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Simple Summary: Appropriate wound management shortens healing times and reduces manage-
ment costs, benefiting the patient in physical terms and potentially reducing the healthcare system
economic burden. Artificial intelligence techniques could be used to automate the process of wound
healing assessment, easing the effort required by clinicians and removing the inherent subjectivity
of the evaluation. However, the training of artificial intelligence models relies on the availability of
large datasets of carefully annotated data. The annotation of medical data is a time consuming and
expensive process which requires the supervision of high-expertise professionals. In this work, we
introduced a novel pipeline for the segmentation of pet wound images, using an advanced training
strategy able to minimize human intervention for both the image annotation and wound segmenta-
tion. We implemented our solution in a novel mobile app, providing a valuable tool for pet wound
treatment and a methodological approach for the generation of large image-segmentation datasets.

Abstract: Wound management is a fundamental task in standard clinical practice. Automated
solutions already exist for humans, but there is a lack of applications regarding wound management
for pets. Precise and efficient wound assessment is helpful to improve diagnosis and to increase the
effectiveness of treatment plans for chronic wounds. In this work, we introduced a novel pipeline
for the segmentation of pet wound images. Starting from a model pre-trained on human-based
wound images, we applied a combination of transfer learning (TL) and active semi-supervised
learning (ASSL) to automatically label a large dataset. Additionally, we provided a guideline for
future applications of TL+ASSL training strategy on image datasets. We compared the effectiveness
of the proposed training strategy, monitoring the performance of an EfficientNet-b3 U-Net model
against the lighter solution provided by a MobileNet-v2 U-Net model. We obtained 80% of correctly
segmented images after five rounds of ASSL training. The EfficientNet-b3 U-Net model significantly
outperformed the MobileNet-v2 one. We proved that the number of available samples is a key factor
for the correct usage of ASSL training. The proposed approach is a viable solution to reduce the time
required for the generation of a segmentation dataset.

Keywords: deep learning; image segmentation; wound healing; transfer learning; active learning;
dog; cat; open wound management

1. Introduction

Wound healing in both human and animal treatments is a complex and multidisci-
plinary problem [1]. The importance of precise and efficient wound assessment is helpful
to improve diagnosis in acute wounds and to increase the effectiveness of treatment plans
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for chronic wounds [2]. The increasing usage of digital procedures in medicine is en-
couraging clinicians to explore new solutions to improve clinical practice and patient
treatments [3,4]. Smartphone cameras provide valid and ready-to-use solutions for the
acquisition of high-quality imaging data [5,6], also offering enough computational power
for their real time analysis.

In veterinary medicine, as well as in humans, automated technology for wound
management could help to quickly assess the severity of an open wound that may require
prompt intervention in acute injuries [7–9]; likewise, it may objectify the state of the wound
at the time of clinical presentation. Automated solutions for wound management may help
in the monitoring of the subsequent wound healing process.

There are only a few AI-based solutions focusing on animal wound management,
yet the global animal wound care market size was valued at USD 960.3 mln in 2020
(ref. https://www.grandviewresearch.com/industry-analysis/animal-wound-care-market,
accessed on 6 March 2023). Current wound modelling studies mainly focus on laboratory
mice, measuring the wound size as a key parameter [10]. Despite the growing literature
on performing automated wound management applied to human patients, there is still a
general lack of interest in the adaptation of the same techniques on the animal counterpart.
Those automated solutions usually leverage the power of artificial neural networks. How-
ever, the deployment of these models relies on the availability of a large amount of data
and manually annotated samples [11].

Features such as the size and shape of the wound areas represent fundamental quanti-
ties for the monitoring of the wound healing status and the consequent prognosis of the
patient [12]. The introduction of automated solutions to address the feature extraction
task could speed up the standard clinical practice and provide a standardized method of
wound severity stratification. The extraction of quantitative features able to characterize
the lesion in exam starts from a precise identification of the wound region of interest, i.e.,
the wound segmentation [13,14]. Automated wound segmentation on humans has been
addressed via the development of ad hoc Convolutional Neural Network (CNN) [15–17]
models. Equivalent solutions for pet images are still missing in the literature, probably due
to poor data for the training of deep learning models.

