SNP-Based Heritability of Osteochondrosis Dissecans in Hanoverian Warmblood Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Distl, O. The genetics of equine osteochondrosis. Vet. J. 2013, 197, 13–18. [Google Scholar] [CrossRef]
- van Weeren, R. Fifty years of osteochondrosis. Equine Vet. J. 2018, 50, 554–555. [Google Scholar] [CrossRef] [PubMed]
- Naccache, F.; Metzger, J.; Distl, O. Genetic risk factors for osteochondrosis in various horse breeds. Equine Vet. J. 2018, 50, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Mirshahi, A.; Mohri, M.; Sardari, K.; Sharifi, K. Osteochondrosis dissecans (OCD) in horses: Hormonal and biochemical study (19 cases). Vet. Res. Forum. 2021, 12, 325–331. [Google Scholar] [CrossRef]
- Hilla, D.; Distl, O. Heritabilities and genetic correlations between fetlock, hock and stifle osteochondrosis and fetlock osteochondral fragments in Hanoverian Warmblood horses. J. Anim. Breed. Genet. 2013, 131, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Schougaard, H.; Ronne, J.F.; Phillipson, J. A radiographic survey of tibiotarsal osteochondrosis in a selected population of trotting horses in Denmark and its possible genetic significance. Equine Vet. J. 1990, 22, 288–289. [Google Scholar] [CrossRef]
- Grøndahl, A.M.; Engeland, A. Influence of radiographically detectable orthopedic changes on racing performance in standardbred trotters. J. Am. Vet. Med. Assoc. 1995, 206, 1013–1017. [Google Scholar]
- Philipsson, J.; Andréasson, E.; Sandgren, B.; Dalin, G.; Carlsten, J. Osteochondrosis in the tarsocrural joint and osteochondral fragments in the fetlock joints in Standardbred trotters. II. Heritability. Equine Vet. J. 1993, 25, 38–41. [Google Scholar] [CrossRef]
- Teyssèdre, S.; Dupuis, M.C.; Guérin, G.; Schibler, L.; Denoix, J.M.; Elsen, J.M.; Ricard, A. Genome-wide association studies for osteochondrosis in French Trotter horses1. J. Anim. Sci. 2012, 90, 45–53. [Google Scholar] [CrossRef]
- Pieramati, C.; Pepe, M.; Silvestrelli, M.; Bolla, A. Heritability estimation of osteochondrosis dissecans in Maremmano horses. Livest. Prod. Sci. 2003, 79, 249–255. [Google Scholar] [CrossRef]
- Stock, K.F.; Hamann, H.; Distl, O. Estimation of genetic parameters for the prevalence of osseous fragments in limb joints of Hanoverian Warmblood horses. J. Anim. Breed. Genet. 2005, 122, 271–280. [Google Scholar] [CrossRef]
- Stock, K.F.; Distl, O. Genetic correlations between osseous fragments in fetlock and hock joints, deforming arthropathy in hock joints and pathologic changes in the navicular bones of Warmblood riding horses. Livest. Sci. 2006, 105, 35–43. [Google Scholar] [CrossRef]
- Winter, D.B.E.; Glodek, P.; Hertsch, B. Genetic disposition of bone diseases in sport horses. Züchtungskunde 1996, 68, 92–108. [Google Scholar]
- Willms, F.; Röhe, R.; Kalm, E. Genetic analysis of different traits in horse breeding by considering radiographic findings - 1st communication: Importance of radiographic findings in breeding sport horses. Züchtungskunde 1999, 71, 330–345. [Google Scholar]
- Schober, M. Schätzung von Genetischen Effekten Beim Auftreten von Osteochondrosis Dissecans Beim Warmblutpferd; Georg-August-Universität Göttingen: Göttingen, Germany, 2003. [Google Scholar]
- van Grevenhof, E.M.; Schurink, A.; Ducro, B.J.; van Weeren, P.R.; van Tartwijk, J.M.; Bijma, P.; van Arendonk, J.A. Genetic variables of various manifestations of osteochondrosis and their correlations between and within joints in Dutch warmblood horses. J. Anim. Sci. 2009, 87, 1906–1912. [Google Scholar] [CrossRef]
