z.; Ding, X. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Med. Image Anal. 2020, 63, 101693. [Google Scholar] [CrossRef] [Green Version]
- Gethin, G. The importance of continuous wound measuring. Wounds UK 2006, 2, 60–68. [Google Scholar]
- Chowdhary, C.L.; Acharjya, D.P. Segmentation and Feature Extraction in Medical Imaging: A Systematic Review. Procedia Comput. Sci. 2020, 167, 26–36. [Google Scholar] [CrossRef]
- Sklansky, J. Image Segmentation and Feature Extraction. IEEE Trans Syst. Man. Cybern. 1978, 8, 237–247. [Google Scholar] [CrossRef]
- Wang, C.; Yan, X.; Smith, M.; Kochhar, K.; Rubin, M.; Warren, S.M.; Wrobel, J.; Lee, H. A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 5 November 2015; pp. 2415–2418. [Google Scholar] [CrossRef]
- Scebba, G.; Zhang, J.; Catanzaro, S.; Mihai, C.; Distler, O.; Berli, M.; Karlen, W. Detect-and-segment: A deep learning approach to automate wound image segmentation. Inform. Med. Unlocked 2022, 29, 100884. [Google Scholar] [CrossRef]
- Wang, C.; Anisuzzaman, D.M.; Williamson, V.; Dhar, M.K.; Rostami, B.; Niezigoda, Z.; Sandeep, G.; Yu, Z. Fully automatic wound segmentation with deep convolutional neural networks. Sci. Rep. 2020, 10, 21897. [Google Scholar] [CrossRef] [PubMed]
- Haghpanah, S.; Bogie, K.; Wang, X.; Banks, P.G.; Ho, C.H. Reliability of Electronic Versus Manual Wound Measurement Techniques. Arch. Phys. Med. Rehabil. 2006, 87, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, A.; Jain, V.; Mondal, A.; Biswas, P.K. Retinal Vessel Segmentation Under Extreme Low Annotation: A Gan Based Semi-Supervised Approach. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Virtual, 25–28 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 418–422. [Google Scholar] [CrossRef]
- Zheng, H.; Yang, L.; Chen, J.; Han, J.; Zhang, Y.; Liang, P.; Zhao, Z.; Wang, C.; Chen, D.Z. Biomedical Image Segmentation via Representative Annotation. AAAI 2019, 33, 5901–5908. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Cao, R.; Kang, J.; Guo, K.; Xu, Y. An Efficient High-Quality Medical Lesion Image Data Labeling Method Based on Active Learning. IEEE Access 2020, 8, 144331–144342. [Google Scholar] [CrossRef]
- Mahapatra, D.; Schüffler, P.J.; Tielbeek, J.A.W.; Vos, F.M.; Buhmann, J.M. Semi-Supervised and Active Learning for Automatic Segmentation of Crohn’s Disease. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013; Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 214–221. [Google Scholar]
- Curti, N.; Merli, Y.; Zengarini, C.; Giampieri, E.; Merlotti, A.; Dall’Olio, D.; Marcelli, E.; Bianchi, T.; Castellani, G. Effectiveness of Semi-Supervised Active Learning in Automated Wound Image Segmentation. Int. J. Mol. Sci. 2023, 24, 706. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arxiv 2015, arXiv:1505.04597. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arxiv 2019, arXiv:1905.11946. [Google Scholar] [CrossRef]
- Yang, L.; Hanneke, S.; Carbonell, J. A theory of transfer learning with applications to active learning. Mach. Learn. 2013, 90, 161–189. [Google Scholar] [CrossRef]
- Kim, H.E.; Cosa-Linan, A.; Santhanam, N.; Jannesari, M.; Maros, M.E.; Ganslandt, T. Transfer learning for medical image classification: A literature review. BMC Med. Imaging 2022, 22, 69. [Google Scholar] [CrossRef]
- Kora, P.; Ooi, C.P.; Faust, O.; Raghavendra, U.; Gudigar, A.; Chan, W.Y.; Meenakshi, K.; Swaraja, K.; Plawiak, P.; Acharya, U.R. Transfer learning techniques for medical image analysis: A review. Biocybern. Biomed. Eng. 2022, 42, 79–107. [Google Scholar] [CrossRef]
- Curti, N. Active_Learning_Validator. Utility HTML+JS Script for the Validation of Images in Active Semi-Supervised Learning Projects. Available online: https://github.com/Nico-Curti/active_learning_validator (accessed on 6 March 2023).
