Implementation of Feed Efficiency in Iranian Holstein Breeding Program
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Meta-Analysis
2.2. Economic Weights
2.3. Breeding Objectives
2.4. Selection Index Scenarios
2.5. Feed Efficiency Sub-Index
3. Results
3.1. Meta-Analysis
3.2. Economic Weights
3.3. Selection Index Scenarios
3.4. Feed Efficiency Sub-Index
4. Discussion
4.1. Meta-Analysis
4.2. Economic Weights
4.3. Selection Index Scenarios
4.4. Feed Efficiency Sub-Index
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connor, E.E. Invited review: Improving feed efficiency in dairy production: Challenges and possibilities. Animal 2015, 9, 395–408. [Google Scholar] [CrossRef]
- Pryce, J.E.; Gonzalez-Recio, O.; Nieuwhof, G.; Wales, W.J.; Coffey, M.P.; Hayes, B.J.; Goddard, M.E. Hot topic: Definition and implementation of a breeding value for feed efficiency in dairy cows. J. Dairy Sci. 2015, 98, 7340–7350. [Google Scholar] [CrossRef]
- Krupová, Z.; Krupa, E.; Michaličková, M.; Wolfová, M.; Kasarda, R. Economic values for health and feed efficiency traits of dual-purpose cattle in marginal areas. J. Dairy Sci. 2016, 99, 644–656. [Google Scholar] [CrossRef] [PubMed]
- de Jong, G.; van der Linde, R.; de Haas, Y.; Schopen, G.; Veerkamp, R. Genetic evaluation for feed intake in the Netherlands and Flanders, impact on efficiency and responses. In Proceedings of the 2016 Interbull Meeting, Puerto Varas, Chile, 24–28 October 2016. [Google Scholar]
- de Jong, G.; de Haas, Y.; Veerkamp, R.; Schopen, G.; Bouwmeester-Vosman, J.; van der Linde, R. Feed intake genetic evaluation: Progress and an index for saved feed cost. In Proceedings of the 2019 Interbull Meeting, Cincinnati, OH, USA, 23–26 June 2019; pp. 1–4. [Google Scholar]
- VanRaden, P.M.; Cole, J.B.; Neupane, M.; Toghiani, S.; Gaddis, K.P.; Tempelman, R.J. Net merit as a measure of lifetime profit: 2021 revision. In AIPL Research Reports NM$8 (05–21); USDA: Beltsville, MD, USA, 2021. [Google Scholar]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed]
- Hurley, A.M.; López-Villalobos, N.; McParland, S.; Lewis, E.; Kennedy, E.; O’Donovan, M.; Burke, J.L.; Berry, D.P. Genetics of alternative definitions of feed efficiency in grazing lactating dairy cows. J. Dairy Sci. 2017, 100, 5501–5514. [Google Scholar] [CrossRef] [PubMed]
- Persaud, P.; Simm, G.; Hlll, W.G. Genetic and phenotypic parameters for yield, food intake and efficiency of dairy cows fed ad libitum 1. Estimates for ‘total’lactation measures and their relationship with live-weight traits. Anim. Sci. 1991, 52, 435–444. [Google Scholar] [CrossRef]
- Manzanilla-Pech, C.I.V.; Veerkamp, R.F.; Calus, M.P.L.; Zom, R.; Van Knegsel, A.; Pryce, J.E.; De Haas, Y. Genetic parameters across lactation for feed intake, fat-and protein-corrected milk, and liveweight in first-parity Holstein cattle. J. Dairy Sci. 2014, 97, 5851–5862. [Google Scholar] [CrossRef]
- Köck, A.; Ledinek, M.; Gruber, L.; Steininger, F.; Fuerst-Waltl, B.; Egger-Danner, C. Genetic analysis of efficiency traits in Austrian dairy cattle and their relationships with body condition score and lameness. J. Dairy Sci. 2018, 101, 445–455. [Google Scholar] [CrossRef]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Berry, D.P.; Crowley, J.J. Cell Biology Symposium: Genetics of feed efficiency in dairy and beef cattle. J. Anim. Sci. 2013, 91, 1594–1613. [Google Scholar] [CrossRef]
- Manzanilla-Pech, C.I.V.; Veerkamp, R.F.; Tempelman, R.J.; Van Pelt, M.L.; Weigel, K.A.; VandeHaar, M.; Lawlor, T.J.; Spurlock, D.M.; Armentano, L.E.; Staples, C.R. Genetic parameters between feed-intake-related traits and conformation in 2 separate dairy populations—The Netherlands and United States. J. Dairy Sci. 2016, 99, 443–457. [Google Scholar] [CrossRef]
