Effects of Anthropogenic Disturbance of Natural Habitats on the Feeding Ecology of Moorish Geckos
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Effects of Human Disturbance on Microhabitat Characteristics
2.3. Availability of Potential Prey
2.4. Geckos Sampling Procedures
2.5. Analyses of Fecal Contents of Geckos
2.6. Data Analyses
3. Results
3.1. Effects of Human Disturbance on Microhabitat Characteristics
3.2. Availability of Potential Invertebrate Prey
3.3. Diet of the Geckos
3.4. Diet Selection Patterns
3.5. Body Size and Body Condition of Geckos
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilbert, O.L. The Ecology of Urban Habitats; Springer: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Walker, L.R. The Biology of Disturbed Habitats; Oxford Academic Press: Oxford, UK, 2011. [Google Scholar]
- Wuerthner, G.; Crist, E.; Butler, T. Keeping the Wild; Island Press: Washington, DC, USA, 2014. [Google Scholar]
- Peres, C.A.; Barlow, J.; Laurance, W.F. Detecting anthropogenic disturbance in tropical forests. Trends Ecol. Evol. 2006, 21, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The biodiversity of species and their rates of extinction, distribution, and protection. Science 2014, 344, 1246752. [Google Scholar] [CrossRef] [PubMed]
- Locey, K.J.; Stone, P.A. Factors affecting range expansion in the introduced Mediterranean Gecko, Hemidactylus turcicus. J. Herpetol. 2006, 40, 526–530. [Google Scholar] [CrossRef]
- Stabler, L.B.; Johnson, W.L.; Locey, K.J.; Stone, P.A. A comparison of Mediterranean Gecko (Hemidactylus turcicus) populations in two temperate zone urban habitats. Urban Ecosyst. 2012, 15, 653–666. [Google Scholar] [CrossRef]
- Johnson, M.T.J.; Munshi-South, J. Evolution of life in urban environments. Science 2017, 358, 6363. [Google Scholar] [CrossRef]
- Szulkin, M.; Munshi-South, J.; Charmantier, A. Urban Evolutionary Biology; Oxford University Press: New York, NY, USA, 2020. [Google Scholar]
- Lowry, H.; Lill, A.; Wong, B.B.M. Behavioural responses of wildlife to urban environments. Biol. Rev. 2013, 88, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.B.M.; Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 2015, 26, 665–673. [Google Scholar] [CrossRef]
- Stroud, J.T.; Colom, M.; Ferrer, P.; Palermo, N.; Vargas, V.; Cavallini, M.; Lopez, J.; Jones, I. Behavioral shifts with urbanization may facilitate biological invasion of a widespread lizard. Urban Ecosyst. 2019, 22, 425–434. [Google Scholar] [CrossRef]
- Pellitteri-Rosa, D.; Bellati, A.; Cocca, W.; Gazzola, A.; Martín, J.; Fasola, M. Urbanization affects refuge use and habituation to predators in a polymorphic lizard. Anim. Behav. 2017, 123, 359–367. [Google Scholar] [CrossRef]
- Sol, D.; Griffin, A.S.; Bartomeus, I.; Boyce, H. Exploring or avoiding novel food resources? The novelty conflict in an invasive bird. PLoS ONE 2011, 6, 0019535. [Google Scholar] [CrossRef]
- Battles, A.C.; Whittle, T.K.; Stehle, C.M.; Johnson, M.A. Effects of human land use on prey availability and body condition in the green anole lizard, Anolis carolinensis. Herpetol. Conserv. Biol. 2013, 8, 16–26. [Google Scholar]
- Peterson, M.; Baglieri, M.; Mahon, K.; Sarno, R.J.; Ries, L.; Burman, P.; Grigione, M.M. The diet of coyotes and red foxes in Southern New York. Urban Ecosyst. 2021, 24, 1–10. [Google Scholar] [CrossRef]
- Salvador, A. Salamanquesa común—Tarentola mauritanica. In Enciclopedia Virtual de los Vertebrados Españoles; Salvador, A., Marco, A., Eds.; Museo Nacional de Ciencias Naturales, CSIC: Madrid, Spain, 2016; Available online: http://www.vertebradosibericos.org/ (accessed on 15 February 2023).
