Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lambs, Housing, Experimental Scheme, Diets and Sampling
2.2. Reagents, Chemicals and Dietary Supplements
2.3. Pre-Column Methods and Chromatography Instruments
2.3.1. Fatty Acid Extraction and Methylation of Fatty Acids
2.3.2. Lipid Quality Indices
2.3.3. Chromatographic Analysis of TCh, α-TAc, Tocopherols and MDA in Spleens
2.4. Statistical Analyses
3. Results
3.1. Contents of SFA and MUFA in Ovine Spleens
3.2. PUFA Concentrations in the Ovine Spleens
3.3. Concentrations of Tocopherols, TCh and MDA in the Ovine Spleens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Mebius, R.E.; Kraal, G. Structure and Function of the Spleen. Nat. Rev. Immunol. 2005, 5, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Fang, H.; Fang, S.; Zhang, T.; Zhang, L.; Yang, L. Changes in Nuclear Factor Kappa B Components Expression in the Ovine Spleen during Early Pregnancy. J. Anim. Feed Sci. 2022, 31, 3–11. [Google Scholar] [CrossRef]
- Sahin, N.E.; Oner, Z.; Oner, S.; Turan, M.K. A Study on the Correlation between Spleen Volume Estimated via Cavalieri Principle on Computed Tomography Images with Basic Hemogram and Biochemical Blood Parameters. Anat. Cell Biol. 2022, 55, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, W.; Zhang, K.; Zhu, J.; Jia, X.; Guo, X.; Zhao, Q.; Tang, C.; Yin, J.; Zhang, J. Selenium Deficiency Induces Spleen Pathological Changes in Pigs by Decreasing Selenoprotein Expression, Evoking Oxidative Stress, and Activating Inflammation and Apoptosis. J. Anim. Sci. Biotechnol. 2021, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.M.; Ho, L.C.; Han, L.L.; Lu, J.J.; Yue, X.; Yang, N.Y. The Role of Splenectomy in Lipid Metabolism and Atherosclerosis (AS). Lipids Health Dis. 2018, 17, 186. [Google Scholar] [CrossRef] [PubMed]
- Ronaldo Alberti, L.; Magalhães Veloso, D.F.; de Souza Vasconcellos, L.; Petroianu, A. Is There a Relationship between Lipids Metabolism and Splenic Surgeries? Acta Cir. Bras. 2012, 27, 751–756. [Google Scholar] [CrossRef]
- Wysocki, A.; Drożdż, W.; Dolecki, M. Spleen and Lipids Metabolism-Is There Any Correlation? Med. Sci. Monit. 1999, 5, 524–527. [Google Scholar]
- Gunes, O.; Turgut, E.; Bag, Y.M.; Gundogan, E.; Gunes, A.; Sumer, F. The Impact of Splenectomy on Human Lipid Metabolism. Upsala J. Med. Sci. 2022, 127, e8500. [Google Scholar] [CrossRef]
- King, J.H. Studies on the Pathology of Spleen. Arch. Intern. Med. 1914, 14, 145–167. [Google Scholar] [CrossRef]
- Asai, K.; Hayashi, T.; Kuzuya, M.; Funaki, C.; Naito, M.; Kuzuya, F. Delayed Clearance of Beta-Very Low Density Lipoprotein after Feeding Cholesterol to Splenectomized Rabbits. Artery 1990, 18, 32–46. [Google Scholar]
- Dinis, A.P.G.; Marques, R.G.; Simões, F.C.; Diestel, C.F.; Caetano, C.E.R.; Secchin, D.J.F.; Neto, J.F.N.; Portela, M.C. Plasma Lipid Levels of Rats Fed a Diet Containing Pork Fat as a Source of Lipids after Splenic Surgery. Lipids 2009, 44, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W.; Noble, R.C. The Lipid Composition of the Spleen and Intestinal Popliteal Lymph Nodes in the Sheep. Lipids 1985, 20, 389–392. [Google Scholar] [CrossRef]
