Testing the Accuracy of Wearable Technology to Assess Sleep Behaviour in Domestic Dogs: A Prospective Tool for Animal Welfare Assessment in Kennels
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Ethical Statement
2.2. Study Site and Subjects
2.3. Data Collection
2.4. Behavioural Observations
2.5. The Wearable Technology: Behaviour and Physiological Metrics
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Behaviour Collected by Wearable Technology Collars
3.2. Sleep Metrics Collected by Wearable Technology Collars
3.3. Evaluating the Efficiency of the Wearable Technology Collars against Behavioural Observations Made by a Human Observer
4. Discussion
4.1. Characteristics of Behaviour Collected by Wearable Technology Collar
4.2. Evaluating the Efficiency of the Wearable Technology Collar against Behavioural Observations
4.3. Accuracy of Sleep Parameters Registered by Wearable Technology Collar
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Boarding Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cirelli, C.; Tononi, G. Is Sleep Essential? PLoS Biol. 2008, 6, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Orzeł-Gryglewska, J. Consequences of Sleep Deprivation. Int. J. Occup. Med. Environ. Health 2010, 23, 95–114. [Google Scholar] [CrossRef] [PubMed]
- Randler, C. Sleep, Sleep Timing and Chronotype in Animal Behaviour. Anim. Behav. 2014, 94, 161–166. [Google Scholar] [CrossRef]
- Zepelin, H.; Rechtschaffen, A. Mammalian sleep, longevity, and energy metabolism. Brain Behav. Evolut. 1974, 10, 425–470. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M. Clues to the Functions of Mammalian Sleep. Nature 2005, 437, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Zepelin, H.; Siegel, J.M.; Tobler, I. Mammalian Sleep. In Principles and Practice of Sleep Medicine; Elsevier: Philadelphia, PA, USA, 2005; pp. 91–100. ISBN 9780721607979. [Google Scholar]
- Lesku, J.A.; Roth, T.C.; Rattenborg, N.C.; Amlaner, C.J.; Lima, S.L. Phylogenetics and the Correlates of Mammalian Sleep: A Reappraisal. Sleep Med. Rev. 2008, 12, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Lesku, J.A.; Roth II, T.C.; Amlaner, C.J.; Lima, S.L. A Phylogenetic Analysis of Sleep Architecture in Mammals: The Integration of Anatomy, Physiology, and Ecology. Am. Nat. 2006, 168, 441–453. [Google Scholar] [CrossRef]
- Langford, F.M.; Cockram, M.S. Is Sleep in Animals Affected by Prior Waking Experiences? Anim. Welf. 2010, 19, 215–222. [Google Scholar] [CrossRef]
- Tougeron, K.; Abram, P.K. An Ecological Perspective on Sleep Disruption. Am. Nat. 2017, 190, E55–E66. [Google Scholar] [CrossRef] [PubMed]
- Buckley, T.M.; Schatzberg, A.F. On the Interactions of the Hypothalamic-Pituitary-Adrenal (HPA) Axis and Sleep: Normal HPA Axis Activity and Circadian Rhythm, Exemplary Sleep Disorders. J. Clin. Endocrinol. Metab. 2005, 90, 3106–3114. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.C.; Polotsky, V.Y. Stressful Sleep. Eur. Respir. J. 2016, 47, 366–368. [Google Scholar] [CrossRef] [PubMed]
- Lesku, J.A.; Roth, T.C.; Rattenborg, N.C.; Amlaner, C.J.; Lima, S.L. History and Future of Comparative Analyses in Sleep Research. Neurosci. Biobehav. Rev. 2009, 33, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Abou-Ismail, U.A.; Burman, O.H.P.; Nicol, C.J.; Mendl, M. Let Sleeping Rats Lie: Does the Timing of Husbandry Procedures Affect Laboratory Rat Behaviour, Physiology and Welfare? Appl. Anim. Behav. Sci. 2008, 111, 329–341. [Google Scholar] [CrossRef]
- Campbell, I.G. EEG Recording and Analysis for Sleep Research. Curr. Protoc. Neurosci. 2009, 49, 10.2.1–10.2.19. [Google Scholar] [CrossRef] [PubMed]