- Manzanilla-Pech, C.I.V.; Stephansen, R.B.; Difford, G.F.; Løvendahl, P.; Lassen, J. Selecting for feed efficient cows will help to reduce methane gas emissions. Front. Genet. 2022, 13, 885932. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.M.; Nguyen, T.T.T.; Abdelsayed, M.; Moate, P.J.; Williams, S.R.O.; Chud, T.C.S.; Schenkel, F.S.; Goddard, M.E.; van den Berg, I.; Cocks, B.G.; et al. Genetic parameters for methane emission traits in Australian dairy cows. J. Dairy Sci. 2021, 104, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Li, B. Genetic Properties of Feed Efficiency and Related Traits in Dairy Cattle. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2018. [Google Scholar]
- Veerkamp, R.F.; Emmans, G.C. Sources of genetic variation in energetic efficiency of dairy cows. Livest. Prod. Sci. 1995, 44, 87–97. [Google Scholar] [CrossRef]
- Connor, E.E.; Hutchison, J.L.; Norman, H.D.; Olson, K.M.; Van Tassell, C.P.; Leith, J.M.; Baldwin, R. Use of residual feed intake in Holsteins during early lactation shows potential to improve feed efficiency through genetic selection. J. Anim. Sci. 2013, 91, 3978–3988. [Google Scholar] [CrossRef]
- Li, B.; VanRaden, P.M.; Guduk, E.; O’Connell, J.R.; Null, D.J.; Connor, E.E.; VandeHaar, M.J.; Tempelman, R.J.; Weigel, K.A.; Cole, J.B. Genomic prediction of residual feed intake in US Holstein dairy cattle. J. Dairy Sci. 2020, 103, 2477–2486. [Google Scholar] [CrossRef]
- Kennedy, B.W.; Van der Werf, J.H.; Meuwissen, T.H. Genetic and statistical properties of residual feed intake. J. Anim. Sci. 1993, 71, 3239–3250. [Google Scholar] [CrossRef]
- McArthur, A.T.G. Weighting breeding objectives—An economic approach. In Proceedings of the VI Annual Conference of Australian Association of Animal Breeding and Genetics, Perth, Western Australia, 19–21 July 1987; pp. 170–187. [Google Scholar]
- Williams, Y.J.; Pryce, J.E.; Grainger, C.; Wales, W.J.; Linden, N.; Porker, M.; Hayes, B.J. Variation in residual feed intake in Holstein-Friesian dairy heifers in southern Australia. J. Dairy Sci. 2011, 94, 4715–4725. [Google Scholar] [CrossRef]
- Shelby, L.B.; Vaske, J.J. Understanding meta-analysis: A review of the methodological literature. Leis. Sci. 2008, 30, 96–110. [Google Scholar] [CrossRef]
- Koots, K.R.; Gibson, J.P.; Smith, C.; Wilton, J.W. Analyses of published genetic parameter estimates for beef production traits. 1. Heritability. Anim. Breed. Abstr. 1994, 62, 309–338. [Google Scholar]
- Reckhow, D. Chapter XXIII: Parametric Statistics; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics; McGraw-Hill: New York, NY, USA, 1960. [Google Scholar]
- Sadeghi-Sefidmazgi, A.; Moradi-Shahrbabak, M.; Nejati-Javaremi, A.; Miraei-Ashtiani, S.R.; Amer, P.R. Breeding objectives for Holstein dairy cattle in Iran. J. Dairy Sci. 2012, 95, 3406–3418. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Groen, A.F.; Brascamp, E.W. Discounted Expressions of Traits in Broiler Breeding Programs. Poult. Sci. 1999, 78, 307–316. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Fox, D.G.; Tedeschi, L.; Tylutki, T.; Russell, J.; Van Amburgh, M.; Chase, L.; Pell, A.; Overton, T. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Hazel, L.N.; Lush, J.L. The efficiency of three methods of selection. J. Hered. 1942, 33, 393–399. [Google Scholar] [CrossRef]
- Dekkers, J.C. Design and Economics of Animal Breeding Strategies; Notes for Summer Short Course, 14–18 July; Iowa State University: Ames, IA, USA, 2003. [Google Scholar]
- Holstein Association USA. TPI Formula—April 2021. 2021. Available online: https://www.holsteinusa.com/genetic_evaluations/ss_tpi_formula.html (accessed on 9 September 2022).