- Brito, J.M.F.; Pascoal, L.A.F.; Jordão Filho, J.; Melo, T.S.; Almeida, J.M.d.S.; de Almeida, J.L.S.; Moreira Filho, A.L.d.B.; Alcântara, M.A.; Grisi, C.V.B.; Cordeiro, A.M.T.d.M. Soybean Oil and Selenium Yeast Supplementation in Quail’s Diet: Productive Performance, Fatty Acid Profile, Enzyme Activity, and Oxidative Stability of Meat. Eur. J. Lipid Sci. Technol. 2023, 125, 2200118. [Google Scholar] [CrossRef]
- Yiming, Z.; Qingqing, L.; Hang, Y.; Yahong, M.; Shu, L. Selenium Deficiency Causes Immune Damage by Activating the DUSP1/NF-?B Pathway and Endoplasmic Reticulum Stress in Chicken Spleen. Food Funct. 2020, 11, 6467–6475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Xia, K.; Dai, J.; Huang, J.; Wang, Y.; Zhu, G.; Hu, Z.; Zeng, Z.; Jia, Y. Effects of Dietary Selenium on Immune Function of Spleen in Mice. J. Funct. Foods 2022, 89, 104914. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; He, J.; Hu, M.; Zeng, F.; Li, Y.; Tian, H.; Luo, X. The Adverse Effects of Se Toxicity on Inflammatory and Immune Responses in Chicken Spleens. Biol. Trace Elem. Res. 2018, 185, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, L.; Li, Y.; Luo, X.; He, J. Excessive Selenium Supplementation Induced Oxidative Stress and Endoplasmic Reticulum Stress in Chicken Spleen. Biol. Trace Elem. Res. 2016, 172, 481–487. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Yan, L.; Cao, J.; Li, D.; Huang, G.Y.; Shi, W.J.; Dong, W.; Zha, J.; Ying, G.G.; et al. Subchronic Effects of Dietary Selenium Yeast and Selenite on Growth Performance and the Immune and Antioxidant Systems in Nile Tilapia Oreochromis Niloticus. Fish Shellfish Immunol. 2020, 97, 283–293. [Google Scholar] [CrossRef]
- Sheng Yan Jiu, W.; Pan, M.-X.; Su, Y.-X.; Feng, X.; Tan, B.-Y. Effect of Dietary N-6/n-3 Polyunsaturated Fatty Acid Ratio on Spleen Lymphocyte’s Function and Fatty Acid Composition in Mice. Wei Sheng Yan Jiu 2005, 34, 100–103. [Google Scholar]
- Qin, S.; Wen, J.; Bai, X.C.; Chen, T.Y.; Zheng, R.C.; Zhou, G.B.; Ma, J.; Feng, J.Y.; Zhong, B.L.; Li, Y.M. Endogenous N-3 Polyunsaturated Fatty Acids Protect against Imiquimod-Induced Psoriasis-like Inflammation via the IL-17/IL-23 Axis. Mol. Med. Rep. 2014, 9, 2097–2104. [Google Scholar] [CrossRef]
- Pestka, J.J.; Vines, L.L.; Bates, M.A.; He, K.; Langohr, I. Comparative Effects of N-3, n-6 and n-9 Unsaturated Fatty Acid-Rich Diet Consumption on Lupus Nephritis, Autoantibody Production and CD4+T Cell-Related Gene Responses in the Autoimmune NZBWF1 Mouse. PLoS ONE 2014, 9, e100255. [Google Scholar] [CrossRef] [PubMed]
