Effects of Silirum®-Based Vaccination Programs on Map Fecal Shedding and Serological Response in Seven French Dairy Herds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Herd and Cows Selection
2.2. Sample Collection and Handling
2.3. Laboratory Testing
2.3.1. Serological Tests
2.3.2. Fecal Real-Time PCR
2.4. Data Analysis
2.4.1. Data Description and Univariable Analysis
2.4.2. Multivariable Analysis
3. Results
3.1. Data Description
3.1.1. Herds and Sampled Cows
3.1.2. Serological Results
3.1.3. Fecal qPCR Results
3.2. Effect of Silirum® Vaccination on the Probability of Fecal Map Shedding
3.3. Effect of Silirum® Vaccination on the Level of Fecal Map Shedding
3.4. Effect of Age at Vaccination on Serological Status of Vaccinated Cows
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, C.J. The Pathology and Pathogenesis of Paratuberculosis in Ruminants and Other Species. J. Comp. Pathol. 1997, 116, 217–261. [Google Scholar] [CrossRef] [PubMed]
- McAloon, C.G.; Whyte, P.; More, S.J.; Green, M.J.; O’Grady, L.; Garcia, A.; Doherty, M.L. The Effect of Paratuberculosis on Milk Yield—A Systematic Review and Meta-Analysis. J. Dairy Sci. 2016, 99, 1449–1460. [Google Scholar] [CrossRef] [PubMed]
- Rieger, A.; Meylan, M.; Hauser, C.; Knubben-Schweizer, G. Meta-analysis to estimate the economic losses caused by reduced milk yield and reproductive performance associated with bovine paratuberculosis in Switzerland. Schweiz. Arch. Tierheilkd. 2021, 164, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.B.; Shalloo, L. Invited Review: The Economic Impact and Control of Paratuberculosis in Cattle. J. Dairy Sci. 2015, 98, 5019–5039. [Google Scholar] [CrossRef]
- Rasmussen, P.; Barkema, H.W.; Mason, S.; Beaulieu, E.; Hall, D.C. Economic Losses Due to Johne’s Disease (Paratuberculosis) in Dairy Cattle. J. Dairy Sci. 2021, 104, 3123–3143. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Toft, N. Ante Mortem Diagnosis of Paratuberculosis: A Review of Accuracies of ELISA, Interferon-Gamma Assay and Faecal Culture Techniques. Vet. Microbiol. 2008, 129, 217–235. [Google Scholar] [CrossRef]
- Whittington, R.J.; Marshall, D.J.; Nicholls, P.J.; Marsh, I.B.; Reddacliff, L.A. Survival and Dormancy of Mycobacterium Avium Subsp. Paratuberculosis in the Environment. Appl. Environ. Microbiol. 2004, 70, 2989–3004. [Google Scholar] [CrossRef]
- Eppleston, J.; Begg, D.J.; Dhand, N.K.; Watt, B.; Whittington, R.J. Environmental Survival of Mycobacterium Avium Subsp. Paratuberculosis in Different Climatic Zones of Eastern Australia. Appl. Environ. Microbiol. 2014, 80, 2337–2342. [Google Scholar] [CrossRef]
- Salgado, M.; Collins, M.T.; Salazar, F.; Kruze, J.; Bolske, G.; Soderlund, R.; Juste, R.; Sevilla, I.A.; Biet, F.; Troncoso, F.; et al. Fate of Mycobacterium Avium Subsp. Paratuberculosis after Application of Contaminated Dairy Cattle Manure to Agricultural Soils. Appl. Environ. Microbiol. 2011, 77, 2122–2129. [Google Scholar] [CrossRef]