The training of an artificial neural network usually needs supervision, but it is gener-
ally difficult to obtain great quantities of manually annotated data in clinical settings. In
particular, the manual segmentation of images could, indeed, be extremely time consuming
for large datasets. However, when available, manual segmentation by human experts could
further suffer from imperfections, mainly caused by inter-observer variability, due to a
subjective wound boundaries estimation [18].

Several approaches are able to overcome the problem of large data annotations and con-
sequent image segmentation [19,20]. In the work of Zhou et al. [21], the authors proposed
the division of each image into a series of disjointed patches, providing to the clinicians
only small portions of the whole image in which to focus their manual annotation. Another
interesting attempt by Mahapatra et al. [22] introduced the usage of Semi-Supervised
Learning (SSL) in combination with Active Learning (AL) on Crohn’s disease; starting
from only a few labelled samples, the predictions of the automated model were iteratively
refined by experts in different rounds of training. Following the same training strategy, we
discussed in our previous work [23] an application to human wound image segmentation
using a deep learning model, obtaining state-of-the-art comparable results.

In this work, we extended our previously proposed pipeline to pet images via a transfer
learning procedure. We aim to minimize the labeling effort of the clinicians, requiring
no starting manual annotation at all. To perform a robust image segmentation without a
labelled ground truth, we started from the model that Curti et al. [23] trained on a human
wound image dataset.

https://www.grandviewresearch.com/industry-analysis/animal-wound-care-market
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2. Materials and Method
2.1. Patient Selection

A set of wound photos of dogs and cats was acquired with 4 different digital cameras
at the University Veterinary Hospital of the Department of Veterinary Medical Sciences,
University of Bologna, during daily clinical practice. The acquisition procedure was
performed from April 2014 to June 2022, with a total of 290 selected images (PetWound
dataset). The photos included spontaneous wounds of domestic dogs and cats that were
brought to the institution for the treatment of the wound, and eventually other concomitant
lesions. To be enrolled in the study, images must contain a cutaneous region with an open
wound caused by cuts, abrasions, laceration, sores, burns, degloving injuries, avulsion
wounds, or dehiscence from previous surgery. The statistics of species involved in the
study are reported in Table 1.

Table 1. Description of the images involved in the study. The number of images is split according to
the pet species of the patients. The three rows of the table show the number of initial images collected;
the number of images after exclusion of inadequate ones; the different wounds considered starting
from the included images, since the same wound could have been acquired at different time points in
dogs and cats.

Dog Cat Tot.

N◦ initial images 301 105 406
N◦ included images 208 82 290
N◦ included wounds 130 47 177

Exclusion criteria were set from both a technical and a clinical point of view: some
images were rejected because of poor quality, i.e., no sharp definition, inadequate light
exposition, etc.; sometimes the kind of injuries represented could not be categorized as
proper open wounds (open wound during surgery sutured wounds, and wounds with other
surgical implants); some images with bloodstains or red-colored objects in the background
were also excluded.

2.2. Data Acquisition

The images were acquired during clinical practice by several operators without a
standardized procedure. The only guideline was to keep the wound at the center of the
image. The aim was to obtain an heterogenous dataset, with different light conditions
(illumination and exposition) and variable backgrounds.

All the images were stored in RGB 8-bit JPEG format, with different dimensions
according to the device used. The details of the camera devices used for the acquisition are
shown in Table 2.

Table 2. Main specifics of the camera devices used for the acquisition of the photos. The PetWound
database is composed of images acquired with 4 different camera devices. In detail, there are 3
different smartphone digital cameras and 1 Olympus digital camera.

Redmi Note 9 PRO Redmi Note 5 ASUS Z017D Olympus Imaging
CORP u770sW

F-stop f/1.9 f/1.9 f/2 f/3.5
Exposition 1/33 s 1/25 s 1/100 s 1/15 s

Iso sensibility ISO-330 ISO-200 ISO 71 ISO-71
Focal distance 5 mm 4 mm 4 mm 4 mm
Focal length 25 mm 24 mm NA NA

2.3. Training Strategy

In this work, we developed an ad hoc Active Semi-Supervised Learning (ASSL)
strategy, reproducing the procedure already discussed in our previous work [23]. The ASSL
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procedure was reiterated for several rounds of training, requiring the clinicians to simply
accept or discard the output of the model after each round. We used the model trained on
the human wound Deepskin dataset without any refinement to produce the initial labels for
the pet wound images. This procedure substitutes the manual annotation for the initial
round of the ASSL pipeline.