- Seva, E. Densidad, distribución y reparto de recursos entre dos especies de saurios de la isla Plana (Alicante, España). Bull. Ecol. 1988, 19, 357–362. [Google Scholar]
- Martínez-Rica, J.P. Contribución al estudio de la biología de los gecónidos ibéricos (Rept., Sauria). Publ. Centro Piren. Biol. Exp. 1974, 5, 1–291. [Google Scholar]
- Gil, M.J.; Pérez-Mellado, V.; Guerrero, F. Eine vergleichende studie des nahrungserwerbs von Tarentola mauritanica (Reptilia: Gekkonidae) in habitaten auf dem festland und auf inseln. Sauria 1993, 15, 9–17. [Google Scholar]
- Gil, M.J.; Guerrero, F.; Pérez-Mellado, V. Seasonal variation in diet composition and prey selection in the Mediterranean gecko Tarentola mauritanica. Israel J. Zool. 1994, 40, 61–74. [Google Scholar]
- Hódar, J.A.; Pleguezuelos, J.M. Diet of the moorish gecko Tarentola mauritanica in an arid zone of south-eastern Spain. Herpetol. J. 1999, 9, 29–32. [Google Scholar]
- Hódar, J.A.; Pleguezuelos, J.M.; Villafranca, C.; Fernández-Cardenete, J.R. Foraging mode of the Moorish gecko Tarentola mauritanica in an arid environment: Inferences from abiotic setting, prey availability and dietary composition. J. Arid Environ. 2006, 65, 83–93. [Google Scholar] [CrossRef]
- Capula, M.; Luiselli, L. Trophic niche overlap in sympatric Tarentola mauritanica and Hemidactylus turcicus: A preliminary study. Herpetol. J. 1994, 4, 24–25. [Google Scholar]
- García-Roa, R.; Ortega, J.; López, P.; Civantos, E.; Martín, J. Revisión de la distribución y abundancia de la herpetofauna en las Islas Chafarinas: Datos históricos vs. tendencias poblacionales. Bol. Asoc. Herpetol. Esp. 2014, 25, 55–62. [Google Scholar]
- Martín, J.; López, P.; García, L.V. Soil characteristics determine microhabitat selection of the fossorial amphisbaenian Trogonophis wiegmanni. J. Zool. 2013, 290, 265–272. [Google Scholar] [CrossRef]
- Herrick, J.E.; Jones, T.L. A dynamic cone penetrometer for measuring soil penetration resistance. Soil Sci. Soc. Am. J. 2002, 66, 1320–1324. [Google Scholar] [CrossRef]
- Martín, J.; Salvador, A. Tail loss and foraging tactics of Iberian rock-lizards, Lacerta monticola. Oikos 1993, 66, 318–324. [Google Scholar] [CrossRef]
- Goldsbrough, C.L.; Hochuli, D.F.; Shine, R. Invertebrate biodiversity under hot rocks: Habitat use by the fauna of sandstone outcrops in the Sydney region. Biol. Conserv. 2003, 109, 85–93. [Google Scholar] [CrossRef]
- Martín, J.; Ortega, J.; López, P.; Pérez-Cembranos, A.; Pérez-Mellado, V. Fossorial life does not constrain diet selection in the amphisbaenian Trogonophis wiegmanni. J. Zool. 2013, 291, 226–233. [Google Scholar] [CrossRef]
- Green, A.J. Mass/length residuals: Measures of body condition or generation of spurious results? Ecology 2000, 82, 1473–1483. [Google Scholar] [CrossRef]
