Thermoregulation during Field Exercise in Horses Using Skin Temperature Monitoring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Thermoregulation: Core vs. Shell Temperature
3. Mechanism of Metabolic Heat Loss
4. Field-Based Thermoregulation Research—Non-Invasive Monitoring
5. Skin Temperature Measurement
6. Skin Temperature at Point(s)-in-Time or Continuous Monitoring during Exercise
6.1. Tsk Measurement at a Point-in-Time (Pre-Exercise and Post-Exercise)
6.2. Continuous Tsk Monitoring during Exercise
7. Overview of Factors Influencing the Tsk Measurement
7.1. Environmental Factors
7.2. Individual Equine Factors and Thermoregulation
7.3. Location of Tsk Equipment
7.4. Choice of Tsk Measurement Equipment
8. Challenges and Limitations of IRT and Its Studies
9. Future Implications
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouchama, A.; Abuyassin, B.; Lehe, C.; Laitano, O.; Jay, O.; O’Connor, F.G.; Leon, L.R. Classic and exertional heatstroke. Nat. Rev. Dis. Primers 2022, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Solymosi, N.; Torma, C.; Kern, A.; Maroti-Agots, A.; Barcza, Z.; Konyves, L.; Berke, O.; Reiczigel, J. Changing climate in Hungary and trends in the annual number of heat stress days. Int. J. Biometeorol. 2010, 54, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Casa, D.J.; DeMartini, J.K.; Bergeron, M.F.; Csillan, D.; Eichner, E.R.; Lopez, R.M.; Ferrara, M.S.; Miller, K.C.; O’Connor, F.; Sawka, M.N.; et al. National athletic trainers’ association position statement: Exertional Heat Illnesses. J. Athl. Train. 2015, 50, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Nocera, A.; Sbrollini, A.; Romagnoli, S.; Morettini, M.; Gambi, E.; Burattini, L. Physiological and biomechanical monitoring in American football players: A scoping review. Sensors 2023, 23, 3538. [Google Scholar] [CrossRef] [PubMed]
- Geor, R.J.; McCutcheon, L.J. Hydration effects on physiological strain of horses during exercise-heat stress. J. Appl. Physiol. 1998, 84, 2042–2051. [Google Scholar] [CrossRef]
- Barnes, A.; Kingston, J.; Beetson, S.; Kuiper, C. Endurance veterinarians detect physiologically compromised horses in a 160 km ride. Equine Vet. J. 2010, 42, 6–11. [Google Scholar] [CrossRef]
- Nagy, A.; Murray, J.K.; Dyson, S. Elimination from elite endurance rides in nine countries: A preliminary study. Equine Vet. J. 2010, 42, 637–643. [Google Scholar] [CrossRef]
- Fielding, C.L.; Meier, C.A.; Balch, O.K.; Kass, P.H. Risk factors for the elimination of endurance horses from competition. J. Am. Vet. Med. Assoc. 2011, 239, 493–498. [Google Scholar] [CrossRef]
- Nagy, A.; Murray, J.K.; Dyson, S.J. Descriptive epidemiology and risk factors for eliminations from Federation Equestre Internationale endurance rides due to lameness and metabolic reasons (2008–2011). Equine Vet. J. 2014, 46, 38–44. [Google Scholar] [CrossRef]
- Younes, M.; Robert, C.; Cottin, F.; Barrey, E. Speed and cardiac recovery variables predict the probability of elimination in equine endurance events. PLoS ONE 2015, 10, e0137013. [Google Scholar] [CrossRef] [PubMed]
- Fielding, C.L.; Meier, C.A.; Fellers, G.K.; Magdesian, K.G. Ability of clinicopathologic variables and clinical examination findings to predict race elimination in endurance horses. Am. J. Vet. Res. 2017, 78, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Bennet, E.D.; Parkin, T.D.H. Fédération Equestre Internationale endurance events: Risk factors for failure to qualify outcomes at the level of the horse, ride and rider (2010–2015). Vet. J. 2018, 236, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Legg, K.A.; Weston, J.F.; Gee, E.K.; Bolwell, C.F.; Bridges, J.P.; Rogers, C.W. Characteristics of endurance competitions and risk factors for elimination in New Zealand during six seasons of competition (2010/11–2015/16). Animals 2019, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Nomura, M.; Shiose, T.; Ishikawa, Y.; Mizobe, F.; Sakai, S.; Kusano, K. Prevalence of post-race exertional heat illness in Thoroughbred racehorses and climate conditions at racecourses in Japan. J. Equine Sci. 2019, 30, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Takahashi, T. Risk factors for exertional heat illness in Thoroughbred racehorses in flat races in Japan (2005–2016). Equine Vet. J. 2020, 52, 364–368. [Google Scholar] [CrossRef]
