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Simple Summary: European sea bass is a species with high economic and societal value in the
Mediterranean due to its intensive use in aquaculture. However, it is a species characterized by high
cortisol levels that show high variation. The present systematic review and meta-analysis collected
and examined all the published data on circulating cortisol in this species. The aim of the study was
to analyze all published values in order to provide normal values and ranges of plasma cortisol in this
species, both in basal and post-acute stress conditions. Results revealed a very high between-study
heterogeneity, while it also calculated the pooled levels of cortisol and their confidence intervals for
both basal and post-stress conditions. Moreover, results were analyzed based on various parameters
that can potentially affect cortisol levels, including technical, such as assay type and rearing unit, as
well as biological, such as body size and anesthesia, influences.

Abstract: Background: European sea bass is a species characterized by high and dispersed cortisol
levels. The aim of the present study was to analyze all published data on basal and post-acute stress
cortisol levels in this species. Methods: For this systematic review and meta-analysis the Web of
Science and Scopus databases were searched for papers reporting plasma or serum cortisol levels in
E. sea bass, without language or date restrictions. Data were extracted directly for the reported results
and were analyzed separately for basal and post-acute stress levels, as well their standardized mean
differences (SMD) using random-effects meta-analyses. Results: Of 407 unique records identified,
69 were eligible. Basal cortisol levels had a pooled effect of 88.7 ng mL−1 (n = 57), while post-acute
stress levels were 385.9 ng mL−1 (n = 34). The average SMD between basal and post-stress was
calculated to be 3.02 (n = 22). All analyses had a high between-study heterogeneity. Results for
basal and post-stress levels were affected by the assay type and anesthesia prior to blood sampling.
Conclusions: Cortisol levels in E. sea bass are higher than most studied fish species and display large
heterogeneity. Application of stress led to elevated cortisol levels in all studies examined. In all cases,
sources of between-studies heterogeneity were identified.

Keywords: aquaculture; cortisol; European sea bass; meta-analysis; reference values; stress; welfare

1. Introduction

Cortisol is the major stress hormone in fish [1–3]. It is the final product of the action
of the Hypothalamus–Pituitary–Interrenal tissue (HPI) axis, and it has been reported
to respond with increased concentrations to various types of stress in order to regulate
stress responses [1–3]. Apart from controlling the stress responses, cortisol is a regulatory
hormone for both metabolism and osmoregulation in fish [3]. Therefore, it is a crucial
hormone in the physiology and biology of fish.

European sea bass, Dicentrarchus labrax, is a fish species with high economic value due
to the fact that it is one of the main marine aquaculture fish species in the Mediterranean.
Although widely cultured, this species shows high cortisol responses to stress compared to
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other species widely cultivated in the Mediterranean, such as gilthead seabream, Sparus
aurata, and meage, Argyrosomus regius [4,5], as well as high variation in cortisol concentra-
tions in basal (pre-stress) and post-stress conditions [6]. A decade ago, Ellis et al. (2012) [6]
reported that a high between-study variation in the basal and post-stress cortisol concentra-
tion can be observed in this species, proposing five possible sources of variation. Recent
research has shown that most of these sources indeed can add variation, while other factors
remain untested still (Table 1).

Table 1. Suggested sources of variation in cortisol levels of E. sea bass presented by Ellis et al.
(2012) [6], and the respective factors that have been studied thereinafter.

Source of Variation Reference

1. true differences in basal cortisol concentrations associated with different fish conditions (e.g.,
body size, age, etc.) Body size [7]

2. Genetic/strain differences in cortisol responsiveness coping
style/personality/temperament/behavioural syndromes

Genetics [8–11]
Coping styles [12,13]

3. different environmental conditions (e.g., water temperature, salinity, lightning, photoperiod,
season, food composition)

Temperature [14,15]
Salinity [16,17]

Photoperiod, season [18,19]
Food composition [20–23]

4. presence of unrecognized stressors (e.g., poor husbandry conditions, disease) in some studies -

5. the analytical method used (RIA, EIA/ELISA, HPLC) and possible errors ELISA vs. LC-MS/MS [24]