- Whittington, R.; Donat, K.; Weber, M.F.; Kelton, D.; Nielsen, S.S.; Eisenberg, S.; Arrigoni, N.; Juste, R.; Sáez, J.L.; Dhand, N.; et al. Control of Paratuberculosis: Who, Why and How. A Review of 48 Countries. BMC Vet. Res. 2019, 15, 198. [Google Scholar] [CrossRef]
- Ferrouillet, C.; Wells, S.J.; Hartmann, W.L.; Godden, S.M.; Carrier, J. Decrease of Johne’s Disease Prevalence and Incidence in Six Minnesota, USA, Dairy Cattle Herds on a Long-Term Management Program. Prev. Vet. Med. 2009, 88, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.T.; Eggleston, V.; Manning, E.J.B. Successful Control of Johne’s Disease in Nine Dairy Herds: Results of a Six-Year Field Trial. J. Dairy Sci. 2010, 93, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Gavin, W.G.; Porter, C.A.; Hawkins, N.; Schofield, M.J.; Pollock, J.M. Johne’s Disease: A Successful Eradication Programme in a Dairy Goat Herd. Vet. Rec. 2018, 182, 483. [Google Scholar] [CrossRef] [PubMed]
- Tuberquia-López, B.C.; Correa-Valencia, N.M.; Hernández-Agudelo, M.; Fernández-Silva, J.A.; Ramírez-Vásquez, N.F. Paratuberculosis Control Strategies in Dairy Cattle: A Systematic Review. Open. Vet. J. 2022, 12, 525. [Google Scholar] [CrossRef] [PubMed]
- Wraight, M.D.; McNeil, J.; Beggs, D.S.; Greenall, R.K.; Humphris, T.B.; Irwin, R.J.; Jagoe, S.P.; Jemmeson, A.; Morgan, W.F.; Brightling, P.; et al. Compliance of Victorian Dairy Farmers with Current Calf Rearing Recommendations for Control of Johne’s Disease. Vet. Microbiol. 2000, 77, 429–442. [Google Scholar] [CrossRef]
- Kravitz, A.; Pelzer, K.; Sriranganathan, N. The Paratuberculosis Paradigm Examined: A Review of Host Genetic Resistance and Innate Immune Fitness in Mycobacterium Avium Subsp. Paratuberculosis Infection. Front. Vet. Sci. 2021, 8, 721706. [Google Scholar] [CrossRef]
- Alpay, F.; Zare, Y.; Kamalludin, M.H.; Huang, X.; Shi, X.; Shook, G.E.; Collins, M.T.; Kirkpatrick, B.W. Genome-Wide Association Study of Susceptibility to Infection by Mycobacterium Avium Subspecies Paratuberculosis in Holstein Cattle. PLoS ONE 2014, 9, e111704. [Google Scholar] [CrossRef]
- Canive, M.; González-Recio, O.; Fernández, A.; Vázquez, P.; Badia-Bringué, G.; Lavín, J.L.; Garrido, J.M.; Juste, R.A.; Alonso-Hearn, M. Identification of Loci Associated with Susceptibility to Mycobacterium Avium Subsp. Paratuberculosis Infection in Holstein Cattle Using Combinations of Diagnostic Tests and Imputed Whole-Genome Sequence Data. PLoS ONE 2021, 16, e0256091. [Google Scholar] [CrossRef]
- Sanchez, M.-P.; Guatteo, R.; Davergne, A.; Saout, J.; Grohs, C.; Deloche, M.-C.; Taussat, S.; Fritz, S.; Boussaha, M.; Blanquefort, P.; et al. Identification of the ABCC4, IER3, and CBFA2T2 Candidate Genes for Resistance to Paratuberculosis from Sequence-Based GWAS in Holstein and Normande Dairy Cattle. Genet. Sel. Evol. 2020, 52, 14. [Google Scholar] [CrossRef]
- Sanchez, M.-P.; Tribout, T.; Fritz, S.; Guatteo, R.; Fourichon, C.; Schibler, L.; Delafosse, A.; Boichard, D. New Insights into the Genetic Resistance to Paratuberculosis in Holstein Cattle via Single-Step Genomic Evaluation. Genet. Sel. Evol. 2022, 54, 67. [Google Scholar] [CrossRef]