- Hüttmann, H.; Stamer, E.; Junge, W.; Thaller, G.; Kalm, E. Analysis of feed intake and energy balance of high-yielding first lactating Holstein cows with fixed and random regression models. Animal 2009, 3, 181–188. [Google Scholar] [CrossRef]
- Vallimont, J.E.; Dechow, C.D.; Daubert, J.M.; Dekleva, M.W.; Blum, J.W.; Barlieb, C.M.; Liu, W.; Varga, G.A.; Heinrichs, A.J.; Baumrucker, C.R. Genetic parameters of feed intake, production, body weight, body condition score, and selected type traits of Holstein cows in commercial tie-stall barns. J. Dairy Sci. 2010, 93, 4892–4901. [Google Scholar] [CrossRef]
- Manafiazar, G.; Zimmerman, S.; Basarab, J.A. Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed emissions monitoring system. Can. J. Anim. Sci. 2016, 97, 118–126. [Google Scholar] [CrossRef]
- Difford, G.F.; Løvendahl, P.; Veerkamp, R.F.; Bovenhuis, H.; Visker, M.; Lassen, J.; De Haas, Y. Can greenhouse gases in breath be used to genetically improve feed efficiency of dairy cows? J. Dairy Sci. 2020, 103, 2442–2459. [Google Scholar] [CrossRef] [PubMed]
- Shonka, B.N.; Tao, S.; Dahl, G.E.; Spurlock, D.M. Genetic regulation of prepartum dry matter intake in Holstein cows. J. Dairy Sci. 2015, 98, 8195–8200. [Google Scholar] [CrossRef]
- Haile-Mariam, M.; Morton, J.M.; Goddard, M.E. Estimates of genetic parameters for fertility traits of Australian Holstein-Friesian cattle. Anim. Sci. 2003, 76, 35–42. [Google Scholar] [CrossRef]
- El-Bayoumi, K.M.; El-Tarabany, M.S.; Abdel-Hamid, T.M.; Mikaeil, O.M. Heritability, genetic correlation and breeding value for some productive and reproductive traits in Holstein cows. Res. Opin. Anim. Vet. Sci. 2015, 5, 65–70. [Google Scholar]
- Ayalew, W.; Aliy, M.; Negussie, E. Estimation of genetic parameters of the productive and reproductive traits in Ethiopian Holstein using multi-trait models. Asian-Australas. J. Anim. Sci. 2017, 30, 1550–1556. [Google Scholar] [CrossRef]
- Brzáková, M.; Zavadilová, L.; Přibyl, J.; Pešek, P.; Kašná, E.; Kranjčevičová, A. Estimation of genetic parameters for female fertility traits in the Czech Holstein population. Czech J. Anim. Sci. 2019, 64, 199–206. [Google Scholar] [CrossRef]
- Roxström, A.; Ducrocq, V.; Strandberg, E. Survival analysis of longevity in dairy cattle on a lactation basis. Genet. Sel. Evol. 2003, 35, 305. [Google Scholar] [CrossRef] [PubMed]
- de Mello, F.; Kern, E.L.; Bretas, A. Longevity in Dairy Cattle. J. Adv. Dairy Res. 2014, 2, 126. [Google Scholar] [CrossRef]
- Imbayarwo-Chikosi, V.E.; Dzama, K.; Halimani, T.E.; Van Wyk, J.B.; Maiwashe, A.; Banga, C.B. Genetic prediction models and heritability estimates for functional longevity in dairy cattle. South Afr. J. Anim. Sci. 2015, 45, 105–121. [Google Scholar] [CrossRef]
- Veerkamp, R.F.; Brotherstone, S. Genetic correlations between linear type traits, food intake, live weight and condition score in Holstein Friesian dairy cattle. Anim. Sci. 1997, 64, 385–392. [Google Scholar] [CrossRef]
- Tsuruta, S.; Misztal, I.; Lawlor, T.J. Changing definition of productive life in US Holsteins: Effect on genetic correlations. J. Dairy Sci. 2005, 88, 1156–1165. [Google Scholar] [CrossRef]