1.1. Rationale for Meta-Analysis

As discussed earlier, cortisol variation in E. sea bass is large, both in the same study
(within population [8]) and between different studies. This makes the generalization of
conclusions based on a single measurement impossible, since under such conditions it is
hard to define accurate reference values. However, cortisol measurement is an important
indicator of the physiological status of fish in terms of stress, osmoregulatory, and metabolic
regulations [2]. A meta-analysis of data from different independent studies can provide a
quantitative statistical way to combine their results. Especially in cases with data that show
high heterogeneity, such as cortisol in E. sea bass, a meta-analysis using random effects
models allows for important conclusions to be drawn. Moreover, certain meta-analysis
statistical tools provide the means to incorporate other effects, such as environmental
(husbandry, water quality etc.), biological (body weight), and technical (method used to
quantify cortisol), in the analysis. For instance, the assay type used to measure cortisol in
each study (ELISA, RIA, HPLC) can be included in a sub-group meta-analysis to provide
information on whether the assay type affects the outcome of the study.

1.2. Objectives

The objective of the present study was to provide normal values and ranges of plasma
cortisol in E. sea bass, both in basal (i.e., without experimental exposure to any stressors)
and post-acute stress conditions, as well as quantify the standardized mean difference
between basal and post- stress (both acute and chronic) cortisol levels. Moreover, this
study aimed at investigating the effects of (1) cortisol measurement assay type, (2) type of
rearing unit, (3) use of anesthesia during the blood sampling, (4) water parameters such as
temperature, salinity, dissolved oxygen, pH, (5) fish body weight, (6) stocking density, and,
in the cases of post-stress levels, (7) the time after stress that the blood sampling took place.

2. Materials and Methods

The Preferred Reporting Items for Systematic reviews and Meta-Analyses Statement
(PRISMA) guidelines to plan, implement, and report this systematic review and meta-
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analysis have been followed in this study [25]. The PRISMA checklist is available in
Supplementary Table S1.

2.1. Identification of Studies

The databases Web of Science and Scopus were assessed using the search terms
(“European sea bass” OR “sea bass” OR dicentrarchus OR labrax) AND (cortisol OR
glucocorticoid OR corticosteroid) to find peer-reviewed articles reporting cortisol levels
in E. sea bass, until the date of search (7 March 2022). Figure 1 shows a flow diagram
that summarizes all stages of the systematic review process, including the numbers of
studies identified at each stage and any reasons for exclusion. This workflow has not been
published and no protocol was prepared.
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2.2. Eligibility Criteria

Out of the 407 research items retrieved from the database search after duplicate re-
moval, the criteria used for screening the articles were that: (Scr1) the study concerned E.
sea bass, (Scr2) examined fully developed fish, therefore excluding larvae, and (Scr3) re-
ported plasma, or serum cortisol levels with their concentration. At this stage, 330 research
items were excluded, and the remaining 77 were subjected to more detailed inspection
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for eligibility, including only studies that: (Eli1) provided information on the number
of animals used in each experimental group, (Eli2) provided information regarding the
dispersion of the data, either as Standard Deviation (S.D.) or as Standard Error of the Mean
(S.E.M.), (Eli3) used the individuals and not the tanks as experimental units and, therefore,
presented the results as an average of individuals and not tanks, and (Eli4) it was possible to
attribute the data to control or post-stress conditions. After this stage, 8 research items were
excluded ([16,26–32]; Table S2), and the remaining 69 items were used in the meta-analysis.

2.3. Data Extraction

All qualitative information of the studies, such as assay type, rearing system, fish
size, and water parameters, were retrieved from the text and tables of the research items.
Data from the research items were extracted either from tables or graphs reporting the
mean value ± S.D. or S.E.M. In the latter case, the software ImageJ was used for image
analysis based on measuring the length of the y-axis and the length of the projections of
the cortisol mean ± S.D. or S.E.M. In cases where various post-stress time points were
presented, the time of the peak response was used. Moreover, when more than one control
group was presented and in order not to violate the assumption of independency of data
for the meta-analysis by analyzing data from the same research item more than once, the
control groups were pooled. All cortisol data were analyzed as ng mL−1. The vast majority
of the studies reported this measuring unit (62 out of 69 studies) or its derivatives ug/dL,
ug/mL and ng/dL (4 out of 69 studies). There were 3 studies that reported the results
as nmol L−1 (nM), and their data were converted to ng mL−1 by multiplying with the
conversion factor 0.36245.