- Vallée, H.; Rinjard, P. Etudes Sur l’entérite Paratuberculeuse des Bovidés. Rev. Gen. Med. Vet. 1926, 35, 1–9. [Google Scholar]
- Bastida, F.; Juste, R.A. Paratuberculosis Control: A Review with a Focus on Vaccination. J. Immune Based Ther. Vaccines 2011, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Elguezabal, N.; Sevilla, I.A.; Geijo, M.V.; Molina, E.; Arrazuria, R.; Urkitza, A.; Jones, G.J.; Vordermeier, M.; Garrido, J.M.; et al. Tuberculosis Detection in Paratuberculosis Vaccinated Calves: New Alternatives against Interference. PLoS ONE 2017, 12, e0169735. [Google Scholar] [CrossRef]
- Garrido, J.M.; Vazquez, P.; Molina, E.; Plazaola, J.M.; Sevilla, I.A.; Geijo, M.V.; Alonso-Hearn, M.; Juste, R.A. Paratuberculosis Vaccination Causes Only Limited Cross-Reactivity in the Skin Test for Diagnosis of Bovine Tuberculosis. PLoS ONE 2013, 8, e80985. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Wilson, T.; Maclean, P.H.; Rehm, B.H.A.; Heiser, A.; Buddle, B.M.; Wedlock, D.N. Mycobacterium Avium Subsp. Paratuberculosis Antigens Induce Cellular Immune Responses in Cattle without Causing Reactivity to Tuberculin in the Tuberculosis Skin Test. Front. Immunol. 2023, 13, 1087015. [Google Scholar] [CrossRef] [PubMed]
- Reddacliff, L.; Eppleston, J.; Windsor, P.; Whittington, R.; Jones, S. Efficacy of a Killed Vaccine for the Control of Paratuberculosis in Australian Sheep Flocks. Vet. Microbiol. 2006, 115, 77–90. [Google Scholar] [CrossRef]
- Tewari, D.; Hovingh, E.; Linscott, R.; Martel, E.; Lawrence, J.; Wolfgang, D.; Griswold, D. Mycobacterium Avium Subsp. Paratuberculosis Antibody Response, Fecal Shedding, and Antibody Cross-Reactivity to Mycobacterium Bovis in M. Avium Subsp. Paratuberculosis-Infected Cattle Herds Vaccinated against Johne’s Disease. Clin. Vaccine Immunol. 2014, 21, 698–703. [Google Scholar] [CrossRef] [PubMed]
- García-Pariente, C.; Pérez, V.; Geijo, M.V.; Moreno, O.; Muñoz, M.; Fuertes, M.; Puentes, E.; Doce, J.; Ferreras, M.C.; Garcia Marin, J.F. The Efficacy of a Killed Vaccine against Paratuberculosis (SILIRUM®) in Cattle. In A Field Study. In Proceedings of the 8th International Colloquium on Paratuberculosis, Copenhagen, Denmark, 14–17 August 2005; p. 282. [Google Scholar]
- Alonso-Hearn, M.; Molina, E.; Geijo, M.; Vazquez, P.; Sevilla, I.A.; Garrido, J.M.; Juste, R.A. Immunization of Adult Dairy Cattle with a New Heat-Killed Vaccine Is Associated with Longer Productive Life Prior to Cows Being Sent to Slaughter with Suspected Paratuberculosis. J. Dairy Sci. 2012, 95, 618–629. [Google Scholar] [CrossRef]
- Juste, R.A.; Alonso-Hearn, M.; Molina, E.; Geijo, M.; Vazquez, P.; Sevilla, I.A.; Garrido, J.M. Significant Reduction in Bacterial Shedding and Improvement in Milk Production in Dairy Farms after the Use of a New Inactivated Paratuberculosis Vaccine in a Field Trial. BMC Res. Notes 2009, 2, 233. [Google Scholar] [CrossRef]