- Jönsson, L.; Dalin, G.; Egenvall, A.; Näsholm, A.; Roepstorff, L.; Philipsson, J. Equine hospital data as a source for study of prevalence and heritability of osteochondrosis and palmar/plantar osseous fragments of Swedish Warmblood horses. Equine Vet. J. 2011, 43, 695–700. [Google Scholar] [CrossRef]
- Wittwer, C.; Hamann, H.; Rosenberger, E.; Distl, O. Genetic parameters for the prevalence of osteochondrosis in the limb joints of South German Coldblood horses. J. Anim. Breed. Genet. 2007, 124, 302–307. [Google Scholar] [CrossRef]
- Russell, J.; Matika, O.; Russell, T.; Reardon, R.J. Heritability and prevalence of selected osteochondrosis lesions in yearling Thoroughbred horses. Equine Vet. J. 2017, 49, 282–287. [Google Scholar] [CrossRef] [PubMed]
- McCoy, A.M.; Norton, E.M.; Kemper, A.M.; Beeson, S.K.; Mickelson, J.R.; McCue, M.E. SNP-based heritability and genetic architecture of tarsal osteochondrosis in North American Standardbred horses. Anim. Genet. 2019, 50, 78–81. [Google Scholar] [CrossRef]
- Wypchło, M.; Korwin-Kossakowska, A.; Bereznowski, A.; Hecold, M.; Lewczuk, D. Polymorphisms in selected genes and analysis of their relationship with osteochondrosis in Polish sport horse breeds. Anim. Genet. 2018, 49, 623–627. [Google Scholar] [CrossRef]
- Lewczuk, D.; Hecold, M.; Ruść, A.; Frąszczak, M.; Bereznowski, A.; Korwin-Kossakowska, A.; Kamiński, S.; Szyda, J. Single nucleotide polymorphisms associated with osteochondrosis dissecans in Warmblood horses at different stages of training. Anim. Prod. Sci. 2017, 57, 608–613. [Google Scholar] [CrossRef]
- Falconer, D.S. Introduction to Quantitative Genetics, 4th ed.; Pearson Education Limited: Essex, England, 1996. [Google Scholar]
- Zaitlen, N.; Kraft, P.; Patterson, N.; Pasaniuc, B.; Bhatia, G.; Pollack, S.; Price, A.L. Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits. PLoS Genet. 2013, 9, e1003520. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Maher, B. Personal genomes: The case of the missing heritability. Nature 2008, 456, 18–21. [Google Scholar] [CrossRef]
- Speed, D.; Cai, N.; Johnson, M.R.; Nejentsev, S.; Balding, D.J. Reevaluation of SNP heritability in complex human traits. Nat. Genet. 2017, 49, 986–992. [Google Scholar] [CrossRef]
- Barry, C.S.; Walker, V.M.; Cheesman, R.; Davey Smith, G.; Morris, T.T.; Davies, N.M. How to estimate heritability: A guide for genetic epidemiologists. Int. J. Epidemiol. 2023, 52, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.M.; Tahmasbi, R.; Vrieze, S.I.; Abecasis, G.R.; Das, S.; Gazal, S.; Bjelland, D.W.; de Candia, T.R.; Goddard, M.E.; Neale, B.M.; et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 2018, 50, 737–745. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zeng, J.; Goddard, M.E.; Wray, N.R.; Visscher, P.M. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 2017, 49, 1304–1310. [Google Scholar] [CrossRef]
- Speed, D.; Hemani, G.; Johnson, M.R.; Balding, D.J. Improved heritability estimation from genome-wide SNPs. Am. J. Hum. Genet. 2012, 91, 1011–1021. [Google Scholar] [CrossRef]
- Slatkin, M. Linkage disequilibrium—Understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 2008, 9, 477–485. [Google Scholar] [CrossRef]
- Ren, D.; Cai, X.; Lin, Q.; Ye, H.; Teng, J.; Li, J.; Ding, X.; Zhang, Z. Impact of linkage disequilibrium heterogeneity along the genome on genomic prediction and heritability estimation. Genet. Sel. Evol. 2022, 54, 47. [Google Scholar] [CrossRef]