- Brownlow, M.A.; Brotherhood, J.R. An investigation into environmental variables influencing post-race exertional heat illness in Thoroughbred racehorses in temperate eastern Australia. Aust. Vet. J. 2021, 99, 473–481. [Google Scholar] [CrossRef]
- Trigg, L.E.; Lyons, S.; Mullan, S. Risk factors for, and prediction of, exertional heat illness in Thoroughbred racehorses at British racecourses. Sci. Rep. 2023, 13, 3063. [Google Scholar] [CrossRef]
- Verdegaal, E.-L.J.M.M.; McWhorter, T.J.; Halstead, F.; Prior, C.; Kennedy, H.K.; Delesalle, C.J.G. Retrospective study of the prevalence and associated risk factors of exertional heat illness in racing Thoroughbreds in Australia. Sch. Anim. Vet. Sci. Univ. Adel. Aust. 2023. manuscript in preparation; to be submitted. [Google Scholar]
- Brownlow, M.A.; Dart, A.J.; Jeffcott, L.B. Exertional heat illness: A review of the syndrome affecting racing Thoroughbreds in hot and humid climates. Aus. Vet. J. 2016, 94, 240–247. [Google Scholar] [CrossRef]
- Heleski, C.; Stowe, C.J.; Fiedler, J.; Peterson, M.L.; Brady, C.; Wickens, C.; Macleod, J.N. Thoroughbred racehorse welfare through the lens of ‘social license to operate—With an emphasis on a U.S. perspective. Sustainability 2020, 12, 1706. [Google Scholar] [CrossRef]
- Soroko, M.H.K. Infrared thermography: Current applications in equine medicine. J. Equine Vet. Sci. 2018, 60, 90–96. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Tomás-Carús, P.; Timón, R.; Batalha, N.; Sánchez-Ureña, B.; Gutiérrez-Vargas, R.; Olcina, G. Short-term skin temperature responses to endurance exercise: A systematic review of methods and future challenges in the use of infrared thermography. Life 2021, 11, 1286. [Google Scholar] [CrossRef] [PubMed]
- Verdegaal, E.J.M.M.; Howarth, G.S.; McWhorter, T.J.; Delesalle, C.J.G. Is continuous monitoring of skin surface temperature a reliable proxy to assess the thermoregulatory response in endurance horses during field exercise? Front. Vet. Sci. 2022, 9, 894146. [Google Scholar] [CrossRef] [PubMed]
- Kee, P.; Anderson, N.; Gargiulo, G.D.; Velie, B.D. A synopsis of wearable commercially available biometric-monitoring devices and their potential applications during gallop racing. Equine Vet. Ed. 2023, 35, 551–560. [Google Scholar] [CrossRef]
- Ewart, S.L. Thermoregulation. In Cunningham’s Textbook of Veterinary Physiology, 6th ed.; Bradley, G.K., Ed.; Elsevier: St. Louise, MO, USA, 2020; pp. 596–607. [Google Scholar]
- Hodgson, D.R. Thermoregulation. In The Athletic Horse, Principles and Practice of Equine Sport Medicine, 2nd ed.; Hodgson, D.R., McGowan, C.M., McKeever, K.H., Eds.; Saunders/Elsevier: St. Louis, MO, USA, 2014; pp. 108–124. [Google Scholar]
- Hodgson, D.R.; McCutcheon, L.J.; Byrd, S.K.; Brown, W.S.; Bayly, W.M.; Brengelmann, G.L.; Gollnick, P.D. Dissipation of metabolic heat in the horse during exercise. J. Appl. Physiol. 1993, 74, 1161–1170. [Google Scholar] [CrossRef]
- Hodgson, D.R.; Davis, R.E.; McConaghy, F.F. Thermoregulation in the horse in response to exercise. Br. Vet. J. 1994, 150, 219–235. [Google Scholar] [CrossRef]
- Wallsten, H.; Olsson, K.; Dahlborn, K. Temperature regulation in horses during exercise and recovery in a cool environment. Acta Vet. Scan. 2012, 54, 42. [Google Scholar] [CrossRef]
- McCutcheon, L.J.; Geor, R.J. Thermoregulation and exercise-associated heat stress. In Equine Exercise Physiology: The Science of Exercise in the Athletic Horse; Hinchcliff, K.W., Geor, R.J., Kaneps, A.J., Eds.; Saunder/Elsevier: St Louis, MO, USA, 2008; pp. 382–396. [Google Scholar]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-De La Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Gómez-Prado, J.; Carvajal-De La Fuente, V.; Ghezzi, M.; Boscato-Funes, L.; Barrios-García, H.; Torres-Bernal, F.; Casas-Alvarado, A.; et al. Pathophysiology of fever and application of infrared thermography (IRT) in the detection of sick domestic animals: Recent advances. Animals 2021, 11, 2316. [Google Scholar] [CrossRef]