- Schulte-Hostedde, A.I.; Zinner, B.; Millar, J.S.; Hickling, G.J. Restitution of mass-size residuals: Validating body condition indices. Ecology 2005, 86, 155–163. [Google Scholar] [CrossRef]
- Peig, J.; Green, A.J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 2009, 118, 1883–1891. [Google Scholar] [CrossRef]
- Wikelski, M.; Cooke, S.J. Conservation physiology. Trends Ecol. Evol. 2006, 21, 38–46. [Google Scholar] [CrossRef]
- Brischoux, F.; Rolland, V.; Bonnet, X.; Caillaud, M.; Shine, R. Effects of oceanic salinity on body condition in sea snakes. Integr. Comp. Biol. 2012, 52, 235–244. [Google Scholar] [CrossRef]
- Angelici, F.M.; Luiselli, L.; Rugiero, L. Food habits of the green lizard, Lacerta bilineata, in central Italy and a reliability test of faecal pellet analysis. Ital. J. Zool. 1997, 64, 267–272. [Google Scholar] [CrossRef]
- Suarez, A.V.; Richmond, J.Q.; Case, T.J. Prey selection in horned lizards following the invasion of Argentine ants in southern California. Ecol. Appl. 2000, 10, 711–725. [Google Scholar] [CrossRef]
- Hawlena, D.; Pérez-Mellado, V. Change your diet or die: Predator-induced shifts in insectivorous lizard feeding ecology. Oecologia 2009, 161, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cembranos, A.; León, A.; Pérez-Mellado, V. Omnivory of an insular lizard: Sources of variation in the diet of Podarcis lilfordi (Squamata, Lacertidae). PLoS ONE 2016, 11, e0148947. [Google Scholar] [CrossRef]
- Pincheira-Donoso, D. Testing the accuracy of fecal based analyses in studies of trophic ecology of lizards. Copeia 2008, 2008, 322–325. [Google Scholar] [CrossRef]
- Pérez-Mellado, V.; Pérez-Cembranos, A.; Garrido, M.; Luiselli, L.; Corti, C. Using faecal samples in lizard dietary studies. Amphibia-Reptilia 2011, 32, 1–7. [Google Scholar] [CrossRef]
- Alemany, I.; Pérez-Cembranos, A.; Castro, J.A.; Picornell, A.; Pérez-Mellado, V.; Ramon, C. Diet of the insular lizard, Podarcis lilfordi (Günther, 1874): Complementary morphological and molecular approaches. Animals 2023, 13, 507. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Croom Helm: London, UK, 1988. [Google Scholar]
- Hutcheson, K. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 1970, 29, 151–154. [Google Scholar] [CrossRef]
- Pianka, E.R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef]
- Ivlev, V.S. Experimental Ecology of the Feeding of Fishes; Yale University Press: New Haven, CT, USA, 1961. [Google Scholar]
- Jacobs, J. Quantitative measurements of food selection; a modification of the forage ratio and Ivlev’s selectivity index. Oecologia 1974, 14, 413–417. [Google Scholar] [CrossRef]
- Lechowicz, M.J. The sampling characteristics of electivity indices. Oecologia 1982, 52, 22–30. [Google Scholar] [CrossRef]
