Physicochemical Quality and Fatty Acid Profile in the Meat of Goats Fed Forage Cactus as a Substitute for Tifton 85 Hay
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Approval from the Animal Ethics Committee
2.2. Collection of Meat Samples
2.3. Physical Quality of Meat
2.4. Color
2.5. pH
2.6. Water Holding Capacity
2.7. Cooking Losses
2.8. Shear Force
2.9. Chemical Composition
2.10. Fatty Acid Profile
2.11. Sensory Analysis
2.12. Statistical Analysis
3. Results
3.1. Physical Quality of Meat
3.2. Chemical Composition of Meat
3.3. Fatty Acid Profile
3.4. Sensory Analysis of Meat
4. Discussion
4.1. Physical Quality of Meat
4.2. Chemical Composition of Meat
4.3. Fatty Acid Profile
4.4. Sensory Analysis of Meat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IBGE. Brazilian Institute of Geography and Statistics. Herd number, by type of herd. 2021. Available online: https://sidra.ibge.gov.br/tabela/3939 (accessed on 12 November 2021).
- Archana, P.R.; Sejian, V.; Ruban, W.; Bagath, M.; Krishnan, G.; Aleena, J.; Manjunathareddy, G.B.; Beena, V.; Bhatta, R. Comparative assessment of heat stress induced changes in carcass traits, plasma leptin profile and skeletal muscle myostatin and HSP70 gene expression patterns between indigenous Osmanabadi and Salem Black goat breeds. Meat Sci. 2018, 141, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.F.S.; Passetti, L.C.G.; Gonçalves, T.R.; Passetti, R.A.C.; Santos, G.R.A. Characterisation of goat product consumers and goat farming systems in the Brazilian Northeast region. Small Rumin. Res. 2019, 179, 7–13. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Silva, D.K.A.; Cordeiro, F.S.B.; Silva, E.C.L.; Cardoso, D.B.; Magalhães, A.L.R.; Melo, A.A.S.; Pereira, K.P.; Silva, E.T.S. Intake, performance, carcass traits and meat quality of goats grazing in the Caatinga rangeland. Semina Ciênc. Agrár. 2020, 41, 1639–1652. [Google Scholar] [CrossRef]
- Galvão Junior, J.G.B.; Silva, J.B.A.; Morais, J.H.G.; Lima, R.N. Cactus in ruminant feeding: Culture and use. Acta Vet. Bras. 2014, 8, 78–85. [Google Scholar] [CrossRef]
- Gebremariam, T.; Melaku, S.; Yami, A. Effect of different levels of cactus (Opuntia ficus-indica) inclusion on feed intake, digestibility and body weight gain in tef (Eragrostis tef) straw-based feeding of sheep. Anim. Feed Sci. Technol. 2006, 131, 42–51. [Google Scholar] [CrossRef]
- Tegegne, F.; Kijora, C.; Peters, K.J. Study on the optimal level of cactus pear (Opuntia ficus-indica) supplementation to sheep and its contribution as source of water. Small Rumin. Res. 2007, 72, 157–164. [Google Scholar] [CrossRef]
- Andrade-Montemayor, H.M.; Cordova-Torres, A.V.; García-Gasca, T.; Kawas, J.R. Alternative foods for small ruminants in semiarid zones, the case of Mesquite (Prosopis laevigata spp.) and Nopal (Opuntia spp.). Small Rumin. Res. 2011, 98, 83–92. [Google Scholar] [CrossRef]
- Pinho, R.M.A.; Santos, E.M.; Oliveira, J.S.; Carvalho, G.G.P.; Silva, T.C.; Macêdo, J.F.S.; Corrêa, Y.R.; Zanine, A.M. Does the level of forage neutral detergent fiber affect the ruminal fermentation, digestibility and feeding behavior of goats fed cactus pear? J. Anim. Sci. 2018, 89, 1424–1431. [Google Scholar] [CrossRef]
- Araujo, C.M.; Batista, A.M.V.; Carvalho, F.F.R.; Silva, M.P.; Ramos, A.O.; Souza, A.P.; Medeiros, A.N. Inclusion of Opuntia stricta (Haw.) in sheep diets affects nutrition and the physicochemical characteristics of the rumen content. R. Bras. Zootec. 2020, 49, e20190271. [Google Scholar] [CrossRef]
- Cordova-Torres, A.V.; Guerra, R.R.; Araújo Filho, J.T.; Medeiros, A.N.; Costa, R.G.; Ribeiro, N.L.; Bezerra, L.R. Effect of water deprivation and increasing levels of spineless cactus (Nopalea cochenillifera) cladodes in the diet of growing lambs on intake, growth performance and ruminal and intestinal morphometric changes. Livest. Sci. 2022, 258, 104828. [Google Scholar] [CrossRef]
- Pastorelli, G.; Serra, V.; Vannuccini, C.; Attard, E. Opuntia spp. as Alternative Fodder for Sustainable Livestock Production. Animals 2022, 12, 1597. [Google Scholar] [CrossRef] [PubMed]
- INSA—Instituto Nacional do Semiárido. Available online: https://www.gov.br/insa/pt-br/semiarido-brasileiro (accessed on 5 November 2022).