- de Porto, A.P.N.A.; Lammers, A.J.J.; Bennink, R.J.; ten Berge, I.J.M.; Speelman, P.; Hoekstra, J.B.L. Assessment of splenic function. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Meital, L.T.; Windsor, M.T.; Perissiou, M.; Schulze, K.; Magee, R.; Kuballa, A.; Golledge, J.; Bailey, T.G.; Askew, C.D.; Russell, F.D. Omega-3 Fatty Acids Decrease Oxidative Stress and Inflammation in Macrophages from Patients with Small Abdominal Aortic Aneurysm. Sci. Rep. 2019, 9, 12978. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in Food and the Human Body: A Review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Keane, K.N.; Carlessi, R.; Cruzat, V. Oxidative Stress Pathways in Pancreatic-Cells and Insulin-Sensitive Cells and Tissues: Importance to Cell Metabolism, Function, and Dysfunction. Am. J. Physiol. Cell. Physiol. 2019, 317, C420–C433. [Google Scholar] [CrossRef] [PubMed]
- Mainville, A.M.; Odongo, N.E.; Bettger, W.J.; McBride, B.W.; Osborne, V.R. Selenium Uptake by Ruminal Microorganisms from Organic and Inorganic Sources in Dairy Cows. Can. J. Anim. Sci. 2009, 89, 105–110. [Google Scholar] [CrossRef]
- Masuda, T.; Inaba, Y.; Takeda, Y. Antioxidant Mechanism of Carnosic Acid: Structural Identification of Two Oxidation Products. J. Agric. Food Chem. 2001, 49, 5560–5565. [Google Scholar] [CrossRef]
- Czauderna, M.; Białek, M.; Krajewska, K.A.; Ruszczyńska, A.; Bulska, E. Selenium Supplementation into Diets Containing Carnosic Acid, Fish and Rapeseed Oils Affects the Chemical Profile of Whole Blood in Lambs. J. Anim. Feed Sci. 2017, 26, 192–203. [Google Scholar] [CrossRef]
- Morán, L.; Andrés, S.; Bodas, R.; Benavides, J.; Prieto, N.; Pérez, V.; Giráldez, F.J. Antioxidants Included in the Diet of Fattening Lambs: Effects on Immune Response, Stress, Welfare and Distal Gut Microbiota. Anim. Feed Sci. Technol. 2012, 173, 177–185. [Google Scholar] [CrossRef]
- Morán, L.; Andrés, S.; Blanco, C.; Benavides, J.; Martínez-Valladares, M.; Moloney, A.P.; Giráldez, F.J. Effect of dietary supplementation with carnosic acid or vitamin E on animal performance, haematological and immunological characteristics of artificially reared suckling lambs before and after road transport. Arch. Anim. Nutr. 2017, 71, 272–284. [Google Scholar] [CrossRef]
- Galbraith, M.L.; Vorachek, W.R.; Estill, C.T.; Whanger, P.D.; Bobe, G.; Davis, T.Z.; Hall, J.A. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements. Biol. Trace Elem. Res. 2016, 171, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Miltko, R.; Rozbicka Wieczorek, J.A.; Wiesyk, E.; Czauderna, M. The Influence of Different Chemical Forms of Selenium Added to the Diet Including Carnosic Acid, Fish Oil and Rapeseed Oil on the Formation of Volatile Fatty Acids and Methane in the Rumen, and Fatty Acid Profiles in the Rumen Content and Muscles of Lambs. Acta Vet. 2016, 66, 373–391. [Google Scholar] [CrossRef]
- Rozbicka-Wieczorek, A.J.; Więsyk, E.; Brzóska, F.; Śliwiński, B.; Kowalczyk, J.; Czauderna, M. Efficiency of Fatty Acid Accumulation into Breast Muscles of Chickens Fed Diets with Lycopene, Fish Oil and Different Chemical Selenium Forms. Afr. J. Biotechnol. 2014, 13, 1604–1613. [Google Scholar] [CrossRef]
- Krajewska-Bienias, K.A.; Czauderna, M.; Marounek, M.; Rozbicka-Wieczorek, A.J. Diets Containing Selenized Yeast, Selenate, Carnosic Acid and Fish Oil Change the Content of Fatty Acids, Tocopherols and Cholesterol in the Subcutaneous Fat of Lambs. J. Anim. Plant Sci. 2017, 27, 2017. [Google Scholar]