- Vanderploeg, H.A.; Scavia, D. Calculation and use of selectivity coefficients of feeding: Zooplankton grazing. Ecol. Model. 1979, 7, 135–149. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry, 3rd ed.; W.H. Freeman and Co: New York, NY, USA, 1995. [Google Scholar]
- Webb, J.K.; Shine, R. Paving the way for habitat restoration: Can artificial rocks restore degraded habitats of endangered reptiles? Biol. Conserv. 2000, 92, 93–99. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Robinson, W.H. Urban Entomology: Insect and Mite Pests in the Human Environment; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Martín, J.; Ortega, J.; García-Roa, R.; Rodríguez-Ruiz, G.; Pérez-Cembranos, A.; Pérez-Mellado, V. Coping with drought? Effects of extended drought conditions on soil invertebrate prey and diet selection by a fossorial amphisbaenian reptile. Curr. Zool. 2022. [Google Scholar] [CrossRef]
- Fletcher, D.E.; Hopkins, W.A.; Standora, M.M.; Arribas, C.; Baionno-Parikh, J.A.; Saldaña, T.; Fernández-Delgado, C. Geckos as indicators of urban pollution. In Urban Herpetology. Herpetological Conservation 3; Mitchell, J.C., Jung Brown, R.E., Bartholomew, B., Eds.; Society for the Study of Amphibians and Reptiles: Salt Lake City, UT, USA, 2008; pp. 225–237. [Google Scholar]
- Balakrishna, S.; Batabyal, A.; Thaker, M. Dining in the city: Dietary shifts in Indian rock agamas across an urban–rural landscape. J. Herpetol. 2016, 50, 423–428. [Google Scholar] [CrossRef]
- Courteney-Smith, J. The Arcadia Guide to Reptile and Amphibian Nutrition; Arcadia Reptile: Ely, UK, 2014. [Google Scholar]
- Dunham, A.E. An experimental study of interspecific competition between the iguanid lizards Sceloporus merriami and Urosaurus ornatus. Ecol. Monogr. 1980, 50, 309–330. [Google Scholar] [CrossRef]
- Rodriguez Curras, M.; Donadio, E.; Middleton, A.D.; Pauli, J.N. Carnivore niche partitioning in a human landscape. Am. Nat. 2022, 199, 496–509. [Google Scholar] [CrossRef]
- Aksornneam, A.; Sung, Y.H.; Aowphol, A. Effect of habitat structure on abundance and body conditions of two sympatric geckos, Cyrtodactylus saiyok and Cyrtodactylus tigroides, in the karst forest of western Thailand. J. Nat. Hist. 2023, 57, 395–407. [Google Scholar] [CrossRef]
- Amo, L.; López, P.; Martín, J. Habitat deterioration affects body condition of lizards: A behavioral approach with Iberolacerta cyreni lizards inhabiting ski resorts. Biol. Conserv. 2007, 135, 77–85. [Google Scholar] [CrossRef]
- Wilder, S.M.; Raubenheimer, D.; Simpson, S.J. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct. Ecol. 2016, 30, 108–115. [Google Scholar] [CrossRef]
Rey Island (Natural) (n = 29 Points) | Isabel Island (Altered) (n = 25 Points) | |||
---|---|---|---|---|
Mean ± SE | Mean ± SE | F1,52 | p | |
Bare soil with gravel (%) | 55.0 ± 4.8 | 42.8 ± 4.2 | 3.52 | 0.066 |