We used a deep CNN U-Net [24] with an EfficientNet-b3 [25] backbone as a model
for automated segmentation. At each round of ASSL, the model weights were restored
to the original configuration obtained by training on the Deepskin dataset, i.e., a human-
based wound dataset. The use of a pre-trained configuration of the model weights during
ASSL rounds facilitates the learning process, providing a solid starting point for a Transfer
Learning (TL) procedure. The TL strategy allows a faster convergence of the model training,
as already proved by several authors in image analyses [26–28].

The initial set of predicted segmentations was validated by two expert clinicians. For
each validation image, the clinicians determined whether the generated segmentation was
accurate according to the following binary criteria: (i) the mask must cover the entire
wound area; (ii) the mask must cover only the wound area, i.e., the mask must not have
holes or spurious parts; (iii) the mask shape must follow the correct wound boundaries.
The validated images (and corresponding segmentation masks) which satisfied all the
criteria were inserted into the training set as the starting point of the current ASSL training
strategy. Ad hoc software was developed to minimize the time required for the validation
procedure [29]. The validation was performed, reviewing the segmentations overlayed on
the original image displayed on a high-resolution screen and without limits of time for
the evaluation.

An analogous pipeline of ASSL in combination with TL was used for the training of a
MobileNet-v2 U-Net [30] architecture. The MobileNet-v2 U-Net is a standard candidate
for mobile implementations, and it guarantees a faster evaluation of the images with a
small number of parameters to tune. The MobileNet-v2 U-Net model was pre-trained on
the Deepskin dataset (obtaining segmentation performances compatible with the results
achieved in our previous work [23]) and used in the ASSL training strategy as described for
the EfficientNet-b3 one. The use of a smaller model as a benchmark allows a quantitative
measurement of the required model complexity for the wound segmentation task in relation
to the number of the available samples: small datasets are commonly analyzed with simpler
deep learning models, but there are no clear guidelines about this criterion in combination
with ASSL training strategy.

The implementation of the ASSL training strategy aims to progressively increase the
number of correctly annotated samples. Starting from a small fraction of the original set of
data labelled with the application of TL, we aimed to reach at least 80% of correct segmen-
tations. At each round of ASSL, we randomly split the labelled data into two disjointed sets
of images, using 90% of the images for the training and 10% for the performance evaluation.

2.4. Training Metrics

The efficiency of the ASSL training was evaluated according to the number of correctly
segmented images after clinical evaluation. Additionally, in order to prevent possible
overfitting of the model during the training stage, we monitored the efficiency of the model
using standard metrics. The number of correct segmentations was evaluated on the totality
of the PetWound dataset, while the efficiency metrics were quantified on 10% of images
used for the performance evaluation.

In particular, the F1 and IoU metrics used for the performance evaluation are defined as:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)
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F1 = 2 × precision × recall
precision + recall

(3)

IoU =
TP

TP + FN + FP
(4)

where TP, FP, and FN are the True Positive, False Positives, and False Negative scores,
respectively. We trained both the models for 100 epochs at each round of ASSL, with Adam
optimizer (learning rate of 10−5). The models were trained minimizing the Binary Focal
Loss (BF) as loss function:

BFloss

(
ytrue, ypred

)
= −ypredα

(
1 − ypred

)γ
log

(
ypred

)
−(1 − ytrue)αyγ

pred log
(

1 − ypred

) (5)

where ytrue and ypred are the ground truth binary mask and the predicted one, respectively.
In our simulations, we used a value of α = 0.25, β = 1, and γ = 2. The data augmentation
was restricted only to horizontal and vertical flips. All the simulations were performed
using a 64-bit workstation machine (8 GB RAM memory and 1 CPU Intel® i5-8250U CPU,
with 4 cores, and a UHD Graphics 620 Intel®). A schematic representation of the proposed
pipeline is shown in Figure 1.
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conditions, i.e., the parameters obtained by the training on the Deepskin dataset. 
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3.1. Transfer Learning on EfficientNet-b3 