2.4. Coding of Data

Each study was coded for quantitative and qualitative data. Quantitative data included
(1) fish body size, (2) water temperature, (3) dissolved oxygen, (4) water salinity, (5) water
pH, and (6) stocking density. The qualitative data included (7) assay type used to measure
cortisol, (8) rearing system, (9) anesthesia type, and, (10) in cases of post-stress samplings,
total time between the application of stress and sampling, defined as classes (e.g., 0–30 min,
30–60 min etc.).

In cases where the quantitative data were reported as a range, the mean value was
calculated. For instance, in the study by Tintos et al. 2006 [33] where the body weight was
reported to range between 15–20 g, the weight was recorded as the mean between the two
values, i.e., 17.5 g.

2.5. Statistical Analysis

All statistical analysis was performed in RStudio [34], using the packages “meta” [35],
“dmetar” [36], and “tidyverse” [37]. Since considerable between-study heterogeneity
was expected, a random-effects model was used to pool effect sizes. The heterogeneity
variance τ2 was calculated using the restricted maximum likelihood estimator, while the
confidence interval around the pooled effect was calculated using the Knapp–Hartung
adjustments [38].

Specifically, for the basal and post-stress analysis, the pre-calculated effect sizes were
analyzed under the “metagen” function, while analysis of the standardized mean differ-
ences (SMD) and their 95% confidence intervals (CIs) between basal and post-stress levels
were analyzed under the “metacont” function, using Hedges method to calculate the SMD
due to the small number of subjects in most studies [35,39]. Subgroup analysis for the
qualitative treatment data was performed using the “byvar” argument and was based
on calculating different τ2 for each subgroup, and subgroups were tested for significant
differences using the Q test. Meta-regression on the quantitative influence data was per-
formed using the “metareg” function and risk of bias was assessed by Egger’s test using
the “metabias” function. The forest plot was created using the “forest” function.
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3. Results
3.1. Study Characteristics

The final outcome of the literature search was 69 peer-reviewed studies that concerned
circulating cortisol levels in E. sea bass and provided sufficient information on the number
of animals used and the population mean values and dispersion (Figure 1). Out of these,
35 studies reported only basal, 12 only post-stress, and 22 both basal and post-stress cortisol
concentrations, thus making a total of 57 studies reporting basal levels and 34 studies
reporting post-stress levels. Summary characteristics for the research items included in the
meta-analysis are presented (Table 2). All 69 studies had reported the weight of the fish.

3.2. Basal Levels

Frequency distribution analysis on the basal cortisol levels resulted in a positively
skewed distribution (Figure 2a). The pooled effect size was calculated at 88.7 ng mL−1

[95%-CI: 65.5–109.8], with a high between-study heterogeneity (Table 3). Egger’s test
showed that no significant publication bias was present in the dataset (intercept = 13.5,
df = 55; p = 0.525).
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Subgroup analysis based on the assay type revealed differences between groups. Due
to the low number of studies using HPLC and chemiluminescence/electrochemiluminescence
assays, an analysis including only the studies using ELISA and RIA assays was performed
and showed that the difference between them was significant (Q1 = 5.36; p = 0.021), being
higher in ELISA than RIA. The use of anesthetic also had a significant effect on cortisol
(Q5 = 12.69; p = 0.026), while no differences were observed between the rearing unit systems
(Q3 = 1.41; p = 0.703).

Meta-regression analysis between effect sizes and quantitative characteristics showed
that none of the examined parameters, i.e., fish body weight, water temperature, dissolved
oxygen concentration, salinity, pH, and stocking density, affected the results.
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Table 2. Studies included in the meta-analysis (n = 69). In Dissolved oxygen, Salinity, pH, and Stocking density a “+” symbol signifies the presence, while a “−“
symbol the absence of information in the respective study.