- Lee, S.H.; DeCandia, T.R.; Ripke, S.; Yang, J.; Sullivan, P.F.; Goddard, M.E.; Keller, M.C.; Visscher, P.M.; Wray, N.R. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 2012, 44, 247–250. [Google Scholar] [CrossRef]
- Yang, J.; Bakshi, A.; Zhu, Z.; Hemani, G.; Vinkhuyzen, A.A.; Lee, S.H.; Robinson, M.R.; Perry, J.R.; Nolte, I.M.; van Vliet-Ostaptchouk, J.V.; et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 2015, 47, 1114–1120. [Google Scholar] [CrossRef]
- Mancuso, N.; Rohland, N.; Rand, K.A.; Tandon, A.; Allen, A.; Quinque, D.; Mallick, S.; Li, H.; Stram, A.; Sheng, X.; et al. The contribution of rare variation to prostate cancer heritability. Nat. Genet. 2016, 48, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Yang, J.; Chen, G.-B.; Ripke, S.; Stahl, E.A.; Hultman, C.M.; Sklar, P.; Visscher, P.M.; Sullivan, P.F.; Goddard, M.E.; et al. Estimation of SNP Heritability from Dense Genotype Data. Am. J. Hum. Genet. 2013, 93, 1151–1155. [Google Scholar] [CrossRef]
- Hilla, D.; Distl, O. Prevalence of osteochondral fragments, osteochondrosis dissecans and palmar/plantar osteochondral fragments in Hanoverian Warmblood horses. Berl. Munch. Tierarztl. Wochenschr. 2013, 126, 236–244. [Google Scholar] [PubMed]
- Hilla, D.; Distl, O. Genetic parameters for osteoarthrosis, radiographic changes of the navicular bone and sidebone, and their correlation with osteochondrosis and osteochondral fragments in Hanoverian warmblood horses. Livest. Sci. 2014, 169, 19–26. [Google Scholar] [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Purcell, S.; Chang, C. PLINK 1.9; Purcell Lab: Melbourne, Australia, 2023. [Google Scholar]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Privé, F.; Vilhjálmsson, B.; Speed, D. Improved genetic prediction of complex traits from individual-level data or summary statistics. Nat. Commun. 2021, 12, 4192. [Google Scholar] [CrossRef] [PubMed]
- Min, A.; Thompson, E.; Basu, S. Comparing heritability estimators under alternative structures of linkage disequilibrium. G3 2022, 12, jkac134. [Google Scholar] [CrossRef]
- McCoy, A.M.; Beeson, S.K.; Splan, R.K.; Lykkjen, S.; Ralston, S.L.; Mickelson, J.R.; McCue, M.E. Identification and validation of risk loci for osteochondrosis in standardbreds. BMC Genom. 2016, 17, 41. [Google Scholar] [CrossRef]
- McCue, M.E.; Bannasch, D.L.; Petersen, J.L.; Gurr, J.; Bailey, E.; Binns, M.M.; Distl, O.; Guérin, G.; Hasegawa, T.; Hill, E.W.; et al. A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies. PLoS Genet. 2012, 8, e1002451. [Google Scholar] [CrossRef]
- Wray, N.R. Allele Frequencies and the r2 Measure of Linkage Disequilibrium: Impact on Design and Interpretation of Association Studies. Twin. Res. Hum. Genet. 2005, 8, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Wang, T.; Zhang, X. A review of SNP heritability estimation methods. Brief. Bioinform. 2022, 23, bbac067. [Google Scholar] [CrossRef] [PubMed]
- Visscher, P.M.; Hill, W.G.; Wray, N.R. Heritability in the genomics era—Concepts and misconceptions. Nat. Rev. Genet. 2008, 9, 255–266. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, X. Statistical methods for SNP heritability estimation and partition: A review. Comput. Struct. Biotechnol. J. 2020, 18, 1557–1568. [Google Scholar] [CrossRef]
- Falconer, D.S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet. 1965, 29, 51–76. [Google Scholar] [CrossRef]
Approach | Data Set | MAF 0.01 | MAF 0.025 | MAF 0.05 | |||
---|---|---|---|---|---|---|---|
Obs | Liab | Obs | Liab | Obs | Liab | ||