The application of the pre-trained EfficientNet-b3 U-Net model on the PetWound da-
taset produced a total of 143 (49% of the whole dataset) correctly annotated images. This 
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the ASSL training strategy. 
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Figure 1. Representation of the pipeline implemented for the training of the EfficientNet-b3 model.
(a) The images acquired during clinical practice are used as data for the ASSL procedure. (b) At the
first round, the initial set of labelled images was obtained by the application of the model pre-trained
on the Deepskin dataset, without any refinement of the model parameters. (c) The obtained set of
labelled images was used as the kick-start for the ASSL training strategy, performing a TL from the
human-based wounds to the pet ones. At each round of training, the model was reset to the initial
conditions, i.e., the parameters obtained by the training on the Deepskin dataset.

3. Results
3.1. Transfer Learning on EfficientNet-b3

The application of the pre-trained EfficientNet-b3 U-Net model on the PetWound
dataset produced a total of 143 (49% of the whole dataset) correctly annotated images. This
core set of images (identified as Round 0 of ASSL procedure) was used as a kick-start for
the ASSL training strategy.

The ASSL procedure reached 80% of correctly annotated wound images after five
rounds of training. The results obtained by the model along each ASSL round are reported
in Table 3, expressed in terms of segmentation metric scores and number of images used for
the training/testing of the model. For each round, we also reported the number of correctly
annotated images according to the defined criterion.
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Table 3. Results obtained by the EfficientNet-b3 model in the ASSL training strategy on the PetWound
dataset. For each round, we reported the number of images used for the training and validation
of the model, the number of correctly annotated images, and the segmentation metric scores. We
considered as Round 0 the one performed with the model trained only on the Deepskin dataset.

Round 1 Round 2 Round 3 Round 4 Round 5

N◦ training images 127 (88%) 155 (86.5%) 170 (87.5%) 197 (88.2%) 203 (88.5%)
N◦ validation images 16 (12%) 24 (13.5%) 24 (12.5%) 24 (10.8%) 24 (10.5%)

N◦ correct
segmentation 179 (62%) 194 (67%) 221 (76%) 227 (78%) 232 (80%)

F1 score 0.98 0.98 0.98 0.98 0.98
IoU score 0.95 0.96 0.96 0.96 0.96

At the final round of ASSL training, the model achieved an F1 score of 0.98 and a
corresponding IoU score of 0.96. Examples of the results obtained with PetWound images
are shown in Figure 2.
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Figure 2. Example of segmentations obtained by the EfficientNet-b3 model at the end of the 5th
round of ASSL training. In green, we marked the contours of the segmentation masks produced by
the model, highlighting with the alpha level the region of interest identified. The aspect ratio of the
images was manually adjusted to be coherent among them.

3.2. Transfer Learning on MobileNet-v2

The application of the pre-trained MobileNet-v2 U-Net model on the raw PetWound
dataset led to the correct annotation of 113 images (39% of the whole dataset). This core set
of images was used to kick-start the ASSL training strategy for a total of four rounds of
training. The results obtained by the application of the MobileNet-v2 U-Net model in the
ASSL pipeline are reported in Table 4.

Table 4. Results obtained by the MobileNet-v2 U-Net model in the ASSL training strategy on the
PetWound dataset. For each round, we reported the number of images used for the training and
validation of the model, the number of correctly annotated images, and the segmentation metric scores.
We considered as Round 0 the one performed with the model trained only on the Deepskin dataset.

Round 1 Round 2 Round 3 Round 4

N◦ training images 97 (86%) 119 (88%) 122 (88.5%) 127 (88.5%)
N◦ validation images 16 (14%) 16 (12%) 16 (11.5%) 16 (11.5%)

N◦ correct segmentation 135 (47%) 138 (48%) 143 (49%) 145 (50%)
F1 score 0.97 0.92 0.93 0.94

IoU score 0.94 0.85 0.87 0.89

We stopped the ASSL training strategy after four rounds of training because the model
performances reached a plateau. The MobileNet-v2 U-Net model did not achieve results
compatible with the EfficientNet-b3 one, showing a significant gap in terms of corrected
segmentation images. Despite the introduction of the TL, the lighter model was not able to
generalize on the heterogeneous PetWound dataset. These results confirmed the need for a
deeper or more complex model for the use of the ASSL training strategy.
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4. Discussion

In this work, we proposed the application of an ASSL training strategy in combina-
tion with TL for the automated segmentation of pet wound images. We confirmed the
effectiveness of ASSL in labelling large amounts of data with minimal human effort. The
introduction of TL in the training pipeline allowed us to start the ASSL without an initial
manually annotated dataset, further reducing the workload required by the clinicians. In
the proposed procedure, the evaluation of the experts consists only of an accept/discard
method, minimizing the time and the effort required for the generation of high-quality
segmentation masks.