- Costa, R.G.; Almeida, M.D.A.; Cruz, G.R.B.; Beltrão, E.M.F.; Ribeiro, N.L.; Madruga, M.S.; Queiroga, R.C.R.E. The fatty acid profile of fat depots from Santa Inês sheep fed spineless cactus (Opuntia ficusindica MILL.). J. Sci. Food Agric. 2017, 97, 4438–4444. [Google Scholar] [CrossRef] [PubMed]
- Abreu, K.S.F.; Véras, A.S.C.; Ferreira, M.A.; Madruga, M.S.; Maciel, M.I.S.; Félix, S.C.R.; Vascos, C.M.; Ubano, S.A. Quality of meat from sheep fed diets containing spineless cactus (Nopalea cochenillifera Salm Dyck). Meat Sci. 2019, 148, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, D.B.; Medeiros, G.R.; Guim, A.; Azevedo, P.S.; Suassuna, J.M.A.; Lima Júnior, D.M.; Maciel, M.V.; Costa, C.A.; Lopes, L.A.; Silva, J.L.; et al. Growth performance, carcass traits and meat quality of lambs fed increasing levels of spineless cactos. Anim. Feed. Sci. Technol. 2021, 272, 114789. [Google Scholar] [CrossRef]
- Lopes, E.D. Palma forrageira: Cultivo, uso atual e perspectivas de utilização no Semiárido nordestino. João Pessoa EMEPA-PB. 2012, 7, 256. [Google Scholar]
- Pophiwa, P.; Webb, E.C.; Frylinck, L. A Review of factors affecting goat meat quality and mitigating strategies. Small Rumin. Res. 2020, 183, 106035. [Google Scholar] [CrossRef]
- Pinheiro, R.S.B.; Jorge, A.M.; Souza, H.B.A. Sensorial acceptance and centesimal composition in the meat of ewes slaughtered in different physiological stages. Arq. Bras. Med. Vet. Zootec. 2012, 64, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Anaeto, M.; Adeyeye, J.; Chioma, G.; Olarinmoye, A.; Tayo, G. Goat products: Meeting the challenges of human health and nutrition. Agric. Biol. J. N. Am. 2010, 1, 1231–1236. [Google Scholar] [CrossRef]
- Tshabalala, P.A.; Strydom, P.E.; Webb, E.C.; Kock, H.L. Meat quality of designated South African indigenous goat and sheep breeds. Meat Sci. 2003, 65, 563–570. [Google Scholar] [CrossRef]
- Köppen, W. Grundriss der Klimakunde; Walter de Gruyter: Belin, Germany, 1931; p. 390. [Google Scholar]
- NRC—National Research Council. National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; p. 384. [Google Scholar] [CrossRef]
- RIISPOA—Regulation of Industrial and Sanitary Inspection of Products of Animal Origin. Technical Regulation of Stunning Methods for Humane Slaughter of Butcher Animals; RIISPOA: Brasilia, Brazil, 2000. [Google Scholar]
- Silva, D.J.; Queiroz, A.C. Food Analysis: Chemical and Biological Methods; Viçosa–MG: Ed Universidade Federal de Viçosa (UFV): Viçosa, Brazil, 2006; pp. 1–235. [Google Scholar]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract. 1973, 22, 475–476. [Google Scholar]
- AMSA—American Meat Science Association. Meat Color Measurement Guidelines. 2012, pp. 1–135. Available online: https://meatscience.org/publications-resources/printed-publications/amsa-meat-color-measurement-guidelines (accessed on 15 August 2020).