- Scriba, M.F.; Harmening, W.M.; Mettke-Hofmann, C.; Vyssotski, A.L.; Roulin, A.; Wagner, H.; Rattenborg, N.C. Evaluation of Two Minimally Invasive Techniques for Electroencephalogram Recording in Wild or Freely Behaving Animals. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2013, 199, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Ternman, E.; Hänninen, L.; Pastell, M.; Agenäs, S.; Nielsen, P.P. Sleep in Dairy Cows Recorded with a Non-Invasive EEG Technique. Appl. Anim. Behav. Sci. 2012, 140, 25–32. [Google Scholar] [CrossRef]
- Ternman, E.; Pastell, M.; Agenäs, S.; Strasser, C.; Winckler, C.; Nielsen, P.P.; Hänninen, L. Agreement between Different Sleep States and Behaviour Indicators in Dairy Cows. Appl. Anim. Behav. Sci. 2014, 160, 12–18. [Google Scholar] [CrossRef]
- Jukan, A.; Masip-Bruin, X.; Amla, N. Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review. ACM Comput. Surv. 2017, 50, 1–27. [Google Scholar] [CrossRef]
- Rushen, J.; Chapinal, N.; De Passillé, A.M. Automated Monitoring of Behavioural-Based Animal Welfare Indicators. Anim. Welf. 2012, 21, 339–350. [Google Scholar] [CrossRef]
- Chapa, J.M.; Maschat, K.; Iwersen, M.; Baumgartner, J.; Drillich, M. Accelerometer Systems as Tools for Health and Welfare Assessment in Cattle and Pigs—A Review. Behav. Process. 2020, 181, 104262. [Google Scholar] [CrossRef]
- Brown, D.D.; Kays, R.; Wikelski, M.; Wilson, R.; Klimley, A.P. Observing the Unwatchable through Acceleration Logging of Animal Behavior. Anim. Biotelemetry 2013, 1, 20. [Google Scholar] [CrossRef]
- Graf, P.M.; Wilson, R.P.; Qasem, L.; Hackländer, K.; Rosell, F. The Use of Acceleration to Code for Animal Behaviours; a Case Study in Free-Ranging Eurasian Beavers Castor fiber. PLoS ONE 2015, 10, e0136751. [Google Scholar] [CrossRef]
- Brown, D.D.; Lapoint, S.; Kays, R.; Heidrich, W.; Kümeth, F.; Wikelski, M. Accelerometer-Informed GPS Telemetry: Reducing the Trade-off between Resolution and Longevity. Wildl. Soc. Bull. 2012, 36, 139–146. [Google Scholar] [CrossRef]
- Wilson, R.P.; Grundy, E.; Massy, R.; Soltis, J.; Tysse, B.; Holton, M.; Cai, Y.; Parrott, A.; Downey, L.A.; Qasem, L.; et al. Wild State Secrets: Ultra-Sensitive Measurement of Micro-Movement Can Reveal Internal Processes in Animals. Front. Ecol. Environ. 2014, 12, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Lush, L.; Ellwood, S.; Markham, A.; Ward, A.I.; Wheeler, P. Use of Tri-Axial Accelerometers to Assess Terrestrial Mammal Behaviour in the Wild. J. Zool. 2016, 298, 257–265. [Google Scholar] [CrossRef]
- Nam, Y.; Kim, Y.; Lee, J. Sleep Monitoring Based on a Tri-Axial Accelerometer and a Pressure Sensor. Sensors 2016, 16, 750. [Google Scholar] [CrossRef]
- Shepard, E.L.C.; Wilson, R.P.; Quintana, F.; Laich, A.G.; Liebsch, N.; Albareda, D.A.; Halsey, L.G.; Gleiss, A.; Morgan, D.T.; Myers, A.E.; et al. Identification of Animal Movement Patterns Using Tri-Axial Accelerometry. Endanger. Species Res. 2010, 10, 47–60. [Google Scholar] [CrossRef]
- Signer, C.; Ruf, T.; Schober, F.; Fluch, G.; Paumann, T.; Arnold, W. A Versatile Telemetry System for Continuous Measurement of Heart Rate, Body Temperature and Locomotor Activity in Free-Ranging Ruminants. Methods Ecol. Evol. 2010, 1, 75–85. [Google Scholar] [CrossRef]
- Williamson, J.R.; Hess, A.R.; Smalt, C.J.; Sherrill, D.M.; Quatieri, T.F.; O’Brien, C. Using Collar-Worn Sensors to Forecast Thermal Strain in Military Working Dogs. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 281–286. [Google Scholar]
- DuBois, C.; Zakrajsek, E.; Haley, D.B.; Merkies, K. Validation of Triaxial Accelerometers to Measure the Lying Behaviour of Adult Domestic Horses. Animal 2014, 9, 110–114. [Google Scholar] [CrossRef]
- Klefot, J.M.M.; Murphy, J.L.L.; Donohue, K.D.D.; O’Hara, B.F.F.; Lhamon, M.E.E.; Bewley, J.M.M. Development of a Noninvasive System for Monitoring Dairy Cattle Sleep. J. Dairy Sci. 2016, 99, 8477–8485. [Google Scholar] [CrossRef]