- Serrano, M.; Elguezabal, N.; Plazaola, J.M.; Lauzurika, J.; Ocabo, B.; Geijo, M.V.; Molina, E.; Sevilla, I.A.; Arrazuria, R.; Alonso-Hearn, M.; et al. Effect of Age at Vaccination on Map Shedding: An Ten-Year Follow-Up. In Proceedings of the 13th International Colloquium on Paratuberculosis, Nantes, France, 20–24 June 2016; p. 137. [Google Scholar]
- Juste, R.A.; Geijo, M.V.; Elguezabal, N.; Sevilla, I.A.; Alonso-Hearn, M.; Garrido, J.M. Paratuberculosis Vaccination Specific and Non-Specific Effects on Cattle Lifespan. Vaccine 2021, 39, 1631–1641. [Google Scholar] [CrossRef]
- Dhand, N.K.; Eppleston, J.; Whittington, R.J.; Windsor, P.A. Changes in Prevalence of Ovine Paratuberculosis Following Vaccination with Gudair(R): Results of a Longitudinal Study Conducted over a Decade. Vaccine 2016, 34, 5107–5113. [Google Scholar] [CrossRef] [PubMed]
- Links, I.J.; Denholm, L.J.; Evers, M.; Kingham, L.J.; Greenstein, R.J. Is Vaccination a Viable Method to Control Johne’s Disease Caused by Mycobacterium Avium Subsp. Paratuberculosis? Data from 12 Million Ovine Vaccinations and 7.6 Million Carcass Examinations in New South Wales, Australia from 1999–2009. PLoS ONE 2021, 16, e0246411. [Google Scholar] [CrossRef] [PubMed]
- Ritz, C.; Spiess, A.-N. QpcR: An R Package for Sigmoidal Model Selection in Quantitative Real-Time Polymerase Chain Reaction Analysis. Bioinformatics 2008, 24, 1549–1551. [Google Scholar] [CrossRef] [PubMed]
- R Foundation for Statistical Computing R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 26 March 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. GlmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Fox, J. Effect Displays in R for Generalised Linear Models. J. Stat. Softw. 2003, 8, 1–27. [Google Scholar] [CrossRef]
- Körmendy, B. The Effect of Vaccination on the Prevalence of Paratuberculosis in Large Dairy Herds. Vet. Microbiol. 1994, 41, 117–125. [Google Scholar] [CrossRef]
- Kalis, C.H.; Hesselink, J.W.; Barkema, H.W.; Collins, M.T. Use of Long-Term Vaccination with a Killed Vaccine to Prevent Fecal Shedding of Mycobacterium Avium Subsp Paratuberculosis in Dairy Herds. Am. J. Vet. Res. 2001, 62, 270–274. [Google Scholar] [CrossRef]
- Knust, B.; Patton, E.; Ribeiro-Lima, J.; Bohn, J.J.; Wells, S.J. Evaluation of the Effects of a Killed Whole-Cell Vaccine against Mycobacterium Avium Subsp Paratuberculosis in 3 Herds of Dairy Cattle with Natural Exposure to the Organism. J. Am. Vet. Med. Assoc. 2013, 242, 663–669. [Google Scholar] [CrossRef]
- Koets, A.; Ravesloot, L.; Ruuls, R.; Dinkla, A.; Eisenberg, S.; Lievaart-Peterson, K. Effects of Age and Environment on Adaptive Immune Responses to Mycobacterium Avium Subsp. Paratuberculosis (MAP) Vaccination in Dairy Goats in Relation to Paratuberculosis Control Strategies. Vet. Sci. 2019, 6, 62. [Google Scholar] [CrossRef]