- Hamm, R. Biochemistry of meat hydration. Adv. Food Res. 1960, 10, 355–463. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Werdi Pratiwi, N.M.; Murray, P.J.; Taylor, D.G. Feral goats in Australia: A study on the quality and nutritive value of their meat. Meat Sci. 2007, 75, 168–177. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis. Association of Official Analytical Chemists. Arlington 1995, 78, 162–166. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Pinheiro, R.S.B. Características da carcaça e da carne de ovelhas Santa Inês abatidas em três estágios fisiológicos. Ph.D. Thesis, Universidade Estadual Paulista, Botucatu, Brazil, 2009. 55f. [Google Scholar]
- Moraes, M.A.C. Methods for Sensory Evaluation of Foods; Editora Unicamp: Campinas, Brazil, 1993; pp. 1–93. [Google Scholar]
- Kenward, M.G.; Roger, J.H. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef] [Green Version]
- The SAS System for Windows. Release 9.4; SAS Institute: Cary, NC, USA, 2013.
- Poso, A.R.; Poulanne, E. Carbohydrate metabolism in meat animals. Meat Sci. 2005, 70, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Sañudo, C.A. Calidad de la canal y de la carne ovina y caprina y los gustos de los consumidores. Rev. Bras. Zootec. 2008, 37, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Otmani, S.E.; Chebli, Y.; Hornick, J.; Cabaraux, J.; Chentouf, M. Growth performance, carcass characteristics and meat quality of male goat kids supplemented by alternative feed resources: Olive cake and cactus cladodes. Anim. Feed. Sci. Technol. 2021, 272, 114746. [Google Scholar] [CrossRef]
- Li, S.; Xiang, C.; Ge, Y.; Liu, H.; Zhang, D.; Wang, Z. Differences in eating quality and electronic sense of meat samples as a function of goat breed and postmortem rigor state. Food Res. Int. 2022, 152, 110923. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, D.L.; Fogarty, N.M. Diverse lamb genotypes. 2. Meat pH, colour and tenderness. Meat Sci. 1998, 49, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Albertí, P.; Ripoll, G.; Albertí, C.; Panea, B. Etude de la couleur des différents types de viande bovine vendus en Espagne. Viandes Prod. Carnés 2017, 3, 1–9. [Google Scholar]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Dhanda, J.S.; Taylor, D.G.; Murray, P.J.; Mccosker, J.E. The influence of goat genotype on the production of capretto and chevon. 2. meat quality. Meat Sci. 1999, 52, 363–367. [Google Scholar] [CrossRef]
- Oliveira, F.A.; Carvalho, G.G.P.; Assis, D.Y.C.; Oliveira, R.J.F.; Nascimento, C.O.; Tosto, M.S.L.; Pina, D.S.; Santos, A.V.; Rufino, L.M.A.; Azevedo, J.A.G.; et al. Quantitative and qualitative traits of carcass and meat of goats fed diets with cactus meal replacing corn. Trop. Anim. Health. Prod. 2019, 51, 589–598. [Google Scholar] [CrossRef]