- Schiffmann, C.; Hoby, S.; Wenker, C.; Hård, T.; Scholz, R.; Clauss, M.; Hatt, J.-M. When Elephants Fall Asleep: A Literature Review on Elephant Rest with Case Studies on Elephant Falling Bouts, and Practical Solutions for Zoo Elephants. Zoo Biol. 2018, 37, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Tobler, I.; Schwierin, B. Behavioural Sleep in the Giraffe (Giraffa camelopardalis) in a Zoological Garden. J. Sleep Res. 1996, 5, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.; Fraser, D. Automated Monitoring of Resting in Dogs. Appl. Anim. Behav. Sci. 2016, 174, 99–102. [Google Scholar] [CrossRef]
- Olsen, A.; Evans, R.; Duerr, F. Evaluation of Accelerometer Inter-Device Variability and Collar Placement in Dogs. Vet. Evid. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Ortmeyer, H.K.; Robey, L.; McDonald, T. Combining Actigraph Link and Petpace Collar Data to Measure Activity, Proximity, and Physiological Responses in Freely Moving Dogs in a Natural Environment. Animals 2018, 8, 230. [Google Scholar] [CrossRef]
- Jones, S.; Dowling-Guyer, S.; Patronek, G.J.; Marder, A.R.; Segurson D’Arpino, S.; McCobb, E. Use of Accelerometers to Measure Stress Levels in Shelter Dogs. J. Appl. Anim. Welf. Sci. 2014, 17, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.M.; Nathan, A.; Kropp, J.B.; Lockhart, J.W. WagTag: A Dog Collar Accessory for Monitoring Canine Activity Levels. In Proceedings of the 2013 ACM conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zürich, Switzerland, 8–12 September 2013; pp. 405–414. [Google Scholar] [CrossRef]
- Belda, B.; Enomoto, M.; Case, B.C.; Lascelles, B.D.X. Initial Evaluation of PetPace Activity Monitor. Vet. J. 2018, 237, 63–68. [Google Scholar] [CrossRef]
- Ladha, C.; Hoffman, C.L. A Combined Approach to Predicting Rest in Dogs Using Accelerometers. Sensors 2018, 18, 2649. [Google Scholar] [CrossRef]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic Review of the Validity and Reliability of Consumer-Wearable Activity Trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef]
- Diaz, C.; Caillaud, C.; Yacef, K. Unsupervised Early Detection of Physical Activity Behaviour Changes from Wearable Accelerometer Data. Sensors 2022, 22, 8255. [Google Scholar] [CrossRef]
- Miller, D.J.; Sargent, C.; Roach, G.D. A Validation of Six Wearable Devices for Estimating Sleep, Heart Rate and Heart Rate Variability in Healthy Adults. Sensors 2022, 22, 6317. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.; Yoshida, M.; Samura, K.; Matsumoto, H.; Ikemoto, F.; Tagawa, M. Ranges of Diurnal Variation and the Pattern of Body Temperature, Blood Pressure and Heart Rate in Laboratory Beagle Dogs. Exp. Anim. 2002, 51, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Zanghi, B.M. Circadian Biorhythms of Sleep/Wake Dogs, Activity/Rest Cycles in Adult and Aged Dogs. In Proceedings of the Nestle Purina Companion Aninmal Nutrition Summit; Purina Institute, Clearwater Beach, FL, USA, 26–27 March 2010; Volume 31, pp. 114–117. [Google Scholar]
- Kis, A.; Szakadát, S.; Kovács, E.E.; Gácsi, M.; Simor, P.; Gombos, F.; Topál, J.; Miklósi, Á.; Bódizs, R. Development of a Non-Invasive Polysomnography Technique for Dogs (Canis familiaris). Physiol. Behav. 2014, 130, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Harada, E. Age-Related Changes in Sleep-Wake Rhythm in Dog. Behav. Brain Res. 2002, 136, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Bódizs, R.; Kis, A.; Gácsi, M.; Topál, J. Sleep in the Dog: Comparative, Behavioral and Translational Relevance. Curr. Opin. Behav. Sci. 2020, 33, 25–33. [Google Scholar] [CrossRef]
- CONCEA. Resolução Normativa No-12. Diretriz Brasileira Para o Cuidado e a Utilização de Animais Para Fins Científicos e Didáticos; Ministério da Ciência, Tecnologia e Inovações: Brasília, Brazil, 2013.