- Bilal, G.; Cue, R.I.; Hayes, J.F. Genetic and phenotypic associations of type traits and body condition score with dry matter intake, milk yield, and number of breedings in first lactation Canadian Holstein cows. Can. J. Anim. Sci. 2016, 96, 434–447. [Google Scholar] [CrossRef]
- Koenen, E.P.C.; Veerkamp, R.F. Genetic covariance functions for live weight, condition score, and dry-matter intake measured at different lactation stages of Holstein Friesian heifers. Livest. Prod. Sci. 1998, 57, 67–77. [Google Scholar] [CrossRef]
- Jonest, H.E.; White, I.M.S.; Brotherstone, S. Genetic evaluation of Holstein Friesian sires for daughter condition-score changes using a random regression model. Anim. Sci. 1999, 68, 467–475. [Google Scholar] [CrossRef]
- Koenen, E.P.C.; Veerkamp, R.F.; Dobbelaar, P.; De Jong, G. Genetic analysis of body condition score of lactating Dutch Holstein and Red-and-White heifers. J. Dairy Sci. 2001, 84, 1265–1270. [Google Scholar] [CrossRef]
- Berry, D.; Buckley, F.; Dillon, P.; Evans, R.; Rath, M.; Veerkamp, R. Genetic parameters for level and change of body condition score and body weight in dairy cows. J. Dairy Sci. 2002, 85, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Veerkamp, R.F.; Emmans, G.C.; Cromie, A.R.; Simm, G. Variance components for residual feed intake in dairy cows. Livest. Prod. Sci. 1995, 41, 111–120. [Google Scholar] [CrossRef]
- Vallimont, J.E.; Dechow, C.D.; Daubert, J.M.; Dekleva, M.W.; Blum, J.W.; Liu, W.; Varga, G.A.; Heinrichs, A.J.; Baumrucker, C.R. Feed utilization and its associations with fertility and productive life in 11 commercial Pennsylvania tie-stall herds. J. Dairy Sci. 2013, 96, 1251–1254. [Google Scholar] [CrossRef]
- Coleman, J.; Berry, D.P.; Pierce, K.M.; Brennan, A.; Horan, B. Dry matter intake and feed efficiency profiles of 3 genotypes of Holstein-Friesian within pasture-based systems of milk production. J. Dairy Sci. 2010, 93, 4318–4331. [Google Scholar] [CrossRef]
- Krupova, Z.; Wolfová, M.; Wolf, J.; Oravcová, M.; Margetín, M.; Peškovičová, D.; Krupa, E.; Daňo, J. Economic values for dairy sheep breeds in Slovakia. Asian-Australas. J. Anim. Sci. 2009, 22, 1693–1702. [Google Scholar] [CrossRef]
- VanRaden, P.M.; Wiggans, G.R. Productive life evaluations: Calculation, accuracy, and economic value. J. Dairy Sci. 1995, 78, 631–638. [Google Scholar] [CrossRef]
- Schaeffer, L.R. Effectiveness of model for cow evaluation intraherd. J. Dairy Sci. 1983, 66, 874–880. [Google Scholar] [CrossRef]
- Miglior, F.; Muir, B.L.; Van Doormaal, B.J. Selection indices in Holstein cattle of various countries. J. Dairy Sci. 2005, 88, 1255–1263. [Google Scholar] [CrossRef]
- Pryce, J.E.; Coffey, M.P.; Brotherstone, S. The genetic relationship between calving interval, body condition score and linear type and management traits in registered Holsteins. J. Dairy Sci. 2000, 83, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- Ghiasi, H.; Nejati-Javaremi, A.; Pakdel, A.; González-Recio, O. Selection strategies for fertility traits of Holstein cows in Iran. Livest. Sci. 2013, 152, 11–15. [Google Scholar] [CrossRef]
- Holmann, F.J.; Shumway, C.R.; Blake, R.W.; Schwart, R.B.; Sudweeks, E.M. Economic value of days open for Holstein cows of alternative milk yields with varying calving intervals. J. Dairy Sci. 1984, 67, 636–643. [Google Scholar] [CrossRef]