- Białek, M.; Czauderna, M. Composition of Rumen-Surrounding Fat and Fatty Acid Profile in Selected Tissues of Lambs Fed Diets Supplemented with Fish and Rapeseed Oils, Carnosic Acid, and Different Chemical Forms of Selenium. Livest. Sci. 2019, 226, 122–132. [Google Scholar] [CrossRef]
- Rozbicka-Wieczorek, A.J.; Krajewska-Bienias, K.A.; Czauderna, M. Dietary Carnosic Acid, Selenized Yeast, Selenate and Fish Oil Affected the Concentration of Fatty Acids, Tocopherols, Cholesterol and Aldehydes in the Brains of Lambs. Arch. Anim. Breed. 2016, 59, 215–226. [Google Scholar] [CrossRef]
- Białek, M.; Czauderna, M.; Zaworski, K.; Karpińska, M.; Marounek, M. Changes in the Content and Intensity of Oxidation of Lipid Compounds in the Kidneys of Lambs Fed Diets with Rapeseed and Fish Oils—Effect of Antioxidant Supplementation. J. Anim. Feed Sci. 2021, 30, 223–237. [Google Scholar] [CrossRef]
- Białek, M.; Czauderna, M.; Zaworski, K.; Krajewska, K. Dietary Carnosic Acid and Seleno-Compounds Change Concentrations of Fatty Acids, Cholesterol, Tocopherols and Malondialdehyde in Fat and Heart of Lambs. Anim. Nutr. 2021, 7, 812–822. [Google Scholar] [CrossRef]
- Białek, M.; Karpińska, M.; Czauderna, M. Enrichment of Lamb Rations with Carnosic Acid and Seleno-Compounds Affects the Content of Selected Lipids and Tocopherols in the Pancreas. J. Anim. Feed Sci. 2022, 31, 161–174. [Google Scholar] [CrossRef]
- Yu, L.L.; Wang, R.L.; Zhang, Y.Z.; Kleemann, D.O.; Zhu, X.P.; Jia, Z.H. Effects of Selenium Supplementation on Polyun-saturated Fatty Acid Concentrations and Antioxidant Status in Plasma and Liver of Lambs Fed Linseed Oil or Sunflower Oil Diets. Anim. Feed Sci. Technol. 2008, 140, 39–51. [Google Scholar] [CrossRef]
- Viegas Crespo, A.; Reis, M.A.; Lança, M.J. Effect of Selenium Supplementation on Polyunsaturated Fatty Acids in Rats. Biol. Trace Elem. Res. 2007, 47, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Morán, L.; Giráldez, F.J.; Panseri, S.; Aldai, N.; Jordán, M.J.; Chiesa, L.M.; Andrés, S. Effect of Dietary Carnosic Acid on the Fatty Acid Profile and Flavour Stability of Meat from Fattening Lambs. Food Chem. 2013, 138, 2407–2414. [Google Scholar] [CrossRef] [PubMed]
- Zu, K.; Ip, C. Synergy between Selenium and Vitamin E in Apoptosis Induction Is Associated with Activation of Distinctive Initiator Caspases in Human Prostate Cancer Cells 1. Cancer Res. 2003, 63, 6988–6995. [Google Scholar] [PubMed]
- Yan, Z.; Liu, S.; Liu, Y.; Zheng, M.; Peng, J.; Chen, Q. Effects of Dietary Superoxide Dismutase on Growth Performance, Antioxidant Capacity and Digestive Enzyme Activity of Yellow-Feather Broilers during the Early Breeding Period (1-28d). J. Anim. Feed Sci. 2022, 31, 232–240. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; Hoz, L.D. Fatty Acid Compositions of Selected Varieties of Spanish Dry Ham Related to Their Nutritional Implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Kišidayová, S.; Mihaliková, K.; Siroka, P.; Čobanová, K.; Váradyová, Z. Effects of Inorganic and Organic selenium on the Fatty Acid Composition of Rumen Contents of Sheep and the Rumen Bacteria and Ciliated Protozoa. Anim. Feed Sci. Technol. 2014, 193, 51–57. [Google Scholar] [CrossRef]