- Carpenter, T.E. Evaluation of Effectiveness of a Vaccination Program against an Infectious Disease at the Population Level. Am. J. Vet. Res. 2001, 62, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gonzalez, N.; Fourichon, C.; Blanquefort, P.; Delafosse, A.; Joly, A.; Ngwa-Mbot, D.; Biet, F.; Boichard, D.; Schibler, L.; Journaux, L.; et al. Longitudinal Study of Mycobacterium Avium Ssp. Paratuberculosis Fecal Shedding Patterns and Concurrent Serological Patterns in Naturally Infected Dairy Cattle. J. Dairy Sci. 2019, 102, 9117–9137. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Tauer, L.W.; Schukken, Y.H.; Gómez, M.I.; Smith, R.L.; Lu, Z.; Grohn, Y.T. Economic Analysis of Mycobacterium Avium Subspecies Paratuberculosis Vaccines in Dairy Herds. J. Dairy Sci. 2012, 95, 1855–1872. [Google Scholar] [CrossRef] [PubMed]
- Dhand, N.K.; Plain, K.M.; Green, A.C.; Martinez, E.; Eppleston, J.; Ly, A.; Arif, S.; Emery, D. Factors Influencing the Effectiveness of the Gudair Vaccine for Controlling Johne’s Disease in Sheep Flocks in Australia. Prev. Vet. Med. 2021, 193, 105394. [Google Scholar] [CrossRef] [PubMed]
- Hasvold, H.J.; Valheim, M.; Berntsen, G.; Storset, A.K. In Vitro Responses to Purified Protein Derivate of Caprine T Lymphocytes Following Vaccination with Live Strains of Mycobacterium Avium Subsp. Paratuberculosis. Vet. Immunol. Immunopathol. 2002, 90, 79–89. [Google Scholar] [CrossRef]
- Fernández, M.; Royo, M.; Fuertes, M.; Arteche-Villasol, N.; Ferreras, M.C.; Benavides, J.; Pérez, V. Effects of Paratuberculosis Vaccination at Different Ages in a Dairy Goat Herd: A 2-Year Follow-Up. Animals 2022, 12, 3135. [Google Scholar] [CrossRef]
- Mercier, P.; Brémaud, I.; Gautier, M.-P. Vaccination of Kids under One Month of Age with a Killed Vaccine and Reduction in the Frequency of Faecal Shedding of Mycobacterium Avium Subspecies Paratuberculosis. Small Rumin. Res. 2014, 121, 425–433. [Google Scholar] [CrossRef]
- Gwozdz, J.; Thompson, K.; Manktelow, B.; Murray, A.; West, D. Vaccination against Paratuberculosis of Lambs Already Infected Experimentally with Mycobacterium Avium Subspecies Paratuberculosis. Aust. Vet. J. 2000, 78, 560–566. [Google Scholar] [CrossRef]
- Muñoz, M.; Garcia Marin, J.; Garcia-Pariente, C.; Reyes, L.; Verna, A.; Moreno, O.; Fuertes, M.; Doce, J.; Puentes, E.; Garrido, J.M.; et al. IAP: 2005: Efficacy of a Killed Vaccine (SILIRUM®) in Calves Challenged with Map. In Proceedings of the 8th International Colloquium on Paratuberculosis, Copenhagen, Denmark, 14–17 August 2005; pp. 208–217. [Google Scholar]
- Mathevon, Y.; Lafort, M.-P.; Tasca, C.; Galan, E.; Falguières, R.; Corbiere, F.; Foucras, G. Vaccination against Paratuberculosis in sheep: Methodological developments and evaluation of efficacy. In Proceedings of the 13th International Colloquium on Paratuberculosis, Nantes, France, 20–24 June 2016; p. 143. [Google Scholar]
- Koets, A.P.; Eda, S.; Sreevatsan, S. The within Host Dynamics of Mycobacterium Avium Ssp. Paratuberculosis Infection in Cattle: Where Time and Place Matter. Vet. Res. 2015, 46, 61. [Google Scholar] [CrossRef]