Study Year Treatment Temperature
(◦C)

Dissolved
Oxygen

(mg L−1)
Salinity pH Stocking

Density Assay Type Rearing System Anesthetic Total Time
(min)

[5] 2016 Basal/Post-stress 15.0 − − − + ELISA Cage Phenoxyethanol 30–60
[7] 2014 Basal/Post-stress - + + − + ELISA Open flow Clove oil 60–90

[10] 2021 Basal/Post-stress 19.0 − + − + ELISA Open flow Phenoxyethanol 60–90
[11] 2020 Post-stress 18.0 − + − + ELISA Open flow Phenoxyethanol 30–60
[12] 2015 Post-stress 20.1 − + − − ELISA RAS Benzocaine 30–60
[13] 2020 Post-stress - − − − − ELISA Open flow Benzocaine 30–60
[14] 2018 Basal/Post-stress - − + + + ELISA RAS Phenoxyethanol 60–90
[15] 2020 Basal 16.0 − + − − ELISA RAS MS222

[18] 2011 Basal - − − − − RIA Pond Ice slurry/cold
water

[20] 2013 Post-stress 21.2 + + − − RIA RAS Clove oil
[21] 2020 Basal 18.0 + − + + HPLC RAS Clove oil
[22] 2020 Post-stress 22.0 + − − − Open flow Phenoxyethanol 90–120
[23] 2017 Basal 25.0 − + − − ELISA RAS Phenoxyethanol
[24] 2021 Post-stress 21.0 − − − − ELISA RAS Benzocaine 60–90
[33] 2006 Basal 20.0 − + − − ELISA Open flow Phenoxyethanol
[40] 2009 Basal 19.5 − − − − RIA Open flow -
[41] 2019 Post-stress 20.9 − + + − ELISA RAS Benzocaine
[42] 2020 Post-stress 21.5 − + + − ELISA RAS Benzocaine 30–60
[43] 2020 Basal 18.0 − + + + Chemiluminescence Open flow Clove oil
[44] 2010 Basal/Post-stress - − − − − RIA Pond MS222 120–240
[45] 2018 Basal 20.5 + − − − RIA - None
[46] 2021 Basal 17.5 − − − + ELISA RAS MS222
[47] 2021 Basal 17.0 − + − + RIA RAS MS222
[48] 2010 Basal 18.0 − − − + HPLC Open flow Clove oil
[49] 2014 Basal 18.0 − + − + HPLC - Clove oil
[50] 2019 Basal 18.0 − + − − ELISA RAS Clove oil
[51] 2011 Basal 20.0 − + + + ELISA Open flow MS222
[52] 2012 Basal 18.0 − − − − ELISA Open flow MS222
[53] 1998 Basal - − − − − RIA Open flow MS222
[54] 2020 Basal/Post-stress 21.9 − + + − ELISA Open flow Phenoxyethanol 0–30
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Table 2. Cont.

Study Year Treatment Temperature
(◦C)

Dissolved
Oxygen

(mg L−1)
Salinity pH Stocking

Density Assay Type Rearing System Anesthetic Total Time
(min)

[55] 2010 Basal 21.2 − + + + RIA Open flow Phenoxyethanol
[56] 2008 Basal/Post-stress 18.5 + + − + RIA RAS Phenoxyethanol 60–90
[57] 2021 Post-stress 21.0 + + − − RIA RAS MS222 0–30
[58] 2008 Basal/Post-stress 20.0 + + − + ELISA Open flow Clove oil 60–90
[59] 2012 Basal - − − − − ELISA Cage None
[60] 2007 Basal 27.3 − − − − ELISA Open flow Phenoxyethanol
[61] 2011 Basal/Post-stress - − − − − ELISA Open flow Phenoxyethanol 90–120

[62] 2019 Basal/Post-stress 25.4 − + − − ELISA RAS Blow to
head/decapitation 60–90

[63] 2019 Basal - + + − − ELISA RAS Phenoxyethanol
[64] 2011 Basal - − − − − ELISA Cage MS222
[65] 2001 Basal/Post-stress 14.0 − + − + RIA Cage None 0–30
[66] 2014 Post-stress 20.0 − + − + ELISA Open flow Phenoxyethanol 30–60
[67] 2020 Post-stress 15.7 − + − − ELISA Open flow Phenoxyethanol 120–240

[68] 2019 Basal/Post-stress 12.5 − − − − ELISA Cage Blow to
head/decapitation 60–90