- Vargas, J.E.; Andrés, S.; Snelling, T.J.; López-Ferreras, L.; Yáñez-Ruíz, D.R.; García-Estrada, C.; López, S. Effect of Sunflower and Marine Oils on Ruminal Microbiota, in Vitro Fermentation and Digesta Fatty Acid Profile. Front. Microbiol. 2017, 8, 124. [Google Scholar] [CrossRef]
- Eun, J.S.; Davis, T.Z.; Vera, J.M.; Miller, D.N.; Panter, K.E.; ZoBell, D.R. Addition of High Concentration of Inorganic Selenium in Orchardgrass (Dactylis glomerata L.) Hay Diet Does Not Interfere with Microbial Fermentation in Mixed Ruminal Microorganisms in Continuous Cultures. Prof. Anim. Sci. 2013, 29, 39–45. [Google Scholar] [CrossRef]
- Raymond, L.J.; Deth, R.C.; Ralston, N.V.C. Potential Role of Selenoenzymes and Antioxidant Metabolism in Relation to Autism Etiology and Pathology. Autism Res. Treat. 2014, 2014, 164938. [Google Scholar] [CrossRef]
- Mangiapane, E.; Pessione, A.; Pessione, E. Selenium and Selenoproteins: An Overview on Different Biological Systems. Curr. Protein Pept. Sci. 2014, 15, 598–607. [Google Scholar] [CrossRef]
- Poledne, R. A New Atherogenic Effect of Saturated Fatty Acids. Physiol. Res. 2013, 62, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Solsona-Vilarrasa, E.; Fucho, R.; Torres, S.; Nuñez, S.; Nuño-Lámbarri, N.; Enrich, C.; García-Ruiz, C.; Fernández-Checa, J.C. Cholesterol Enrichment in Liver Mitochondria Impairs Oxidative Phosphorylation and Disrupts the Assembly of Respiratory Supercomplexes. Redox Biol. 2019, 24, 101214. [Google Scholar] [CrossRef] [PubMed]
- Stranges, S.; Laclaustra, M.; Ji, C.; Cappuccio, F.P.; Navas-Acien, A.; Ordovas, J.M.; Rayman, M.; Guallar, E. Higher Selenium Status Is Associated with Adverse Blood Lipid Profile in British Adults. J. Nutr. 2010, 140, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, A.; Cases, J.; Roller, M.; Chiralt-Boix, A.; Coussaert, A.; Ripoll, C. Carnosic Acid-Rich Rosemary (Rosmarinus officinalis L.) Leaf Extract Limits Weight Gain and Improves Cholesterol Levels and Glycaemia in Mice on a High-Fat Diet. Br. J. Nutr. 2011, 106, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wan, X.; Zhong, L.; Yang, H.; Li, P.; Xu, X. Carnosic Acid Alleviates Hyperlipidemia and Insulin Resistance by Promoting the Degradation of SREBPs via the 26S Proteasome. J. Funct. Foods 2017, 31, 217–228. [Google Scholar] [CrossRef]
- Nagao, K.; Murakami, A.; Umeda, M. Structure and Function of Δ9-Fatty Acid Desaturase. Chem. Pharm. Bull. 2019, 67, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, P.A.; Mendoza-Martínez, G.D.; Sánchez, N.; Martínez-García, J.A.; Plata-Pérez, F.X.; Lara-Bueno, A.; Ferraro, S.M. Effects of increasing dietary concentrations of fish oil on lamb performance, ruminal fermentation, and leptin gene expression in perirenal fat. Rev. Bras. De Zootec. 2017, 46, 521–526. [Google Scholar] [CrossRef]