- Sasaki, O.; Takeda, H.; Nishiura, A. The economic value of days open in Holstein cows in Japan based on simulated changes in conception rate. Anim. Sci. J. 2020, 91, e13342. [Google Scholar] [CrossRef] [PubMed]
- Hietala, P.; Wolfová, M.; Wolf, J.; Kantanen, J.; Juga, J. Economic values of production and functional traits, including residual feed intake, in Finnish milk production. J. Dairy Sci. 2014, 97, 1092–1106. [Google Scholar] [CrossRef]
- Leitch, H.W. Comparison of international selection indices for dairy cattle breeding. In Proceedings of the Open Session of the Interbull Annual Meeting, Ottawa, ON, Canada, 5–6 August 1994. [Google Scholar]
- Kargo, M.; Hjortø, L.; Toivonen, M.; Eriksson, J.A.; Aamand, G.P.; Pedersen, J. Economic basis for the Nordic Total Merit index. J. Dairy Sci. 2014, 97, 7879–7888. [Google Scholar] [CrossRef]
- Pryce, J.E.; Coffey, M.P.; Simm, G. The relationship between body condition score and reproductive performance. J. Dairy Sci. 2001, 84, 1508–1515. [Google Scholar] [CrossRef]
- Berry, D.P.; Buckley, F.; Dillon, P.; Evans, R.D.; Rath, M.; Veerkamp, R.F. Genetic relationships among body condition score, body weight, milk yield, and fertility in dairy cows. J. Dairy Sci. 2003, 86, 2193–2204. [Google Scholar] [CrossRef]
- Dechow, C.D.; Rogers, G.W.; Klei, L.; Lawlor, T.J.; VanRaden, P.M. Body condition scores and dairy form evaluations as indicators of days open in US Holsteins. J. Dairy Sci. 2004, 87, 3534–3541. [Google Scholar] [CrossRef]
- Bastin, C.; Loker, S.; Gengler, N.; Sewalem, A.; Miglior, F. Genetic relationships between body condition score and reproduction traits in Canadian Holstein and Ayrshire first-parity cows. J. Dairy Sci. 2010, 93, 2215–2228. [Google Scholar] [CrossRef]
- Brito, L.F.; Oliveira, H.R.; Houlahan, K.; Fonseca, P.A.S.; Lam, S.; Butty, A.M.; Seymour, D.J.; Vargas, G.; Chud, T.C.S.; Silva, F.F. Genetic mechanisms underlying feed utilization and implementation of genomic selection for improved feed efficiency in dairy cattle. Can. J. Anim. Sci. 2020, 100, 587–604. [Google Scholar] [CrossRef]
- Houlahan, K.; Schenkel, F.S.; Hailemariam, D.; Lassen, J.; Kargo, M.; Cole, J.B.; Connor, E.E.; Wegmann, S.; Junior, O.; Miglior, F. Effects of incorporating dry matter intake and residual feed intake into a selection index for dairy cattle using deterministic modeling. Animals 2021, 11, 1157. [Google Scholar] [CrossRef] [PubMed]
- Løvendahl, P.; Ridder, C.; Friggens, N.C. Limits to prediction of energy balance from milk composition measures at individual cow level. J. Dairy Sci. 2010, 93, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Gravert, H.O. Genetic factors controlling feed efficiency in dairy cows. Livest. Prod. Sci. 1985, 13, 87–99. [Google Scholar] [CrossRef]
- Sieber, M.; Freeman, A.E.; Kelley, D.H. Relationships between body measurements, body weight, and productivity in Holstein dairy cows. J. Dairy Sci. 1988, 71, 3437–3445. [Google Scholar] [CrossRef]
- Brotherstone, S. Genetic and phenotypic correlations between linear type traits and production traits in Holstein-Friesian dairy cattle. Anim. Sci. 1994, 59, 183–187. [Google Scholar] [CrossRef]
- Kennedy, B.W.; Dekkers, J.C.M.; Moore, R.K.; Jairath, L. Genetic and phenotypic parameter estimates between production, feed intake, feed efficiency, body weight and linear type traits in first lactation Holsteins. Can. J. Anim. Sci. 1999, 79, 425–431. [Google Scholar] [CrossRef]