[69] 2005 Basal - − − − − RIA - Clove oil
[70] 2011 Basal 20.2 + + + + RIA Open flow MS222
[71] 2007 Basal/Post-stress - − − − + RIA Cage MS222 120–240
[72] 1996 Basal/Post-stress 13.0 − + − − RIA Open flow - >240

[73] 2010 Basal 27.0 + + − − Electro-
chemiluminescence Open flow -

[74] 2006 Basal/Post-stress 18.0 − − − + RIA Open flow Phenoxyethanol >240
[75] 2003 Basal/Post-stress 23.0 − + − + RIA Open flow Phenoxyethanol 30–60
[76] 2017 Basal/Post-stress - + + + + ELISA Cage Phenoxyethanol 30–60
[77] 2018 Basal/Post-stress 19.0 − − − + RIA Open flow Phenoxyethanol 60–90

[78] 2009 Basal 23.4 − + + + RIA RAS Ice slurry/cold
water

[79] 2013 Basal/Post-stress 22.0 + + + + ELISA RAS MS222 30–60
[80] 2010 Basal/Post-stress 22.0 + + + + ELISA RAS MS222 30–60
[81] 2019 Basal 20.0 − + + − ELISA RAS -

[82] 2008 Basal/Post-stress 24.0 + + − − RIA Pond Ice slurry/cold
water 90–120
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Table 2. Cont.

Study Year Treatment Temperature
(◦C)

Dissolved
Oxygen

(mg L−1)
Salinity pH Stocking

Density Assay Type Rearing System Anesthetic Total Time
(min)

[83] 2006 Basal 20.0 + + + − ELISA RAS None
[84] 2004 Basal 20.0 + + + − ELISA RAS None
[85] 2005 Basal 20.0 − + + + ELISA RAS MS222
[86] 2012 Basal/Post-stress 23.0 + − − + RIA Open flow None 90–120
[87] 2015 Basal 19.0 − + − − ELISA Open flow Phenoxyethanol

[88] 2006 Basal 17.0 − + − − RIA Open flow Ice slurry/cold
water

[89] 2006 Basal 12.5 − + − + RIA - Blow to
head/decapitation

[90] 2010 Basal 18.0 − − − − ELISA Open flow MS222
[91] 2009 Basal 14.0 − + − − RIA Open flow Phenoxyethanol

[92] 2012 Post-stress - − − − − RIA - Ice slurry/cold
water 120–240

[93] 2010 Basal 18.0 + − + − ELISA - None
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Table 3. Results of the meta-analysis regarding basal cortisol levels, including subgroup analysis.
ES: effect size; 95%-CI: 95% confidence intervals; I2: Higgin’s and Thompson’s between-study
heterogeneity statistic; τ2: heterogeneity variance.

n ES 95%-CI I2 τ2

Whole population 57 88.7 65.5–109.8 100.0% 6235.7

Assay type

RIA 22 60.8 37.7–83.8 100.0% 2677.7
ELISA 30 108.2 72.9–143.4 100.0% 8787.1
HPLC 3 97.3 −32.5–227.6 98.9% 2696.8
Chemiluminescence
Electrochemiluminescence 2 - - - -

Rearing unit

Open flow 25 81.1 57.6–104.6 100.0% 3168.4
RAS 17 102.9 48.1–157.7 99.9% 11,200.3
Sea cages 7 95.2 0.1–190.3 100.0% 10,575.0
Ponds 3 113.9 −21.6–249.3 99.4% 2955.7

Anesthesia

Phenoxyethanol 17 71.7 36.9–106.5 99.9% 4509.7
MS222 14 72.2 29.4–115.0 100.0% 5482.7
Clove oil 8 113.9 80.0–147.8 99.3% 1619.8
None 7 142.3 24.5–260.0 100.0% 16,051.0
Ice/Cold water 4 86.2 −19.9–192.3 100.0% 4433.8
Decap/Blow to head 3 25.6 −77.4–128.7 99.9% 1719.6

3.3. Post-Stress Levels

Frequency distribution analysis on the post-stress cortisol levels resulted in a positively
skewed distribution (Figure 2b). The pooled effect size was calculated at 385.9 ng mL−1

[95%-CI: 310.8–460.9], with a high between-study heterogeneity (Table 4). Egger’s test
resulted in a marginally significant publication bias in the dataset (intercept = 6.4, df = 32;
p = 0.047).