- Quilliot, D.; Walters, E.; Böhme, P.; Lacroix, B.; Bonte, J.P.; Fruchart, J.C.; Drouin, P.; Duriez, P.; Ziegler, O. Fatty Acid Abnormalities in Chronic Pancreatitis: Effect of Concomitant Diabetes Mellitus. Eur. J. Clin. Nutr. 2003, 57, 496–503. [Google Scholar] [CrossRef]
- Ahmad, H.; Tian, J.; Wang, J.; Khan, M.A.; Wang, Y.; Zhang, L.; Wang, T. Effects of Dietary Sodium Selenite and Selenium Yeast on Antioxidant Enzyme Activities and Oxidative Stability of Chicken Breast Meat. J. Agric. Food Chem. 2012, 60, 7111–7120. [Google Scholar] [CrossRef]
- Infante, J.P. Vitamin E and Selenium Participation in Fatty Acid Desaturation A Proposal for an Enzymatic Function of These Nutrients. Mol. Cell. Biochem. 1986, 69, 93–108. [Google Scholar] [CrossRef]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione Peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition of the BD Ingredients 2,3, % of Dry Matter (DM) | ||||
---|---|---|---|---|
Indices | Meadow Hay 5 | Concentrate 6 | ||
Barley Meal | Soybean Meal | Wheat Starch | ||
Dry matter, % BD | 88.4 | 87.6 | 89.7 | 87.3 |
Crude protein | 9.50 | 9.94 | 41.81 | 0.90 |
Crude fibre | 27.29 | 2.87 | 4.34 | − |
Crude fat | 3.40 | 2.50 | 2.25 | 0.09 |
Ash | 4.85 | 1.84 | 6.16 | 0.12 |
Neutral detergent fibre | 59.17 | 18.02 | 18.81 | − |
Acid detergent fibre | 32.08 | 4.61 | 6.44 | − |
Acid detergent lignin | 4.47 | 1.14 | 1.49 | − |
Se content, mg Se/kg | 0.003 | 0.016 | 0.020 | − 4 |
Chemical composition of the BD | ||||
Indices | Amount | |||
Dry matter, g/kg BD | 884.3 | |||
Crude protein, g/kg DM | 201.9 | |||
Crude fibre, g/kg DM | 118.6 | |||
Crude fat 7, g/kg BD | 21.7 | |||
Total crude fat 8, g/kg BD | 51.7 | |||
Ash, g/kg DM | 42.8 | |||
Neutral detergent fibre, g/kg DM | 310.5 | |||
Acid detergent fibre, g/kg DM | 146.3 | |||
Acid detergent lignin, g/kg DM | 23.3 | |||
Gross energy 9, MJ/kg DM | 17.9 | |||
Se concentration, mg Se/kg BD | 0.16 |
The Experimental Scheme | The Live Weight (LW) | Spleen Weight | FCE 5 kg/kg | ||||
---|---|---|---|---|---|---|---|
Group/Diet | Ingredients Added to 1 kg of the Basal Diet (BD) | Initial LW kg 1 | Final LW kg 2 | BWG kg | G 3 | Spleen Index 4 | |
g/kg Final LW | |||||||
Control 6 | 20 g R-O and 10 g F-O | 30.6 ± 2.4 | 37.7 ± 2.1 ab | 7.1 ± 0.4 ab | 75.8 ± 3.3 a | 2.01 a | 0.189 ab |
CA 7 | 20 g R-O, 10 g F-O, and 1 g CA | 30.6 ± 2.6 | 37.2 ± 2.3 b | 6.6 ± 0.4 b | 75.5 ± 3.1 a | 2.03 a | 0.174 b |
SeYeCA 7 | 20 g R-O, 10 g F-O, 1 g CA, and 0.35 mg Se as SeYe | 30.3 ± 2.7 | 36.8 ± 2.7 b | 6.5 ± 0.4 b | 88.6 ± 3.5 b | 2.41 b | 0.174 b |
Se6CA 7 | 20 g R-O, 10 g F-O, 1 g CA, and 0.35 mg Se as Se6 | 30.3 ± 3.0 | 38.5 ± 3.1 a | 8.2 ± 0.4 a | 72.0 ± 3.1 a | 1.87 a | 0.215 a |
p = 0.63 | p = 0.04 | p = 0.03 | p = 0.03 | p = 0.02 | p = 0.02 |
Additive: Group/Diet: | - | CA | CA and SeYe | CA and Se6 | SEM | p Value | |
---|---|---|---|---|---|---|---|
Item | Control | CA | SeYeCA | Se6CA | |||