- Borges, A.S.; Zapata, J.F.F.; Garruti, D.S.; Rodrigues, M.C.P.; Freitas, E.R.; Pereira, A.L.F. Instrumental and sensory measurements of hardness and succulence in goat meat. Ciênc. Tecnol. Aliment. 2006, 26, 891–896. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.R.; Santra, A.; Karim, S.A. Carcass yield, composition and meat quality attributes of sheep and goat under semiarid conditions. Meat Sci. 2004, 66, 757–763. [Google Scholar] [CrossRef]
- Bickerstaffe, R.; Rouissi, H.; Chang, M.W. Consistency of tenderness in new zealand retail meat. In International Congress of Meat Science And Technology; Anais: Auckland, Nova Zealandia, 1997; Volume 43, pp. 196–197. [Google Scholar]
- Monte, A.L.S.; Selaive-Villarroel, A.B.; Garruti, D.S.; Zapata, J.F.F.; Borges, Â.S. Physical and sensory quality parameters of the meat of crossbred goat kids of different genetic groups. Ciênc. Tecnol. Aliment. 2007, 27, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Calderón, F.; Chauveau-Duriot, B.; Pradel, P.; Martin, B.; Graulet, B.; Doreau, M.; Noziere, P. Variations in carotenoids, vitamins A and E, and color in cow’s plasma and milk following a shift from hay diet to diets containing increasing levels of carotenoids and vitamin E. J. Dairy Sci. 2007, 90, 5651–5664. [Google Scholar] [CrossRef] [PubMed]
- Gregory, R.A.; Felker, P. Crude protein and phosphorus contents of eight constrasting Opuntia forage clones. J. Arid Environ. 1992, 22, 323–331. [Google Scholar] [CrossRef]
- Jaramillo-Flores, M.E.; Gonzalez-Cruz, L.; Cornejo-Mazon, M.; Dorantes-Alvarez, L.; Gutierrez-Lopez, G.F.; Hernandez-Sanchez, H. Effect of thermal treatment on the antioxidant activity and content of carotenoids and phenolic compounds of cactus pear cladodes (Opuntia ficus-indica). Food Sci. Technol. Int. 2003, 9, 271–278. [Google Scholar] [CrossRef]
- Jacob, R.H.; Pethick, D.W. Animal factors affecting the meat quality of Australian lamb meat. Meat Sci. 2014, 96, 1120–1123. [Google Scholar] [CrossRef] [PubMed]
- Madruga, M.S. Technical article—Goat meat: Truths and myths in the light of science R. Nacional Carne. 1999, 264, 34–40. [Google Scholar]
- Souza, A.F.N.; Araújo, G.G.L.; Santos, E.M.; Azevedo, P.S.; Oliveira, J.S.; Perazzo, A.F.; Pinho, R.M.A.; Zanine, A.M. Carcass traits and meat quality of lambs fed with cactus (Opuntia fícus-indica Mill) silage and subjected to an intermittent water supply. PLoS ONE. 2020, 15, e0231191. [Google Scholar] [CrossRef]
- Mahouachi, M.; Atti, N.; Hajji, H. Use of spineless cactus (Opuntia ficus indica f. inermis) for dairy goats and growing kids: Impacts on milk production kid’s grow, and meat quality. Sci. World J. 2012, 1–5, 321567. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.G.; Pinto, T.F.; Medeiros, G.R.; Medeiros, A.N.; Queiroga, R.C.R.E.; Treviño, I.H. Meat quality of Santa Inês sheep raised in confinement with diet containing cactus pear replacing corn. Rev. Bras. Zootec. 2012, 4, 432–437. [Google Scholar] [CrossRef] [Green Version]