Rocks (%) | 27.1 ± 3.8 | 23.8 ± 3.1 | 0.43 | 0.52 |
Grasses (%) | 17.9 ± 3.4 | 33.4 ± 4.5 | 7.89 | 0.007 |
Bushes (%) | 27.2 ± 4.5 | 15.0 ± 2.4 | 5.21 | 0.027 |
Mean bush height (cm) | 52 ± 9 | 74 ± 12 | 2.30 | 0.13 |
Soil compaction (kg cm−2) | 1.11 ± 0.13 | 1.71 ± 0.19 | 6.84 | 0.011 |
Rey Island (Natural) n = 111 Points | Isabel Island (Altered) n = 82 Points | |||||||
---|---|---|---|---|---|---|---|---|
Abundance | Presence | Abundance | Presence | |||||
n | % | Mean ± SE | % | n | % | Mean ± SE | % | |
Gastropoda | 112 | 9.9 | 1.01 ± 0.15 | 37.8 | 172 | 21.9 | 2.10± 0.36 | 63.4 |
Pseudoscorpion | 4 | 0.3 | 0.04 ± 0.02 | 8.0 | 6 | 0.8 | 0.07 ± 0.05 | 3.7 |
Araneae | 36 | 3.2 | 0.32 ± 0.07 | 23.4 | 18 | 2.3 | 0.22 ± 0.06 | 18.3 |
Opiliones | 2 | 0.2 | 0.02 ± 0.01 | 1.8 | 1 | 0.1 | 0.01 ± 0.01 | 1.2 |
Acarina | 3 | 0.3 | 0.03 ± 0.03 | 0.9 | 13 | 1.6 | 0.16 ± 0.07 | 8.5 |
Isopoda | 198 | 17.5 | 1.78 ± 0.44 | 31.5 | 283 | 36.0 | 3.45 ± 0.59 | 54.9 |
Chilopoda | 41 | 3.6 | 0.37 ± 0.08 | 23.4 | 15 | 1.9 | 0.18 ± 0.07 | 9.8 |
Thysanura | 84 | 7.4 | 0.76 ± 0.19 | 25.2 | 26 | 3.3 | 0.32 ± 0.15 | 12.2 |
Dictyoptera | 5 | 0.4 | 0.02 ± 0.01 | 3.6 | 3 | 0.4 | 0.04 ± 0.02 | 3.7 |
Embioptera | 27 | 2.4 | 0.02 ± 0.01 | 5.4 | 1 | 0.1 | 0.01 ± 0.01 | 1.2 |
Homoptera | 2 | 0.2 | 0.02 ± 0.01 | 1.8 | 1 | 0.1 | 0.01 ± 0.01 | 1.2 |
Heteroptera | 11 | 1.0 | 0.10 ± 0.08 | 2.7 | 3 | 0.4 | 0.04 ± 0.03 | 2.4 |
Diptera | 11 | 1.0 | 0.10 ± 0.03 | 9.9 | 6 | 0.8 | 0.07 ± 0.04 | 4.9 |
Lepidoptera | 3 | 0.3 | 0.03 ± 0.02 | 2.7 | 2 | 0.3 | 0.02 ± 0.02 | 2.4 |
Coleoptera | 173 | 15.3 | 1.56 ± 0.46 | 25.9 | 85 | 10.8 | 1.04 ± 0.17 | 48.8 |
Hymenoptera | 2 | 0.2 | 0.02 ± 0.01 | 1.8 | 2 | 0.2 | 0.02 ± 0.02 | 2.4 |
Formicidae | 409 | 36.3 | 3.68 ± 9.91 | 22.5 | 144 | 18.3 | 1.76 ± 0.56 | 39.0 |
Insect larvae | 5 | 0.4 | 0.05 ± 0.02 | 3.6 | 6 | 0.8 | 0.07 ± 0.03 | 7.9 |
Total Invertebr. | 1128 | 100 | 10.16 ± 1.08 | 91.9 | 787 | 100 | 9.60 ± 1.02 | 98.8 |
Rey Island (Natural) n = 39 Fecal Pellets | Isabel Island (Altered) n = 78 Fecal Pellets | |||||||
---|---|---|---|---|---|---|---|---|
Abundance | Presence | Abundance | Presence | |||||
n | % | Mean ± SE | % | n | % | Mean ± SE | % | |
Gastropoda | 3 | 1.5 | 0.04 ± 0.02 | 3.8 | ||||
Pseudoscorpion | 3 | 3.5 | 0.08 ± 0.04 | 7.7 | 2 | 1.0 | 0.03 ± 0.02 | 2.6 |
Araneae | 11 | 12.8 | 0.28 ± 0.07 | 28.2 | 23 | 11.7 | 0.29 ± 0.06 | 26.9 |
Opiliones | 1 | 0.5 | 0.01 ± 0.01 | 1.3 | ||||
Isopoda | 2 | 2.3 | 0.06 ± 0.04 | 5.1 | 1 | 0.5 | 0.01 ± 0.01 | 1.3 |
Dictyoptera | 9 | 10.5 | 0.23 ± 0.09 | 17.9 | 6 | 3.0 | 0.08 ± 0.03 | 7.7 |
Homoptera | 2 | 2.3 | 0.05 ± 0.04 | 5.1 | 1 | 0.5 | 0.01 ± 0.01 | 1.3 |
Heteroptera | 2 | 2.3 | 0.05 ± 0.04 | 5.1 | 1 | 0.5 | 0.01 ± 0.01 | 1.3 |
Diptera | 4 | 4.5 | 0.10 ± 0.05 | 10.3 | 5 | 2.5 | 0.06 ± 0.03 | 6.4 |