C10:0 | 0.9 | 0.5 | 1.0 | 0.9 | 0.3 | 0.41 | |
C12:0 | 1.0 | 0.7 | 0.6 | 1.1 | 0.4 | 0.29 | |
C14:0 | 56.1 | 48.2 | 61.6 | 57.3 | 1.9 | 0.37 | |
C15:0 | 0.4 | 0.2 | 0.3 | 0.3 | 0.2 | 0.19 | |
C16:0 | 4 452 | 3 796 | 3 968 | 3 566 | 97 | 0.09 | |
C17:0 | 112 c | 49 a | 84 b | 85 b | 5 | 0.04 | |
C18:0 | 6 119 b | 5 183 a | 5 284 a | 5 086 a | 49 | 0.04 | |
C20:0 | 1.0 | 0.8 | 0.7 | 1.1 | 0.1 | 0.29 | |
C22:0 | 16.4 c | 8.6 a | 14.1 b | 19.5 c | 0.3 | 0.03 | |
C24:0 | 56.4 b | 39.2 a | 45.7 a | 60.7 b | 0.5 | 0.04 | |
A-SFA | 4 509 b | 3 845 a | 4 031 ab | 3 625 a | 98 | 0.04 | |
A-SFA/ΣFA | 0.2106 | 0.2171 | 0.2191 | 0.2000 | 0.0022 | 0.13 | |
T-SFA | 10 627 | 9 028 | 9 314 | 8 709 | 198 | 0.13 | |
T-SFA/ΣFA | 0.5009 b | 0.5099 c | 0.5062 bc | 0.4806 a | 0.0017 | 0.04 | |
indexASFA | 0.4585 b | 0.4700 c | 0.4762 c | 0.4179 a | 0.0007 | 0.04 | |
indexTSFA | 1.0399 c | 0.9925 bc | 0.8737 b | 0.7852 a | 0.0010 | 0.03 | |
ΣSFA | 10 816 | 9 127 | 9 460 | 8 877 | 223 | 0.09 | |
ΣFA | 20 959 | 17 655 | 18 350 | 18 150 | 667 | 0.11 | |
ΣSFA/ΣUFA | 1.0660 bc | 1.0697 c | 1.0636 b | 0.9567 a | 0.0014 | 0.04 | |
ΣSFA/ΣPUFA | 2.3420 a | 2.6507 c | 2.5652 b | 2.2345 a | 0.0041 | 0.03 | |
ΣSFA/ΣMUFA | 1.8919 c | 1.7787 b | 1.8039 b | 1.6728 a | 0.0059 | 0.04 | |
ΣSFA/ΣFA | 0.5102 | 0.5156 | 0.5143 | 0.4898 | 0.0082 | 0.37 |
Additive: Group/Diet: | - | CA | CA and SeYe | CA and Se6 | SEM | p Value | |
---|---|---|---|---|---|---|---|
Item | Control | CA | SeYeCA | Se6CA | |||
c9C14:1 | 62.9 c | 33.9 a | 48.2 b | 67.3 c | 3 | 0.03 | |
c9C16:1 | 115 a | 99 a | 143 b | 153 b | 7 | 0.04 | |
c10C16:1 | 7.08 | 7.58 | 7.08 | 8.24 | 0.83 | 0.53 | |
t11C18:1 | 263 c | 155 a | 210 b | 237 bc | 11 | 0.03 | |
c9C18:1 | 4 698 | 4 317 | 4 151 | 4 137 | 159 | 0.32 | |
c12C18:1 | 537 a | 471 a | 622 b | 639 b | 20 | 0.04 | |
c11C20:1 | 33 a | 36 a | 62 b | 65 b | 5 | 0.03 | |
ΣMUFA 1 | 5 716 | 5 130 | 5 243 | 5 305 | 51 | 0.37 | |
ΣMUFA/ΣFA | 0.274 a | 0.291 b | 0.287 b | 0.292 b | 0.003 | 0.03 | |
C18:0∆9index 2 | 0.436 | 0.453 | 0.441 | 0.449 | 0.004 | 0.13 | |
C16:0∆9index 3 | 0.0274 a | 0.0265 a | 0.0346 b | 0.0407 b | 0.0010 | 0.02 | |
C14:0∆9index 4 | 0.529 b | 0.413 a | 0.439 a | 0.540 b | 0.003 | 0.03 | |
t11C18:1∆9index 5 | 0.103 a | 0.201 d | 0.133 b | 0.167 c | 0.002 | 0.02 | |
∑∆9index 6 | 0.310 a | 0.328 b | 0.315 a | 0.330 b | 0.002 | 0.04 | |
Σ∆9,6,5,4FAindex 7 | 0.502 a | 0.516 b | 0.527 b | 0.516 b | 0.002 | 0.03 |
Additive: Group/Diet: | - | CA | CA and SeYe | CA and Se6 | SEM | p Value | |
---|---|---|---|---|---|---|---|
Item | Control | CA | SeYeCA | Se6CA | |||
c9t11CLA | 30.3 a | 38.9 b | 32.1 ab | 47.6 c | 0.6 | 0.04 | |
c9c12C18:2 (LA) | 682 c | 550 a | 600 ab | 645 bc | 13 | 0.03 | |
c9c12c15C18:3 (αLNA) | 10.6 b | 5.5 a | 7.2 a | 17.0 c | 0.5 | 0.02 | |
c11c14C20:2 | 41.0 b | 21.6 a | 18.4 a | 37.9 b | 0.8 | 0.02 | |
c8c11c14C20:3 | 68.4 bc | 49.9 a | 61.6 ab | 76.0 c | 2.9 | 0.03 | |
c5c8c11c14C20:4 (AA) | 2 904 b | 2 141 a | 2 203 a | 2 389 a | 32 | 0.05 | |
c5c8c11c14c17C20:5 (EPA) | 91.4 c | 54.4 a | 72.7 b | 75.9 b | 4.1 | 0.04 | |