- Aranceta, I.; Pérez-Rodrigo, C. Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. Br. J. Nutr. 2012, 107, 8–22. [Google Scholar] [CrossRef]
- Scollan, N.D.; Choi, N.J.; Kurt, E.; Fisher, A.V.; Enser, M.; Wood, J.D. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 2001, 85, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Abidi, S.; Ben Salem, H.; Vasta, V.; Priolo, A. Supplementation with barley or spineless cactus (Opuntia ficus indica f. inermis) cladodes on digestion, growth and intramuscular fatty acid composition in sheep and goats receiving oaten hay. Small Rumin. Res. 2009, 87, 9–16. [Google Scholar] [CrossRef]
- Medeiros, S.R.; Albertini, T.Z.; Marino, C.T. Lipídios na Nutrição de Ruminantes. Nutrição de Bovinos de Corte-Fundamentos e Aplicações, 1st ed.; EMBRAPA Gado de Corte: Brasília, Brazil, 2015; 176p. [Google Scholar]
- Troegeler-Meynadier, A.; Bret-Bennis, L.; Enjalbert, F. Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro. J. Dairy Sci. 2003, 86, 4054–4063. [Google Scholar] [CrossRef] [Green Version]
- Honkanen, A.M.; Griinari, J.M.; Vanhatalo, A.; Ahvenjarvi, S.; Toivonen, V.; Shingfield, K.J. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro. J. Dairy Sci. 2012, 95, 1376–1394. [Google Scholar] [CrossRef] [Green Version]
- Geay, Y.; Boauchart, D.; Hocquette, J.; Culiole, J. Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat. Reprod. Nutr. Dev. 2001, 41, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Raes, K.; De Smet, S.; Demeyer, D. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: A review. Anim. Feed Sci. Technol. 2004, 113, 199–221. [Google Scholar] [CrossRef] [Green Version]
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. The effects of diet and breed on the volatile compounds of cooked lamb. Meat Sci. 2000, 55, 149–159. [Google Scholar] [CrossRef]
- Bartosz, G. Food Oxidants and Antioxidants. Chemical, Biological, and Functional Properties; CRC Press: Boca Raton, FL, USA, 2013; 568p. [Google Scholar] [CrossRef]
Ingredients (g/kg DM) | Forage Cactus | Tifton 85 Hay | Ground Corn Grain | Soybean Meal |
---|---|---|---|---|
Dry matter | 117.30 | 886.90 | 870.10 | 874.80 |
Mineral matter | 92.30 | 65.00 | 11.70 | 70.10 |
Organic matter | 907.70 | 935.00 | 988.30 | 929.90 |
Crude protein | 38.50 | 98.30 | 96.70 | 513.20 |
Ether extract | 34.80 | 19.40 | 45.30 | 23.10 |
Neutral detergent fiber 1 | 186.70 | 691.10 | 90.60 | 131.80 |
Acid detergent fiber | 102.00 | 362.80 | 50.00 | 84.90 |
Total carbohydrates | 834.30 | 817.40 | 846.30 | 393.60 |
Non-fibrous carbohydrates | 647.60 | 126.30 | 755.70 | 261.80 |
Ingredients (g/kg DM) | Diets 1 | ||
---|---|---|---|
Control | 25% | 55% | |
Tifton 85 hay | 800.00 | 550.00 | 250.00 |
Ground corn grain | 50.00 | 35.00 | 45.00 |
Soybean meal | 130.00 | 145.00 | 130.00 |
Forage cactus | 0.00 | 250.00 | 550.00 |
Urea | 10.00 | 10.00 | 15.00 |
Mineral salt | 10.00 | 10.00 | 10.00 |