- Bell, M.J.; Eckard, R.J.; Haile-Mariam, M.; Pryce, J.E. The effect of changing cow production and fitness traits on net income and greenhouse gas emissions from Australian dairy systems. J. Dairy Sci. 2013, 96, 7918–7931. [Google Scholar] [CrossRef]
- Hayes, B.J.; Van Der Werf, J.H.J.; Pryce, J.E. Economic benefit of genomic selection for residual feed intake (as a measure of feed conversion efficiency) in Australian dairy cattle. Recent Adv. Anim. Nutr. 2011, 18, 31–36. [Google Scholar]
- Bolormaa, S.; MacLeod, I.M.; Khansefid, M.; Marett, L.C.; Wales, W.J.; Miglior, F.; Baes, C.F.; Schenkel, F.S.; Connor, E.E.; Manzanilla-Pech, C.I.V.; et al. Sharing of either phenotypes or genetic variants can increase the accuracy of genomic prediction of feed efficiency. Genet. Sel. Evol. 2022, 54, 60. [Google Scholar] [CrossRef]
- Bach, A.; Terré, M.; Vidal, M. Symposium review: Decomposing efficiency of milk production and maximizing profit. J. Dairy Sci. 2020, 103, 5709–5725. [Google Scholar] [CrossRef] [PubMed]
- Marinho, M.N.; Zimpel, R.; Peñagaricano, F.; Santos, J.E.P. Assessing feed efficiency in early and mid lactation and its associations with performance and health in Holstein cows. J. Dairy Sci. 2021, 104, 5493–5507. [Google Scholar] [CrossRef] [PubMed]
Trait | N 1 | Weighted Mean h2 | SE | Range of h2 in the Literature |
---|---|---|---|---|
DMI, kg/day | 10 (11) | 0.21 | 0.07 | 0.08 to 0.52 |
Residual feed intake, kg/day | 5 (7) | 0.19 | 0.09 | 0.09 to 0.38 |
Milk, kg | 21 (24) | 0.22 | 0.03 | 0.12 to 0.39 |
Fat, kg | 15 (16) | 0.22 | 0.05 | 0.06 to 0.25 |
Protein, kg | 15 (16) | 0.22 | 0.04 | 0.13 to 0.36 |
Productive life, month | 2 (2) | 0.10 | 0.03 | 0.01 to 0.11 |
Days open, day | 5 (4) | 0.03 | 0.01 | 0.002 to 0.03 |
Stature, cm/scale | 5 (7) | 0.46 | 0.01 | 0.40 to 0.60 |
Chest width, scale | 3 (5) | 0.26 | 0.01 | 0.19 to 0.31 |
Body depth, scale | 5 (7) | 0.39 | 0.01 | 0.28 to 0.41 |
Angularity, scale | 4 (6) | 0.23 | 0.01 | 0.21 to 0.29 |
Rump angle, scale | 3 (5) | 0.37 | 0.06 | 0.20 to 0.42 |
Rump width, scale | 2 (4) | 0.27 | 0.05 | 0.18 to 0.40 |
Body weight, kg | 5 (7) | 0.58 | 0.04 | 0.35 to 0.71 |
Body condition, score | 4 (5) | 0.23 | 0.02 | 0.17 to 0.34 |
Feed Efficiency Trait | Correlated Trait | N 1 | Weighted Mean Genetic Correlation | SE | Range of Genetic Correlations in the Literature |
---|---|---|---|---|---|
Dry matter intake | Residual feed intake | 3 (5) | 0.53 | 0.07 | 0.38 to 0.89 |
Milk yield | 8 (9) | 0.68 | 0.08 | 0.36 to 0.78 | |
Fat yield | 4 (4) | 0.51 | 0.07 | 0.15 to 0.53 | |
Protein yield | 4 (4) | 0.55 | 0.08 | 0.25 to 0.56 | |
Productive life | 1 (2) | 0.49 | 0.08 | 0.48 to 0.51 | |
Days open | 1 (2) | −0.14 | 0.09 | −0.14 to −0.15 | |
Stature | 5 (6) | 0.44 | 0.01 | 0.32 to 0.57 | |
Chest width | 2 (3) | 0.55 | 0.09 | 0.45 to 0.68 | |
Body depth | 4 (5) | 0.40 | 0.09 | 0.26 to 0.49 | |
Angularity | 3 (4) | 0.58 | 0.09 | −0.02 to 0.60 | |
Rump angle | 1 (2) | 0.15 | 0.04 | 0.10 to 0.21 | |
Rump width | 2 (3) | 0.12 | 0.07 | 0.04 to 0.18 | |
Body weight | 4 (6) | 0.52 | 0.01 | 0.35 to 0.71 | |
Body condition score | 4 (5) | 0.36 | 0.08 | −0.04 to 0.71 | |