c7c10c13c16c19C22:5 (DPA) | 438 | 404 | 443 | 478 | 12 | 0.17 | |
c4c7c10c13c16c19C22:5 (DHA) | 164 a | 135 a | 211 b | 204 b | 8 | 0.04 | |
Σn-3PUFA 1 | 704 b | 599 a | 734 bc | 774 c | 12 | 0.04 | |
Σn-6PUFA 2 | 3 653 c | 2 741 a | 2 865 ab | 3 111 b | 29 | 0.04 | |
ΣPUFA 3 | 4 428 c | 3 400 a | 3 649 ab | 3 971 b | 34 | 0.03 | |
Σn-6PUFA/Σn-3PUFA | 5.189 c | 4.576 b | 3.903 a | 4.018 a | 0.005 | 0.02 | |
Σn-6LPUFA | 2 972 b | 2191 a | 2265 a | 2 466 ab | 36 | 0.04 | |
Σn-3LPUFA | 693 | 593 | 727 | 757 | 14 | 0.27 | |
ΣLPUFA 4 | 3 665 b | 2 784 a | 2 992 a | 3 223 ab | 24 | 0.04 | |
Σn-6LPUFA/Σn-3LPUFA | 4.286 c | 3.695 b | 3.117 a | 3.256 a | 0.009 | 0.02 | |
Σn-3LPUFA/ΣFA | 0.0359 ab | 0.0340 a | 0.0395 c | 0.0417 d | 0.0002 | 0.04 | |
ΣLPUFA/ΣFA | 0.175 b | 0.158 a | 0.163 a | 0.178 b | 0.002 | 0.02 | |
∑PUFA/∑FA | 0.215 | 0.194 | 0.200 | 0.218 | 0.002 | 0.06 | |
∑PUFA/∑SFA | 0.427 b | 0.377 a | 0.390 a | 0.448 b | 0.003 | 0.04 | |
∑UFA/∑SFA | 0.938 | 0.935 | 0.940 | 1.045 | 0.007 | 0.07 | |
n−6ElongC20/C18index 5 | 0.0567 c | 0.0378 b | 0.0298 a | 0.0555 c | 0.0002 | 0.03 | |
n−3ElongC22/C20index 6 | 0.721 a | 0.888 c | 0.862 b | 0.864 bc | 0.003 | 0.05 | |
∆4index 7 | 0.272 b | 0.250 a | 0.323 d | 0.297 c | 0.001 | 0.02 | |
∆5index 8 | 0.977 | 0.977 | 0.973 | 0.969 | 0.002 | 0.43 | |
h/H-Ch ratio) | 2.250 b | 2.219 a | 2.207 a | 2.600 c | 0.003 | 0.02 |
Item | Group/Diets | SEM | p Value | |||
---|---|---|---|---|---|---|
Control | CA | SeYeCA | Se6CA | |||
TCh | 223 b | 120 a | 308 c | 260 bc | 23 | 0.04 |
δ-tocopherol (δ-T) | 1.07 | 0.33 | 0.38 | 0.65 | 0.05 | 0.09 |
γ-tocopherol (γ-T) | 0.36 | 0.23 | 0.17 | 0.24 | 0.04 | 0.42 |
α-tocopherol (α-T) | 3.83 a | 4.65 a | 12.11 b | 10.93 b | 0.06 | 0.04 |
α-tocopheryl acetate (α-TAc) | 0.11 | 0.11 | 0.28 | 0.28 | 0.04 | 0.19 |
Σ(α-T + α-TAc) | 3.93 a | 4.75 a | 12.39 b | 11.22 b | 0.07 | 0.03 |
Σall-Ts 2 | 5.36 a | 5.31 a | 12.93 b | 12.10 b | 0.07 | 0.03 |
indexASFA/ΣToc [39] | 0.0769 c | 0.0659 b | 0.0258 a | 0.0250 a | 0.0005 | 0.03 |
MDA | 4.52 | 4.45 | 3.97 | 3.62 | 0.12 | 0.37 |
ΣPUFAMDAindex 3 | 1.021 b | 1.309 d | 1.087 c | 0.911 a | 0.014 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Białek, M.; Białek, A.; Wojtak, W.; Czauderna, M. Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil. Animals 2024, 14, 133. https://doi.org/10.3390/ani14010133
Białek M, Białek A, Wojtak W, Czauderna M. Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil. Animals. 2024; 14(1):133. https://doi.org/10.3390/ani14010133
Chicago/Turabian StyleBiałek, Małgorzata, Agnieszka Białek, Wiktoria Wojtak, and Marian Czauderna. 2024. "Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil" Animals 14, no. 1: 133. https://doi.org/10.3390/ani14010133
APA StyleBiałek, M., Białek, A., Wojtak, W., & Czauderna, M. (2024). Organic and Inorganic Selenium Compounds Affected Lipidomic Profile of Spleen of Lambs Fed with Diets Enriched in Carnosic Acid and Fish Oil. Animals, 14(1), 133. https://doi.org/10.3390/ani14010133