Bromatological composition | |||
Dry matter | 884.50 | 335.80 | 192.40 |
Mineral matter | 71.70 | 79.40 | 86.70 |
Organic matter | 918.30 | 910.60 | 898.30 |
Crude protein | 178.30 | 169.60 | 159.00 |
Ether extract | 20.80 | 24.30 | 29.00 |
Neutral detergent fiber 2 | 574.50 | 449.10 | 296.70 |
Acid detergent fiber | 303.80 | 239.10 | 160.10 |
Total carbohydrates | 747.40 | 744.80 | 752.50 |
Non-fibrous carbohydrates | 172.80 | 295.80 | 455.80 |
Fatty acid profile (%) | |||
C14:0 | 1.33 | 2.56 | 4.09 |
C16:0 | 16.65 | 18.71 | 21.07 |
C16:1 | 1.28 | 2.27 | 3.43 |
C18:0 | 3.23 | 5.12 | 7.31 |
C18:1 cis-9 | 8.97 | 9.99 | 11.35 |
C18:1 trans-9 | 4.35 | 4.55 | 4.78 |
C18:2 cis-6 | 6.97 | 6.00 | 5.00 |
C18:2 trans-6 | 30.57 | 27.88 | 24.05 |
C18:3 α-linolenic | 6.60 | 4.93 | 2.97 |
C20:0 | 2.40 | 1.74 | 0.94 |
C24:0 | 2.00 | 1.58 | 1.06 |
Physical Parameters | Diets 1 | SEM 2 | p Value | ||
---|---|---|---|---|---|
Control | 25% | 55% | |||
pH | 5.97 | 5.87 | 5.95 | 0.06 | 0.26 |
Cooking losses (%) | 29.71 | 32.31 | 29.31 | 2.19 | 0.35 |
Water holding capacity (%) | 80.67 | 77.91 | 77.17 | 0.86 | 0.24 |
Shear force (N) 3 | 85.41 a | 63.44 b | 65.80 b | 0.73 | 0.08 |
Luminosity (L*) | 42.14 | 42.27 | 40.63 | 1.59 | 0.53 |
Redness (a*) | 19.72 | 19.83 | 20.05 | 0.88 | 0.93 |
Yellowness (b*) | 7.88 | 8.12 | 7.56 | 0.90 | 0.82 |
Tilt angle (h*) | 21.56 | 22.22 | 20.51 | 2.20 | 0.74 |
Croma (C*) | 21.30 | 21.47 | 21.52 | 0.98 | 0.97 |
Chemical Composition (%) | Diets 1 | SEM 2 | p Value | ||
---|---|---|---|---|---|
Control | 25% | 55% | |||
Moisture | 77.57 a | 76.33 ab | 76.11 b | 0.41 | 0.0052 |
Proteins | 20.43 | 20.68 | 20.33 | 0.43 | 0.71 |
Lipids | 1.56 a | 1.33 b | 1.26 c | 0.04 | 0.001 |
Mineral matter | 1.16 | 1.14 | 1.17 | 0.02 | 0.57 |
Fatty Acids (%) | Diets 1 | SEM 2 | p Value | ||
---|---|---|---|---|---|
Control | 25% | 55% | |||
Saturated | |||||
C4:0 | 0.01 | 0.01 | 0.1 | 0.03 | 0.15 |
C6:0 | 0.09 | 0.02 | 0.08 | 0.04 | 0.16 |
C8:0 | 0.02 a | 0.01 ab | 0.01 b | 0.003 | 0.02 |
C10:0 | 0.09 b | 0.12 a | 0.12 a | 0.01 | 0.05 |
C11:0 | 0.02 | 0.01 | 0.01 | 0.006 | 0.61 |
C12:0 | 0.04 | 0.05 | 0.05 | 0.005 | 0.68 |
C13:0 | 0.02 a | 0.01 b | 0.01 b | 0.003 | 0.07 |
C14:0 | 0.77 b | 1.32 ab | 1.38 a | 0.11 | 0.001 |
C15:0 | 0.32 a | 0.28 b | 0.28 b | 0.01 | 0.08 |
C16:0 | 21.01 b | 23.34 a | 22.95 a | 0.64 | 0.05 |
C17:0 | 1.26 | 1.17 | 1.20 | 0.06 | 0.59 |
C18:0 | 13.69 | 12.53 | 12.26 | 0.61 | 0.26 |
C20:0 | 0.06 | 0.05 | 0.04 | 0.004 | 0.61 |
C21:0 | 0.003 | 0.005 | 0.003 | 0.002 | 0.74 |
C22:0 | 0.004 | 0.005 | 0.009 | 0.004 | 0.64 |
C23:0 | 0.006 | 0.004 | 0.004 | 0.002 | 0.88 |
C24:0 | 2.47 a | 1.34 ab | 0.71 b | 0.32 | 0.005 |
Total saturates | 40.21 | 40.36 | 39.68 | 0.85 | 0.84 |
Monounsaturated | |||||
C14:1 | 0.02 b | 0.05 ab | 0.06 a | 0.08 | 0.003 |
C15:1 cis-10 | 0.01 | 0.002 | 0.008 | 0.0004 | 0.26 |
C16:1 | 1.21 b | 1.58 ab | 1.76 a | 0.09 | 0.002 |