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arxiv 2019, arXiv:1801.04381. Available online: http://arxiv.org/abs/1801.04381 (accessed on 11 January 2023).
Dog | Cat | Tot. | |
---|---|---|---|
N° initial images | 301 | 105 | 406 |
N° included images | 208 | 82 | 290 |
N° included wounds | 130 | 47 | 177 |
Redmi Note 9 PRO | Redmi Note 5 | ASUS Z017D | Olympus Imaging CORP u770sW | |
---|---|---|---|---|
F-stop | f/1.9 | f/1.9 | f/2 | f/3.5 |
Exposition | 1/33 s | 1/25 s | 1/100 s | 1/15 s |
Iso sensibility | ISO-330 | ISO-200 | ISO 71 | ISO-71 |
Focal distance | 5 mm | 4 mm | 4 mm | 4 mm |
Focal length | 25 mm | 24 mm | NA | NA |
Round 1 | Round 2 | Round 3 | Round 4 | Round 5 | |
---|---|---|---|---|---|
N° training images | 127 (88%) | 155 (86.5%) | 170 (87.5%) | 197 (88.2%) | 203 (88.5%) |
N° validation images | 16 (12%) | 24 (13.5%) | 24 (12.5%) | 24 (10.8%) | 24 (10.5%) |
N° correct segmentation | 179 (62%) | 194 (67%) | 221 (76%) | 227 (78%) | 232 (80%) |
F1 score | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 |
IoU score | 0.95 | 0.96 | 0.96 | 0.96 | 0.96 |
Round 1 | Round 2 | Round 3 | Round 4 | |
---|---|---|---|---|
N° training images | 97 (86%) | 119 (88%) | 122 (88.5%) | 127 (88.5%) |
N° validation images | 16 (14%) | 16 (12%) | 16 (11.5%) | 16 (11.5%) |
N° correct segmentation | 135 (47%) | 138 (48%) | 143 (49%) | 145 (50%) |
F1 score | 0.97 | 0.92 | 0.93 | 0.94 |
IoU score | 0.94 | 0.85 | 0.87 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buschi, D.; Curti, N.; Cola, V.; Carlini, G.; Sala, C.; Dall’Olio, D.; Castellani, G.; Pizzi, E.; Del Magno, S.; Foglia, A.; et al. Automated Wound Image Segmentation: Transfer Learning from Human to Pet via Active Semi-Supervised Learning. Animals 2023, 13, 956. https://doi.org/10.3390/ani13060956
Buschi D, Curti N, Cola V, Carlini G, Sala C, Dall’Olio D, Castellani G, Pizzi E, Del Magno S, Foglia A, et al. Automated Wound Image Segmentation: Transfer Learning from Human to Pet via Active Semi-Supervised Learning. Animals. 2023; 13(6):956. https://doi.org/10.3390/ani13060956
Chicago/Turabian StyleBuschi, Daniele, Nico Curti, Veronica Cola, Gianluca Carlini, Claudia Sala, Daniele Dall’Olio, Gastone Castellani, Elisa Pizzi, Sara Del Magno, Armando Foglia, and et al. 2023. "Automated Wound Image Segmentation: Transfer Learning from Human to Pet via Active Semi-Supervised Learning" Animals 13, no. 6: 956. https://doi.org/10.3390/ani13060956
APA StyleBuschi, D., Curti, N., Cola, V., Carlini, G., Sala, C., Dall’Olio, D., Castellani, G., Pizzi, E., Del Magno, S., Foglia, A., Giunti, M., Pisoni, L., & Giampieri, E. (2023). Automated Wound Image Segmentation: Transfer Learning from Human to Pet via Active Semi-Supervised Learning. Animals, 13(6), 956. https://doi.org/10.3390/ani13060956