- Schork, I.G.; Manzo, I.A.; De Oliveira, M.R.B.; da Costa, F.V.; Young, R.J.; de Azevedo, C.S. The Cyclic Interaction between Daytime Behavior and the Sleep Behavior of Laboratory Dogs. Sci. Rep. 2022, 12, 478. [Google Scholar] [CrossRef]
- Bateson, M.; Martin, P. Measuring Behaviour, 3rd ed.; Cambridge University Press: Cambridge, UK, 2021; ISBN 9781108776462. [Google Scholar]
- Broom, D.M.; Fraser, A.F. Domestic Animal Behaviour and Welfare, 5th ed.; CABI: Wallimgford, UK, 2015; ISBN 1780645635. [Google Scholar]
- Luescher, U.A.; McKeown, D.B.; Halip, J. Stereotypic or Obsessive-Compulsive Disorders in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 1991, 21, 401–413. [Google Scholar] [CrossRef]
- Luescher, A.U. Canine Behavior and Development. In Canine and Feline Behavior for Veterinary Technicians and Nurses; Wiley Blackwell: Ames, IA, USA, 2014; pp. 30–50. ISBN 9780813813189. [Google Scholar]
- PetPaceTM Petpace Smart Collar Support. Available online: https://petpace.com/knowledge-base/what-preparations-are-required-before-placement-of-the-petpace-collar/ (accessed on 12 April 2023).
- Dytham, C. Choosing and Using Statistics: A Biologist’s Guide, 3rd ed.; Wiley-Blackwell: Oxford, UK, 2011; ISBN 978-1-405-19839-4. [Google Scholar]
- RStudio Team: Integrated Development for, R. RStudio, PBC, Boston, MA, USA. 2020. Available online: http://www.rstudio.com/ (accessed on 12 April 2023).
- Schork, I.G.; Manzo, I.A.; Beiral De Oliveira, M.R.; Costa, F.V.; Palme, R.; Young, R.J.; de Azevedo, C.S. How Environmental Conditions Affect Sleep? An Investigation in Domestic Dogs (Canis lupus familiaris). Behav. Process. 2022, 199, 104662. [Google Scholar] [CrossRef]
- Okun, M.L. Biological Consequences of Disturbed Sleep: Important Mediators of Health? Jpn. Psychol. Res. 2011, 53, 163–176. [Google Scholar] [CrossRef]
- Tobaldini, E.; Costantino, G.; Solbiati, M.; Cogliati, C.; Kara, T.; Nobili, L.; Montano, N. Sleep, Sleep Deprivation, Autonomic Nervous System and Cardiovascular Diseases. Neurosci. Biobehav. Rev. 2016, 74, 321–329. [Google Scholar] [CrossRef]
Categories | Behaviour (±SD) 1 | Collar (±SD) 1 | Range 2 | Difference 3 |
---|---|---|---|---|
Activity Day | 34.8% ± 15.9% | 45.2% ± 15.6% | 0.1–59.3% | 10.5% * |
Inactivity Day | 65.2% ± 15.9% | 53.5% ± 16.0% | 1.4–75.5% | 11.6% * |
Activity Night | 25.9% ± 26.5% | 11.3% ± 6.0% | 0.2–92.4% | 14.6% * |
Inactivity Night | 9.1% ± 7.1% | 9.6% ± 7.6 | 0.1–35.0% | 6.4% |
Sleep Night | 60.0% ± 29.1% | 77.8% − 14.6% | 1.8–97.0% | 17.8% * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schork, I.G.; Manzo, I.A.; Oliveira, M.R.B.d.; Costa, F.V.; Young, R.J.; De Azevedo, C.S. Testing the Accuracy of Wearable Technology to Assess Sleep Behaviour in Domestic Dogs: A Prospective Tool for Animal Welfare Assessment in Kennels. Animals 2023, 13, 1467. https://doi.org/10.3390/ani13091467
Schork IG, Manzo IA, Oliveira MRBd, Costa FV, Young RJ, De Azevedo CS. Testing the Accuracy of Wearable Technology to Assess Sleep Behaviour in Domestic Dogs: A Prospective Tool for Animal Welfare Assessment in Kennels. Animals. 2023; 13(9):1467. https://doi.org/10.3390/ani13091467
Chicago/Turabian StyleSchork, Ivana Gabriela, Isabele Aparecida Manzo, Marcos Roberto Beiral de Oliveira, Fernanda Vieira Costa, Robert John Young, and Cristiano Schetini De Azevedo. 2023. "Testing the Accuracy of Wearable Technology to Assess Sleep Behaviour in Domestic Dogs: A Prospective Tool for Animal Welfare Assessment in Kennels" Animals 13, no. 9: 1467. https://doi.org/10.3390/ani13091467
APA StyleSchork, I. G., Manzo, I. A., Oliveira, M. R. B. d., Costa, F. V., Young, R. J., & De Azevedo, C. S. (2023). Testing the Accuracy of Wearable Technology to Assess Sleep Behaviour in Domestic Dogs: A Prospective Tool for Animal Welfare Assessment in Kennels. Animals, 13(9), 1467. https://doi.org/10.3390/ani13091467