Subgroup analysis based on the assay type revealed differences between groups
(Q1 = 7.76; p = 0.005), being higher in ELISA than RIA. The use of anesthetic also had a
significant effect on cortisol (Q3 = 17.13; p < 0.001), excluding the “none”, “ice/cold water”,
and “decap/blow to head” groups from the analysis due to the small number of studies in
each group. On the other hand, no differences were observed between rearing unit systems
(Q2 = 5.36; p = 0.069), excluding the ponds due to their small number. Time after stress,
excluding the “>240” group due to the low number of studies, showed a significant effect
(Q4 = 9.99; p = 0.041). Finally, none of the quantitative parameters was related to the effect
sizes when the respective meta-regression analysis was performed.

3.4. Standardized Mean Difference between Basal and Post-Stress Cortisol

To assess the difference between basal and post-stress cortisol, 22 studies that included
both pre- and post- exposure to acute stress data were used. The pooled SMD was calculated
to be 3.02 [95%-CI: 2.46–3.58] (Table 5). The between-study heterogeneity was lower than
the ones in the previous analysis, but still significantly large (I2 = 81.7%, τ2 = 1.12). Egger’s
test using the Pustejovsky and Rodgers modification to avoid false positive results that
arise with the classical Egger’s test on SMDs [94], resulted in a significant publication bias
in the dataset (intercept = 4.7, df = 20; p = 0.010).
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Table 4. Results of the meta-analysis regarding post-stress cortisol levels, including subgroup
analysis. ES: effect size; 95%-CI: 95% confidence intervals; I2: Higgin’s and Thompson’s between-
study heterogeneity statistic; τ2: heterogeneity variance.

n ES 95%-CI I2 τ2

Whole population 34 385.9 310.8–460.9 99.4% 44,598.1

Assay type

RIA 13 273.8 180.5–367.1 99.6% 21,989.3
ELISA 20 458.6 352.5–564.6 98.9% 49,493.9

Rearing unit

Open flow 15 382.6 278.8–486.5 99.5% 34,183.3
RAS 11 452.1 261.4–642.8 99.4% 78,819.7
Sea cages 5 269.4 154.6–384.1 90.0% 7570.1
Ponds 2 - - - -

Anesthesia

Phenoxyethanol 14 308.1 216.9–399.4 99.6% 24,364.3
MS222 5 273.6 50.37–496.8 96.4% 31,117.1
Clove oil 3 521.0 −119.5–1161.4 94.3% 63,010.3
Benzocaine 5 692.1 439.5–944.7 96.7% 39,320.6
None 2 - - - -
Ice/Cold water 2 - - - -
Decap/Blow to head 2 - - - -

Time post-stress
(min)

0–30 3 259.2 125.8–392.5 87.3% 2353.4
30–60 10 400.6 220.7–580.5 99.6% 60,818.3
60–90 9 415.4 247.1–583.7 99.6% 46,929.3
90–120 4 423.1 228.4–617.8 89.7% 12,499.1
120–240 4 267.0 72.9–461.2 97.5% 11,913.2
>240 2 - - - -

Table 5. Results of the meta-analysis regarding the standardized mean difference (SMD) be-
tween basal and post-stress cortisol levels, including subgroup analysis. ES: effect size; 95%-CI:
95% confidence intervals; I2: Higgin’s and Thompson’s between-study heterogeneity statistic; τ2:
heterogeneity variance.

n SMD 95%-CI I2 τ2

Whole population 22 3.02 2.46–3.58 81.7% 1.12

Assay type

RIA 10 3.00 2.36–3.65 79.8% 0.61
ELISA 12 3.09 2.07–4.11 84.4% 1.86

Rearing unit

Open flow 10 3.16 2.16–4.16 81.9% 1.21
RAS 5 3.04 1.42–4.67 87.5% 1.45
Sea cages 5 2.90 1.06–4.74 87.1% 1.87
Ponds 2 - - - -