Residual feed intake | Milk yield | 4 (5) | 0.08 | 0.05 | −0.05 to 0.35 |
Fat yield | 3 (3) | −0.01 | 0.07 | −0.07 to 0.20 | |
Protein yield | 3 (3) | −0.04 | 0.09 | −0.03 to −0.06 | |
Productive life | 1 (2) | −0.23 | 0.09 | −0.22 to −0.24 | |
Days open | 1 (2) | −0.50 | 0.04 | −0.48 to −0.51 | |
Stature | 2 (3) | 0.28 | 0.09 | 0.12 to 0.43 | |
Chest width | 2 (3) | 0.17 | 0.09 | 0.06 to 0.39 | |
Body depth | 2 (3) | 0.08 | 0.09 | 0.05 to 0.11 | |
Angularity | 2 (3) | 0.14 | 0.09 | 0.08 to 0.41 | |
Rump angle | 1 (2) | −0.06 | 0.04 | −0.06 to −0.07 | |
Rump width | 1 (2) | −0.03 | 0.01 | −0.02 to −0.06 | |
Body weight | 2 (3) | 0.15 | 0.07 | 0.03 to −0.26 | |
Body condition score | 2 (3) | −0.13 | 0.04 | −0.14 to 0.46 |
Trait 1 | DMI | RFI | MY | FY | PY | PL | DO | ST | CW | ANG | BW | BCS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DMI | 0.21 | 0.75 | 0.66 | 0.60 | 0.67 | 0.03 | 0.09 | 0.22 | 0.35 | 0.24 | 0.35 | −0.02 |
RFI | 0.53 | 0.19 | −0.07 | −0.05 | −0.09 | −0.06 | −0.02 | 0.12 | 0.17 | 0.12 | 0.01 | 0.04 |
MY | 0.68 | 0.08 | 0.22 | 0.69 | 0.85 | 0.15 | 0.29 | 0.10 | 0.13 | 0.10 | 0.09 | −0.23 |
FY | 0.51 | −0.01 | 0.41 | 0.22 | 0.60 | 0.23 | 0.14 | 0.01 | 0.08 | 0.19 | 0.14 | −0.15 |
PY | 0.55 | −0.04 | 0.96 | 0.56 | 0.22 | 0.26 | 0.13 | 0.13 | 0.02 | 0.21 | 0.20 | −0.16 |
PL | 0.49 | −0.23 | 0.64 | 0.54 | 0.63 | 0.10 | −0.10 | −0.03 | −0.03 | 0.01 | −0.02 | 0.00 |
DO | −0.14 | −0.50 | 0.42 | 0.32 | 0.35 | −0.60 | 0.03 | 0.08 | −0.03 | 0.01 | −0.07 | −0.17 |
ST | 0.44 | 0.28 | 0.12 | 0.10 | 0.12 | −0.19 | 0.17 | 0.46 | −0.01 | 0.06 | 0.38 | 0.08 |
CW | 0.55 | 0.17 | 0.12 | 0.10 | 0.12 | −0.19 | 0.17 | 0.05 | 0.26 | −0.11 | 0.45 | 0.24 |
ANG | 0.58 | 0.14 | 0.26 | 0.13 | 0.14 | −0.13 | 0.42 | 0.10 | −0.03 | 0.23 | −0.07 | −0.20 |
BW | 0.52 | 0.15 | −0.29 | −0.03 | 0.03 | −0.22 | −0.23 | 0.94 | 0.84 | −0.18 | 0.58 | 0.31 |
BCS | 0.36 | −0.13 | −0.30 | −0.27 | −0.31 | −0.48 | −0.23 | −0.13 | 0.72 | −0.65 | 0.85 | 0.23 |
Variable | Mean |
---|---|
Production data | |
305-day milk, kg | 11,750 |
305-day fat, kg | 399.5 |
305-day protein, kg | 364.3 |
Longevity, year | 3.86 |
Age at first calving, month | 24 |
Calving interval, day | 420 |
Stillbirth rate, % | 0.04 |
Calf mortality, % | 0.01 |
Productive cow mortality, % | 0.01 |
Heat detection rate | 0.50 |
Estrous cycle, day | 21 |
Conception rate | 0.47 |
Pregnancy rate | 0.23 |
Live weight of culled calf, kg | 240 |
Live weight of culled heifer, kg | 500 |
Live weight of culled cow, kg | 680 |
Proportion of male calves sold to a feedlot | 0.41 |
Male and female calves reared until 3 month of age/cow/year, n | 0.83 |
Female calves reared/cow/year, n | 0.40 |
Involuntary culling rate of calves from birth until 3 month of age | 0.005 |
Survival rate of heifers from 3 month of age until calving | 0.98 |
Involuntary culling rate of heifers as a proportion of surplus heifers | 0.003 |
Prices | |
Base milk, USD/kg | 1.07 |
Accessory payment for milk fat, USD/kg | 0.14 |
Accessory payment for milk protein, USD/kg | 0.14 |
Male calf price, USD/calf | 1071 |
Female calf price, USD/calf | 1429 |
Replacement heifer, USD/heifer | 6667 |
Culled calves, USD/kg | 7.14 |
Culled heifers, USD/kg | 7.14 |
Culled cows, USD/kg | 5.95 |
Conventional domestic semen dose, USD | 12.14 |