Lepidoptera | 9 | 10.5 | 0.23 ± 0.07 | 23.1 | 5 | 2.5 | 0.06 ± 0.03 | 6.4 |
Coleoptera | 34 | 39.5 | 0.87 ± 0.18 | 51.3 | 120 | 60.9 | 1.56 ± 0.25 | 60.3 |
Hymenoptera | 1 | 0.5 | 0.01 ± 0.01 | 1.3 | ||||
Formicidae | 2 | 1.0 | 0.03 ± 0.02 | 2.6 | ||||
Insect larvae | 9 | 10.5 | 0.23 ± 0.07 | 23.1 | 18 | 9.1 | 0.23 ± 0.06 | 21.8 |
Arthropoda indet. | 1 | 1.2 | 0.03 ± 0.03 | 2.6 | 8 | 4.1 | 0.10 ± 0.04 | 10.3 |
Total prey | 86 | 100 | 2.21 ± 0.20 | 100 | 197 | 100 | 2.53 ± 0.25 | 100 |
Rey Island (Natural) | Isabel Island (Altered) | |||||
---|---|---|---|---|---|---|
Electivity Index | Electivity Index | |||||
D | E* | p | D | E* | p | |
Gastropoda | −1 | −1 | −0.895 | −0.957 | <0.0001 | |
Pseudoscorpion | +0.821 | +0.514 | 0.058 | +0.143 | −0.407 | 0.79 |
Araneae | +0.633 | +0.119 | 0.20 | +0.699 | +0.236 | <0.0001 |
Opiliones | −1 | −1 | +0.601 | +0.117 | 0.32 | |
Acarina | −1 | −1 | −1 | −1 | ||
Isopoda | −0.799 | −0.919 | <0.0001 | −0.982 | −0.991 | <0.0001 |
Chilopoda | −1 | −1 | −1 | −1 | ||
Thysanura | −1 | −1 | −1 | −1 | ||
Dictyoptera | +0.927 | +0.764 | <0.0001 | +0.783 | +0.434 | 0.001 |
Embioptera | −1 | −1 | −1 | −1 | ||
Homoptera | +0.861 | +0.612 | 0.068 | +0.601 | +0.117 | 0.32 |
Heteroptera | +0.416 | −0.139 | 0.34 | +0.143 | −0.407 | 0.86 |
Diptera | +0.664 | +0.203 | 0.28 | +0.544 | +0.027 | 0.052 |
Lepidoptera | +0.956 | +0.851 | <0.0001 | +0.822 | +0.520 | 0.0013 |
Coleoptera | +0.566 | −0.101 | 0.91 | +0.859 | +0.282 | <0.0001 |
Hymenoptera | −1 | −1 | +0.334 | −0.225 | 0.61 | |
Formicidae | −1 | −1 | −0.912 | −0.965 | <0.0001 | |
Insect larvae | +0.927 | +0.764 | <0.0001 | +0.858 | +0.583 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, J.; Ortega, J.; García-Roa, R.; Rodríguez-Ruiz, G.; Pérez-Cembranos, A.; Pérez-Mellado, V. Effects of Anthropogenic Disturbance of Natural Habitats on the Feeding Ecology of Moorish Geckos. Animals 2023, 13, 1413. https://doi.org/10.3390/ani13081413
Martín J, Ortega J, García-Roa R, Rodríguez-Ruiz G, Pérez-Cembranos A, Pérez-Mellado V. Effects of Anthropogenic Disturbance of Natural Habitats on the Feeding Ecology of Moorish Geckos. Animals. 2023; 13(8):1413. https://doi.org/10.3390/ani13081413
Chicago/Turabian StyleMartín, José, Jesús Ortega, Roberto García-Roa, Gonzalo Rodríguez-Ruiz, Ana Pérez-Cembranos, and Valentín Pérez-Mellado. 2023. "Effects of Anthropogenic Disturbance of Natural Habitats on the Feeding Ecology of Moorish Geckos" Animals 13, no. 8: 1413. https://doi.org/10.3390/ani13081413
APA StyleMartín, J., Ortega, J., García-Roa, R., Rodríguez-Ruiz, G., Pérez-Cembranos, A., & Pérez-Mellado, V. (2023). Effects of Anthropogenic Disturbance of Natural Habitats on the Feeding Ecology of Moorish Geckos. Animals, 13(8), 1413. https://doi.org/10.3390/ani13081413