Anesthesia

Phenoxyethanol 10 3.13 2.24–4.02 82.5% 1.25
MS222 4 3.63 2.11–5.15 36.3% 0.32
Clove oil 2 - - - -
None 2 - - - -
Ice/Cold water 1 - - - -
Decap/Blow to head 2 - - - -
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Table 5. Cont.

n SMD 95%-CI I2 τ2

Time post-stress (min)

0–30 2 - - - -
30–60 5 3.59 1.59–5.59 91.7% 2.39
60–90 8 3.09 1.86–4.32 81.9% 1.30
90–120 3 2.60 0.78–4.41 19.8% 0.15
120–240 2 - - - -
>240 2 - - - -

It is obvious that stress had an overall effect on cortisol, a result that was observed in
every study (Figure 3). The high heterogeneity between the studies can also be observed
(Figure 3).

Figure 3. Forest plot depicting the SMD, 95%-CI, and weight of each study included in the analysis.
Numbers in the brackets indicate the citation number of each study in the references section. Studies used
in this meta-analysis are cited in the references [5,7,10,14,44,54,56,58,61,62,65,68,71,72,74–77,79,80,82,86].
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Subgroup analysis based on the assay type revealed no significant differences between
groups (Q1 = 0.03; p = 0.870), being similar between studies using ELISA rather than RIA
assays. No differences were observed between rearing unit systems, excluding ponds due
to the low number of studies in this group (Q2 = 0.11; p = 0.945). The same was true for
the use of anesthetics, analyzing only phenoxyethanol and MS222 (Q1 = 0.65; p = 0.421).
Finally, time after stress had no significant effect on cortisol response (Q2 = 1.56; p = 0.458)
excluding the “0–30”, “120–240”, and “<240” due to low number of studies. Finally, meta-
regression analysis between effect sizes and quantitative characteristics showed that none
of the examined parameters, i.e., fish body weight, water temperature, dissolved oxygen
concentration, salinity, pH, and stocking density, affected the results.

4. Discussion

The study of circulating cortisol concentration in E. sea bass is intriguing due to the fact
that this species shows high basal and post-stress levels of cortisol, as well as high variation
both within the same population and between different studies [4,6,8]. In fact, out of the
studied teleost species, E. sea bass is among the ones with the highest reported cortisol
levels, together with the chub, Leuciscus cephalus, the latter having been characterized as
a cortisol resistant species [95]. This high stress susceptibility has been suggested to be
co-responsible for disease outbreaks in this species [96].

In this context, a systemic review of the published cortisol levels of E. sea bass could
assist in better understanding whether cortisol levels in this species are indeed high as well
as to define possible sources of variation between studies. This meta-analysis led to the
conclusion that a high between-studies heterogeneity exists in both basal and post-stress
concentrations. The reported basal concentrations were calculated to have a pooled effect
size of 88.7 ng mL−1 with an 95% confidence interval between 65.5–109.8 ng mL−1, while
post-stress concentration had a pooled effect size of 385.9 ng mL−1 [95%-CI: 310.8–460.9].

Subgroup meta-analysis revealed some interesting findings. However, these findings
should be interpreted with care since there are constraints in the use of subgroups meta-
analyses. The most important ones are the small number of studies in a subgroup and the
high between-study heterogeneity, since both reduce the statistical power of the analysis.
In order to reduce the “small number of studies” effect in the current analyses, subgroups
with lower than three studies were excluded from subgroup meta-analysis. On the other
hand, although high heterogeneity was observed in the current study, there are no available
tools to mitigate its effect on the subgroups analysis.

Having the above constrains in mind, one of the major factors that seemed to affect
the heterogeneity was the assay type. In both basal and post-stress levels, the pooled effect
size of studies using ELISA assays was significantly higher than studies using RIA assays.
It is generally accepted that RIA has a higher efficiency in measuring cortisol compared
to ELISA. In many studies, RIA assays are considered as more accurate when it comes
to the analysis of fish cortisol [97], human salivary cortisol [98], as well as mice [99] and
bird [100] corticosterone. However, there are also studies in mammals that show equal
results between ELISA and RIA [101], or even better performance in the ELISA assays [102].
Therefore, it is difficult to definitely conclude which assay type is more accurate in reporting
cortisol levels, but the current study supports the notion that the cortisol assay type should
be taken into careful consideration when designing a study and when interpreting the
results. On the other hand, when the standardized mean differences between basal and
post-stress cortisol levels were analyzed, no difference between assay types was observed.
This result indicates that although ELISA assays tend to over-estimate cortisol levels, they
do so in a similar manner in basal and post-stress concentrations. In other words, both assay
types record the magnitude of the response in the same way although ELISA overestimates
the absolute values.