C17: 1 cis-10 | 0.89 | 1.01 | 1.10 | 0.07 | 0.18 |
C18:1cis n9 | 33.16 b | 43.35 ab | 46.86 a | 1.70 | 0.002 |
C18:1trans n9 | 2.29 | 2.18 | 2.65 | 0.25 | 0.41 |
C20:1n9 cis-11 | 0.13 | 0.09 | 0.09 | 0.01 | 0.31 |
C22:1n9 | 0.002 | 0.004 | 0.004 | 0.003 | 0.66 |
C24:1 | 0.009 | 0.002 | 0.01 | 0.004 | 0.13 |
Total monounsaturated | 37.75 b | 48.32 ab | 52.17 a | 1.79 | 0.001 |
Polyunsaturated | |||||
C18:2 cis n-6 | 6.38 a | 4.26 ab | 2.94 b | 0.38 | 0.001 |
C18:2 trans n-6 | 0.06 b | 0.07 b | 0.40 a | 0.13 | 0.06 |
C18:3n-3 | 0.73 a | 0.54 ab | 0.26 b | 0.04 | 0.001 |
C18:3n-6 | 0.08 a | 0.05 ab | 0.04 b | 0.01 | 0.05 |
C20:2 | 0.80a | 0.43b | 0.47b | 0.10 | 0.08 |
C20:3n-3 | 0.004 | 0.01 | 0.005 | 0.003 | 0.55 |
C20:3n-6 | 0.65 a | 0.32 ab | 0.21 b | 0.08 | 0.01 |
C20:4n-6 | 9.71 a | 3.77 ab | 2.49 b | 1.18 | 0.003 |
C20:5n-3 | 2.18 a | 1.24 ab | 0.47 b | 0.78 | 0.001 |
C22:2 | 0.03 | 0.09 | 0.06 | 0.02 | 0.32 |
C22:6n-3 | 0.59 a | 0.30 ab | 0.03 b | 0.13 | 0.001 |
Total polyunsaturated | 21.44 a | 11.16 ab | 6.90 b | 2.17 | 0.001 |
Total unsaturated | 59.72 | 59.55 | 60.33 | 0.88 | 0.81 |
Omega-3 | 4.16 a | 2.93 ab | 1.83 b | 0.23 | 0.001 |
Omega-6 | 17.47 | 8.52 | 6.07 | 6.57 | 0.15 |
Omega- 6:omega-3 | 4.11 a | 2.90 b | 3.00 b | 0.35 | 0.08 |
Monounsaturated:saturated | 0.93 b | 1.19 ab | 1.32 a | 0.05 | 0.006 |
Polyunsaturated:saturated | 0.53 a | 0.28 ab | 0.17 b | 0.05 | 0.001 |
Sensory Attributes | Diets 1 | SEM 2 | p Value | ||
---|---|---|---|---|---|
Control | 25% | 55% | |||
General appearance | 6.40 b | 7.07 a | 7.13 a | 0.237 | 0.0034 |
Aroma | 5.84 b | 6.48 a | 6.62 a | 0.281 | 0.0135 |
Flavor | 5.99 b | 6.68 a | 6.81 a | 0.300 | 0.0138 |
Texture | 5.79b | 6.30 b | 7.07 a | 0.301 | 0.0001 |
Juiciness | 5.69 b | 6.35 a | 6.81 a | 0.303 | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, R.S.B.; Farias, I.M.S.C.; Francisco, C.L.; Moreno, G.M.B. Physicochemical Quality and Fatty Acid Profile in the Meat of Goats Fed Forage Cactus as a Substitute for Tifton 85 Hay. Animals 2023, 13, 957. https://doi.org/10.3390/ani13060957
Pinheiro RSB, Farias IMSC, Francisco CL, Moreno GMB. Physicochemical Quality and Fatty Acid Profile in the Meat of Goats Fed Forage Cactus as a Substitute for Tifton 85 Hay. Animals. 2023; 13(6):957. https://doi.org/10.3390/ani13060957
Chicago/Turabian StylePinheiro, Rafael S. B., Iasmin M. S. C. Farias, Caroline L. Francisco, and Greicy M. B. Moreno. 2023. "Physicochemical Quality and Fatty Acid Profile in the Meat of Goats Fed Forage Cactus as a Substitute for Tifton 85 Hay" Animals 13, no. 6: 957. https://doi.org/10.3390/ani13060957
APA StylePinheiro, R. S. B., Farias, I. M. S. C., Francisco, C. L., & Moreno, G. M. B. (2023). Physicochemical Quality and Fatty Acid Profile in the Meat of Goats Fed Forage Cactus as a Substitute for Tifton 85 Hay. Animals, 13(6), 957. https://doi.org/10.3390/ani13060957