Conventional imported semen dose, USD | 24.05 |
Sexed imported semen dose, USD | 80.95 |
Insemination, USD | 26.89 |
Costs | |
Base milk, USD/kg | 0.75 |
Milk fat accessory, USD/kg | 7.36 |
Milk protein accessory, USD/kg | 7.37 |
NEL, USD/Mcal | 0.79 |
MP, USD/kg | 0.002 |
Calf rearing, USD/calf | 1000 |
Rearing from 3 month of age until calving, USD/heifer | 4000 |
Rearing from 3 to 21 month of age, USD/heifer | 3600 |
Trait | Economic Value (USD/Unit of Trait/Cow/year) | Genetic Expression | Economic Weight (USD/Unit of Trait) |
---|---|---|---|
Milk, kg | 0.34 | 1.00 | 0.34 |
Fat, kg | 6.93 | 1.00 | 6.93 |
Protein, kg | 5.53 | 1.00 | 5.53 |
Days open, day | −2.71 | 1.00 | −2.71 |
Productive life, month | 2.77 | 0.17 | 0.47 |
DMI, kg | −1.68 | 1.00 | −1.68 |
Residual feed intake, kg | −1.70 | 1.00 | −1.70 |
Trait | Selection Index 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | |
Genetic gain (USD/unit gain) | |||||||||
Milk yield, kg | 658.88 | 668.30 | 664.40 | 649.61 | 655.34 | 708.77 | 657.67 | 659.64 | 656.76 |
Fat yield, kg | 12.35 | 13.03 | 12.84 | 11.80 | 12.45 | 13.57 | 12.47 | 12.45 | 12.53 |
Protein yield, kg | 16.94 | 16.16 | 16.66 | 17.19 | 17.01 | 15.78 | 16.97 | 16.92 | 16.86 |
Productive life, month | 3.07 | 2.58 | 2.61 | 3.13 | 3.06 | 2.90 | 3.13 | 2.91 | 2.90 |
Days open, day | 2.27 | −0.43 | 0.28 | −1.80 | 0.72 | 1.80 | 0.31 | 2.12 | 1.90 |
DMI, kg/day | − | 10.30 | − | −2.70 | −7.01 | − | − | 9.77 | − |
Residual feed intake, kg/day | − | − | −0.77 | − | − | −5.26 | −7.03 | − | −2.10 |
Economic gain (USD/unit gain) | |||||||||
Milk yield, kg | 224.00 | 227.20 | 225.90 | 220.90 | 222.08 | 241.00 | 223.60 | 224.30 | 223.30 |
Fat yield, kg | 85.64 | 90.30 | 89.00 | 81.78 | 86.30 | 94.06 | 86.47 | 86.28 | 86.89 |
Protein yield, kg | 93.70 | 89.34 | 92.15 | 95.08 | 94.07 | 87.30 | 93.87 | 93.60 | 93.28 |
Productive life, month | 8.50 | 7.13 | 7.28 | 8.68 | 8.49 | 8.03 | 8.67 | 8.07 | 8.05 |
Days open, day | −6.14 | 1.16 | −0.78 | 4.88 | −1.96 | −4.88 | −0.85 | −5.75 | −5.17 |
DMI, kg/day | − | −17.31 | − | 4.53 | 11.78 | − | − | −16.42 | − |
Residual feed intake, kg/day | − | − | 1.31 | − | − | 8.95 | 11.97 | − | 3.58 |
Index accuracy | 0.89 | 0.92 | 0.91 | 0.96 | 0.97 | 0.96 | 0.93 | 0.90 | 0.90 |
Total selection index response, (USD/unit gain) | 410 | 400 | 410 | 420 | 420 | 430 | 420 | 390 | 410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadri, S.; Sadeghi-Sefidmazgi, A.; Zamani, P.; Ghorbani, G.R.; Toghiani, S. Implementation of Feed Efficiency in Iranian Holstein Breeding Program. Animals 2023, 13, 1216. https://doi.org/10.3390/ani13071216
Nadri S, Sadeghi-Sefidmazgi A, Zamani P, Ghorbani GR, Toghiani S. Implementation of Feed Efficiency in Iranian Holstein Breeding Program. Animals. 2023; 13(7):1216. https://doi.org/10.3390/ani13071216
Chicago/Turabian StyleNadri, Sara, Ali Sadeghi-Sefidmazgi, Pouya Zamani, Gholam Reza Ghorbani, and Sajjad Toghiani. 2023. "Implementation of Feed Efficiency in Iranian Holstein Breeding Program" Animals 13, no. 7: 1216. https://doi.org/10.3390/ani13071216
APA StyleNadri, S., Sadeghi-Sefidmazgi, A., Zamani, P., Ghorbani, G. R., & Toghiani, S. (2023). Implementation of Feed Efficiency in Iranian Holstein Breeding Program. Animals, 13(7), 1216. https://doi.org/10.3390/ani13071216