The final model obtained with the proposed training pipeline achieved an F1 score
of 0.98 and an IoU score of 0.96, confirming the goodness of the generated segmentations.
As showed in Table 3, the model performances are consistent through the rounds of
ASSL training with a slight improvement of the two considered metrics with respect to
the values of the initial round. We must consider that the model performance could be
positively biased, because at each round we were only including images for which we
knew the model performed well in the previous round. However, the positive trend of the
correctly segmented images along the ASSL rounds shows that the model was improving
its prediction and generalization capabilities. The robustness of our training pipeline is
enforced by the fact that the EfficientNet-b3 U-Net model trained on the Deepskin dataset
also generalized well on the PetWound dataset, correctly annotating almost 50% of the
available images without any fine-tuning of the model.

The results obtained during the ASSL using the MobileNet-v2 U-Net model were not as
good as the ones obtained with the EfficientNet-b3 U-Net one. We argue that the MobileNet-
v2 backbone could be not powerful enough to perform this complex segmentation task
in the initial stages of ASSL, when the number of available samples is extremely limited.
The MobileNet-v2 U-Net was then trained on the final set of annotations produced by
the EfficientNet-b3 U-Net model, obtaining good results in terms of segmentation metrics
(IoU = 0.90, F1 = 0.95 with 72% of corrected segmentations on the whole dataset). This
result suggests that a simpler model, such as the MobileNet-v2 one, could need a greater
number of training samples to learn the meaningful characteristics of the images in complex
contests than the one of this study. This result goes against the classical belief that the
optimal number of parameters involved in a deep learning model scales with the quantity
of available data: the introduction of TL in the pipeline seems to remedy this problem,
providing a sufficiently good starting point for the correct generalization of new data.

To our knowledge, there are no available segmentation datasets of pet wound images;
thus, the PetWound images we collected, and the corresponding segmentations produced
in this work, could be used as a valid starting point for the application of deep learning
pipelines in similar studies. An ASSL strategy having the PetWound dataset as starting point
could easily produce hundreds of other pet wound annotated images with minimal effort.

The main limitations of our dataset are the restricted number of available images and
the inclusion of only two different pet species, namely dogs and cats. The expansion of the
dataset with wound images of other pet species would be beneficial for the generalizability
of the study. On the other hand, a strength of our dataset is the high heterogeneity of
the included images, presenting different resolutions, light conditions, and backgrounds,
making the dataset suitable for real clinical practice scenarios.

5. Conclusions

The aim of this work was to develop a model for the automatic segmentation of
pet-wound images, starting with no manually labelled samples and using only TL and
ASSL training strategies. The combination of the two training strategies proved their
effectiveness in generating large amounts of annotated samples with minimal human
intervention. This procedure speeds up the validation procedure by clinicians and it is
proven to be a viable solution in medical analyses. This work may represent a starting
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point for the development of automated wound management in veterinary medicine for
clinical and research activities.

We found the EfficientNet-b3 U-Net model, comparing its performances with the
lighter MobileNet-v2 U-Net one, to be an optimal deep learning model for the ASSL train-
ing strategy. We also demonstrated numerically that the complexity of wound segmentation
does not require complex deep learning models, showing comparable performances be-
tween the EfficientNet-b3 U-Net and the MobileNet-v2 U-Net architectures when trained
on a larger set of annotated images. The inclusion of TL components in the ASSL pipeline,
indeed, strengthens the generalization capabilities of the trained models.

The results obtained in this paper stand as a reliable solution to perform correct
wound image segmentation. The MobileNet-v2 U-Net performances suggest that the future
direction of this field could focus on implementations of smartphone-based technologies.
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