- DeKuiper, J.L.; Cooperider, H.E.; Lubben, N.; Ancel, C.M.; Coussens, P.M. Mycobacterium Avium Subspecies Paratuberculosis Drives an Innate Th17-Like T Cell Response Regardless of the Presence of Antigen-Presenting Cells. Front. Vet. Sci. 2020, 7, 108. [Google Scholar] [CrossRef]
- Pooley, H.B.; Begg, D.J.; Plain, K.M.; Whittington, R.J.; Purdie, A.C.; de Silva, K. The Humoral Immune Response Is Essential for Successful Vaccine Protection against Paratuberculosis in Sheep. BMC Vet. Res. 2019, 15, 223. [Google Scholar] [CrossRef] [PubMed]
- Corpa, J.M.; Pérez, V.; García Marín, J.F. Differences in the Immune Responses in Lambs and Kids Vaccinated against Paratuberculosis, According to the Age of Vaccination. Vet. Microbiol. 2000, 77, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Chase, C.C.L.; Hurley, D.J.; Reber, A.J. Neonatal Immune Development in the Calf and Its Impact on Vaccine Response. Vet. Clin. North. Am. Food Anim. Pract. 2008, 24, 87–104. [Google Scholar] [CrossRef]
- Arteche-Villasol, N.; Gutiérrez-Expósito, D.; Vallejo, R.; Espinosa, J.; Elguezabal, N.; Ladero-Auñon, I.; Royo, M.; del Carmen Ferreras, M.; Benavides, J.; Pérez, V. Early Response of Monocyte-Derived Macrophages from Vaccinated and Non-Vaccinated Goats against in Vitro Infection with Mycobacterium Avium Subsp. Paratuberculosis. Vet. Res. 2021, 52, 69. [Google Scholar] [CrossRef]
- Purdie, A.C.; Plain, K.M.; Pooley, H.; Begg, D.J.; de Silva, K.; Whittington, R.J. Correlates of Vaccine Protection against Mycobacterium Avium Sub-Species Paratuberculosis Infection Revealed in a Transcriptomic Study of Responses in Gudair® Vaccinated Sheep. Front. Vet. Sci. 2022, 9, 1004237. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, R.; Voysey, M.; McQuaid, F.; de Nie, K.; Ryan, R.; Orr, O.; Uhlig, U.; Sande, C.; O’Connor, D.; Pollard, A.J. Non-Specific Immunological Effects of Selected Routine Childhood Immunisations: Systematic Review. BMJ 2016, 355, i5225. [Google Scholar] [CrossRef]
- Vaugelade, J.; Pinchinat, S.; Guiella, G.; Elguero, E.; Simondon, F. Non-Specific Effects of Vaccination on Child Survival: Prospective Cohort Study in Burkina Faso. BMJ 2004, 329, 1309. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Soares-Weiser, K.; López-López, J.A.; Kakourou, A.; Chaplin, K.; Christensen, H.; Martin, N.K.; Sterne, J.A.C.; Reingold, A.L. Association of BCG, DTP, and Measles Containing Vaccines with Childhood Mortality: Systematic Review. BMJ 2016, 355, i5170. [Google Scholar] [CrossRef]
- Pfeiffer, G.; Fisker, A.B.; Nebié, E.; Hengelbrock, J.; Sié, A.; Becher, H.; Müller, O. Non-Specific Effects of Childhood Vaccinations—A Case Control Study Nested into a Health and Demographic Surveillance System in Rural Burkina Faso. Vaccine 2017, 35, 7114–7120. [Google Scholar] [CrossRef]
- Quinn, M.; Edmond, K.M.; Fawzi, W.W.; Hurt, L.; Kirkwood, B.R.; Masanja, H.; Muhihi, A.J.; Newton, S.; Noor, R.A.; Williams, P.L.; et al. Non-Specific Effects of BCG and DTP Vaccination on Infant Mortality: An Analysis of Birth Cohorts in Ghana and Tanzania. Vaccine 2022, 40, 3737–3745. [Google Scholar] [CrossRef]