The rearing system, on the other hand, seemed not to affect cortisol levels. The most
commonly used systems were the open-flow and the RAS, consisting of approximately 3/4
of the total number of studies. To the best of our knowledge, there are no published studies



Animals 2023, 13, 1340 13 of 18

in E. sea bass to directly compare fish welfare between these rearing systems, though the
effects of increased stocking density seem to be the same in fish reared in RAS and open
flow systems [55,78]. What has been shown to affect welfare in this species is the size
of the rearing unit, in either open flow tanks in larval stages [103] or sea cages during
on-growing [76].

Regarding means of anesthesia, most studies used chemical anesthetics, mainly phe-
noxyethanol, followed by MS222. In both basal and post-stress conditions anesthesia
treatment significantly affected the results, showing lower values in decapitated or per-
cussively blown-in-the-head fish. It is well known that E. sea bass is a species with a
rapid cortisol response [75], and, therefore, immediate killing does not allow cortisol to
rise. In that way, minimum cortisol levels are reported when using this method. In basal
conditions, the highest levels were reported in fish that were not under anesthesia, i.e., they
were conscious, during blood sampling. When anesthetics were used, phenoxyethanol
and MS222 resulted in lower levels than the other anesthetics indicating that, when E.
sea bass is sampled for cortisol levels under anesthesia, it is preferable to use one of the
aforementioned anesthetics. However, it should be noted that studies assessing direct com-
parisons between conscious and chemically anesthetized fish, using either phenoxyethanol
or clove-oil [59] and MS222 [65], have not reported such differences.

In terms of magnitude of the stress response in relation to the time after stress, it
is known that, in E. sea bass, cortisol starts to rise at least 6 min after the application of
stress [75], reaching maximum levels at 60 to 120 min post-stress when recovery starts
to take place [4,7,14]. Grouping of studies based on the post-stress time at which fish
were sampled revealed a similar outcome although it should be noted that the differences
were not significant. However, this synthesis of results reflected the typical, more-or less,
time-course cortisol response of this species [4,5,14,75], even though different stressors, in
terms of nature, intensity, and duration were used.

It is acknowledged that there are some limitations in the conclusions of the current
meta-analysis. As mentioned before, the first is due to the high between-studies hetero-
geneity. This is a result of various reasons, including the different aims of the studies, the
different assays used, the rearing methods, temperature, and so on. The second lies to the
fact that E. sea bass responds very fast to handling [75], and it is, therefore, difficult to
ascertain that the reported basal levels have been obtained under similar sampling stress
between studies. This is similar to the source of variation #4 proposed by Ellis et al. [6]
(Table 1). Third, there was a scarcity of information in environmental data that could
affect the cortisol response, such as water temperature, salinity, pH, and dissolved oxygen
concentration. Finally, the circadian rhythm [7,19] the seasonality [5,18], and the sex of the
fish [104] are additional potential sources of variation in cortisol levels which are hardly
taken into consideration—and subsequently not reported—in most published studies, and,
therefore, the current study could not include them in the analysis.

5. Conclusions

In conclusion, taking into consideration the limitations discussed above, the current
meta-analysis examined 69 studies and calculated a pooled effect for basal and post-stress
cortisol levels for E. sea bass. A high between-studies heterogeneity was recorded, with
the factors assay type and anesthesia affecting cortisol levels and adding variance to the
results. Moreover, a significant effect of acute stress on cortisol levels was observed in all
studies examined. On the contrary, no association between cortisol and fish body weight
or environmental conditions such as water temperature, dissolved oxygen, salinity pH,
stocking density, or the rearing unit was observed. Finally, although it was not possible
to directly test for genetic differences between fish, seasonality, circadian rhythms, and
sex due to the lack of data in the published studies, the high between-study heterogeneity
indicates that these factors may be additional factors causing variation between studies in
the examined species.
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