GREML () | Original | 0.34 ± 0.12 | 0.64 ± 0.22 | 0.33 ± 0.12 | 0.61 ± 0.22 | 0.32 ± 0.12 | 0.60 ± 0.22 |
Imputed | 0.31 ± 0.11 | 0.58 ± 0.21 | 0.30 ± 0.11 | 0.56 ± 0.20 | 0.28 ± 0.11 | 0.53 ± 0.20 | |
LDAK () | Original | 0.33 ± 0.12 | 0.61 ± 0.22 | 0.33 ± 0.12 | 0.61 ± 0.22 | 0.32 ± 0.12 | 0.60 ± 0.22 |
Imputed | 0.34 ± 0.12 | 0.64 ± 0.23 | 0.34 ± 0.12 | 0.63 ± 0.22 | 0.33 ± 0.12 | 0.62 ± 0.22 | |
GREML fam () | Original | 0.43 ± 0.14 | 0.80 ± 0.26 | 0.42 ± 0.14 | 0.78 ± 0.26 | 0.44 ± 0.14 | 0.81 ± 0.26 |
Imputed | 0.41 ± 0.13 | 0.76 ± 0.24 | 0.40 ± 0.13 | 0.74 ± 0.24 | 0.38 ± 0.13 | 0.71 ± 0.23 | |
GREML fam LD-weighted ( | Original | 0.41 ± 0.14 | 0.76 ± 0.26 | 0.41 ± 0.14 | 0.77 ± 0.26 | 0.41 ± 0.14 | 0.76 ± 0.26 |
Imputed | 0.43 ± 0.14 | 0.79 ± 0.26 | 0.42 ± 0.14 | 0.79 ± 0.26 | 0.43 ± 0.14 | 0.81 ± 0.26 |
Approach | Data Set | MAF 0.01 | MAF 0.025 | MAF 0.05 | |||
---|---|---|---|---|---|---|---|
Obs | Liab | Obs | Liab | Obs | Liab | ||
GREML ( ) | Original | 0.60 ± 0.11 | 1.02 ± 0.19 | 0.60 ± 0.11 | 1.01 ± 0.18 | 0.57 ± 0.11 | 0.98 ± 0.18 |
Imputed | 0.54 ± 0.10 | 0.93 ± 0.18 | 0.52 ± 0.10 | 0.90 ± 0.18 | 0.50 ± 0.10 | 0.85 ± 0.17 | |
LDAK () | Original | 0.59 ± 0.11 | 1.01 ± 0.19 | 0.59 ± 0.11 | 1.00 ± 0.19 | 0.58 ± 0.11 | 1.00 ± 0.19 |
Imputed | 0.62 ± 0.11 | 1.06 ± 0.19 | 0.61 ± 0.11 | 1.05 ± 0.19 | 0.60 ± 0.11 | 1.03 ± 0.19 | |
GREML fam () | Original | 0.62 ± 0.12 | 1.07 ± 0.21 | 0.63 ± 0.12 | 1.09 ± 0.21 | 0.63 ± 0.12 | 1.09 ± 0.21 |
Imputed | 0.57 ± 0.12 | 0.97 ± 0.21 | 0.56 ± 0.12 | 0.95 ± 0.21 | 0.53 ± 0.12 | 0.91 ± 0.20 | |
GREML fam LD-weighted ( ) | Original | 0.63 ± 0.12 | 1.08 ± 0.21 | 0.63 ± 0.12 | 1.08 ± 0.21 | 0.62 ± 0.12 | 1.07 ± 0.21 |
Imputed | 0.63 ± 0.12 | 1.09 ± 0.21 | 0.62 ± 0.12 | 1.07 ± 0.21 | 0.63 ± 0.12 | 1.07 ± 0.21 |
Approach | Data Set | MAF 0.01 | MAF 0.025 | MAF 0.05 | |||
---|---|---|---|---|---|---|---|
Obs | Liab | Obs | Liab | Obs | Liab | ||
GREML ( ) | Original | 0.25 ± 0.11 | 1.60 ± 0.69 | 0.24 ± 0.11 | 1.55 ± 0.68 | 0.23 ± 0.11 | 1.47 ± 0.68 |
Imputed | 0.19 ± 0.10 | 1.25 ± 0.64 | 0.17 ± 0.10 | 1.11 ± 0.62 | 0.16 ± 0.10 | 1.04 ± 0.61 | |
LDAK () | Original | 0.23 ± 0.11 | 1.50 ± 0.69 | 0.23 ± 0.11 | 1.49 ± 0.68 | 0.23 ± 0.11 | 1.47 ± 0.68 |
Imputed | 0.21 ± 0.11 | 1.37 ± 0.68 | 0.20 ± 0.11 | 1.29 ± 0.67 | 0.20 ± 0.10 | 1.27 ± 0.67 | |
GREML fam () | Original | 0.26 ± 0.12 | 1.66 ± 0.75 | 0.24 ± 0.12 | 1.55 ± 0.75 | 0.23 ± 0.12 | 1.49 ± 0.74 |
Imputed | 0.24 ± 0.11 | 1.53 ± 0.70 | 0.22 ± 0.11 | 1.40 ± 0.70 | 0.23 ± 0.11 | 1.45 ± 0.70 | |
GREML fam LD-weighted ( ) | Original | 0.25 ± 0.12 | 1.63 ± 0.75 | 0.25 ± 0.12 | 1.63 ± 0.75 | 0.25 ± 0.12 | 1.60 ± 0.75 |
Imputed | 0.23 ± 0.12 | 1.48 ± 0.74 | 0.23 ± 0.11 | 1.48 ± 0.73 | 0.23 ± 0.11 | 1.45 ± 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmermann, E.; Distl, O. SNP-Based Heritability of Osteochondrosis Dissecans in Hanoverian Warmblood Horses. Animals 2023, 13, 1462. https://doi.org/10.3390/ani13091462
Zimmermann E, Distl O. SNP-Based Heritability of Osteochondrosis Dissecans in Hanoverian Warmblood Horses. Animals. 2023; 13(9):1462. https://doi.org/10.3390/ani13091462
Chicago/Turabian StyleZimmermann, Elisa, and Ottmar Distl. 2023. "SNP-Based Heritability of Osteochondrosis Dissecans in Hanoverian Warmblood Horses" Animals 13, no. 9: 1462. https://doi.org/10.3390/ani13091462
APA StyleZimmermann, E., & Distl, O. (2023). SNP-Based Heritability of Osteochondrosis Dissecans in Hanoverian Warmblood Horses. Animals, 13(9), 1462. https://doi.org/10.3390/ani13091462