Herd | Herd Size 1 | Control Plan 2 | Vaccination Plan 3 | Serological Incidence (%) 4 | Number of Sampled Cows | Vaccinated Cows | Non-Vaccinated Cows |
---|---|---|---|---|---|---|---|
A | 302 | February 2003 | August 2015 | 5.7 | 138 | 64 | 74 |
B | 140 | February 2009 | April 2016 | 2.5 | 82 | 28 | 54 |
C | 187 | February 2007 | April 2015 | 1.8 | 71 | 51 | 20 |
D | 218 | September 2006 | June 2015 | 2.2 | 95 | 45 | 50 |
E | 81 | October 2012 | April 2016 | 9.1 | 43 | 22 | 21 |
F | 256 | August 2002 | May 2015 | 2.1 | 146 | 116 | 30 |
G | 104 | November 2000 | June 2015 | 2.1 | 48 | 32 | 16 |
Overall | 1288 | 623 | 358 | 265 |
Number of Samples during the Study Period | |||||
---|---|---|---|---|---|
1 (% 1) | 2 (%) | 3 (%) | 4 (%) | Overall | |
Vaccinated cows | 112 (31.3) | 212 (59.2) | 34 (9.5) | 0 (0.0) | 358 |
Non-vaccinated cows | 60 (22.6) | 153 (57.7) | 49 (18.5) | 3 (1.1) | 265 |
Overall | 172 (27.6) | 365 (58.6) | 83 (13.3) | 3 (0.5) | 623 |
Estimated Map Concentration (Equivalent Number of Map·g−1) | Total | ||||||
---|---|---|---|---|---|---|---|
Negative | [5–102] | [102–103] | [103–104] | [104–105] | >105 | ||
Vaccinated cows | |||||||
Number of samples | 464 (72.7) | 130 (20.4) | 20 (3.1) | 15 (2.4) | 6 (0.9) | 3 (0.5) | 638 |
Number of cows 1 | 221 (61.7) | 97 (27.1) | 18 (5.0) | 13 (3.6) | 6 (1.7) | 3 (0.8) | 358 |
Non-vaccinated cows | |||||||
Number of samples | 420 (80.5) | 74 (14.2) | 16 (3.1) | 4 (0.8) | 4 (0.8) | 4 (0.8) | 522 |
Number of cows 1 | 186 (70.2) | 53 (20.0) | 14 (5.3) | 4 (1.5) | 4 (1.5) | 4 (1.5) | 265 |
Overall | |||||||
Number of samples | 884 (76.2) | 204 (17.6) | 36 (3.1) | 19 (1.6) | 10 (0.9) | 7 (0.6) | 1160 |
Number of cows 1 | 407 (65.3) | 150 (24.1) | 32 (5.1) | 17 (2.7) | 10 (1.6) | 7 (1.1) | 623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbiere, F.; Guellouz, D.; Tasca, C.; Foures, L.; Dubaux, E.; Foucras, G. Effects of Silirum®-Based Vaccination Programs on Map Fecal Shedding and Serological Response in Seven French Dairy Herds. Animals 2023, 13, 1569. https://doi.org/10.3390/ani13091569
Corbiere F, Guellouz D, Tasca C, Foures L, Dubaux E, Foucras G. Effects of Silirum®-Based Vaccination Programs on Map Fecal Shedding and Serological Response in Seven French Dairy Herds. Animals. 2023; 13(9):1569. https://doi.org/10.3390/ani13091569
Chicago/Turabian StyleCorbiere, Fabien, Dorra Guellouz, Christian Tasca, Laurent Foures, Emma Dubaux, and Gilles Foucras. 2023. "Effects of Silirum®-Based Vaccination Programs on Map Fecal Shedding and Serological Response in Seven French Dairy Herds" Animals 13, no. 9: 1569. https://doi.org/10.3390/ani13091569
APA StyleCorbiere, F., Guellouz, D., Tasca, C., Foures, L., Dubaux, E., & Foucras, G. (2023). Effects of Silirum®-Based Vaccination Programs on Map Fecal Shedding and Serological Response in Seven French Dairy Herds. Animals, 13(9), 1569. https://doi.org/10.3390/ani13091569