- Brownlow, M.A.; Mizzi, J.X. Thermoregulatory capacity of the Thoroughbred racehorse and its relationship to the pathogenesis of exertional heat illness. Equine Vet. Ed. 2022, 34, 214–221. [Google Scholar] [CrossRef]
- MacRae, B.A.; Annaheim, S.; Spengler, C.M.; Rossi, R.M. Skin temperature measurement using contact thermometry: A systematic review of setup variables and their effects on measured values. Front. Physiol. 2018, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Marlin, D.J.; Scott, C.M.; Schroter, R.C.; Mills, P.C.; Harris, R.C.; Harris, P.A.; Orme, C.E.; Roberts, C.A.; Marr, C.M.; Dyson, S.J.; et al. Physiological responses in nonheat acclimated horses performing treadmill exercise in cool (20 °C/40% RH), hot dry (30 °C/40% RH) and hot humid (30 °C/80% RH) conditions. Equine Vet. J. 1996, 28 (Suppl. 22), 70–84. [Google Scholar] [CrossRef]
- Marlin, D.J.; Scott, C.M.; Roberts, C.A.; Casas, I.; Holah, G.; Schroter, R.C. Post exercise changes in compartmental body temperature accompanying intermittent cold water cooling in the hyperthermic horse. Equine Vet. J. 1998, 30, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Marlin, D.J.; Scott, C.M.; Schroter, R.C.; Harris, R.C.; Harris, P.A.; Roberts, C.A.; Mills, P.C. Physiological responses of horses to a treadmill simulated speed and endurance test in high heat and humidity before and after humid heat acclimation. Equine Vet. J. 1999, 31, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Barnes, A.L.; Maloney, S.K. A nonsurgical method allowing continuous core temperature monitoring in mares for extended periods, including during endurance exercise. Equine Vet. J. 2006, 38 (Suppl. 36), 65–69. [Google Scholar] [CrossRef]
- Green, A.R.; Gates, S.G.; Lawrence, L.M. Measurement of horse core body temperature. J. Therm. Biol. 2005, 30, 370–377. [Google Scholar] [CrossRef]
- Green, A.R.; Gates, R.S.; Lawrence, L.M.; Wheeler, E.F. Continuous recording reliability analysis of three monitoring systems for horse core body temperature. Comp. Electr. Agric. 2008, 61, 88–95. [Google Scholar] [CrossRef]
- Verdegaal, E.J.M.M.; Delesalle, C.; Caraguel, C.G.B.; Folwell, L.E.; McWhorter, T.J.; Howarth, G.S.; Franklin, S.H. Evaluation of a telemetric gastrointestinal pill for continuous monitoring of gastrointestinal temperature in horses at rest and during exercise. Am. J. Vet. Res. 2017, 78, 778–784. [Google Scholar] [CrossRef]
- Verdegaal, E.J.M.M.; Howarth, G.S.; McWhorter, T.J.; Boshuizen, B.; Franklin, S.H.; Vidal Moreno de Vega, C.; Jonas, S.E.; Folwell, L.E.; Delesalle, C.J.G. Continuous monitoring of the thermoregulatory response in endurance horses and trotter horses during field exercise: Baselining for future hot weather studies. Front. Physiol. 2021, 12, 708737. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K.; Dudek, K.; Wilk, I.; Zastrzeżyńska, M.; Janczarek, I. A pilot study into the utility of dynamic infrared thermography for measuring body surface temperature changes during treadmill exercise in horses. J. Equine Vet. Sci. 2018, 62, 44–46. [Google Scholar] [CrossRef]
- Redaelli, V.; Luzi, F.; Mazzola, S.; Bariffi, G.D.; Zappaterra, M.; Nanni Costa, L.; Padalino, B. The use of infrared thermography (IRT) as stress indicator in horses trained for endurance: A pilot study. Animals 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Soroko, M.; Spitalniak-Bajerska, K.; Zaborski, D.; Pozniak, B.; Dudek, K.; Janczarek, I. Exercise-induced changes in skin temperature and blood parameters in horses. Arch. Anim. Breed 2019, 62, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Soroko, M.; Zaborski, D.; Dudek, K.; Yarnell, K.; Gorniak, W.; Vardasca, R. Evaluation of thermal pattern distributions in racehorse saddles using infrared thermography. PLoS ONE 2019, 14, e0221622. [Google Scholar] [CrossRef] [PubMed]
- Brownlow, M.; Smith, T. The use of the hand-held infrared thermometer as an early detection tool for exertional heat illness in Thoroughbred racehorses: A study at racetracks in eastern Australia. Equine Vet. Ed. 2020, 33, 296–305. [Google Scholar] [CrossRef]
- Giannetto, C.; Arfuso, F.; Giudice, E.; Gianesella, M.; Fazio, F.; Panzera, M.; Piccione, G. Infrared methodologies for the assessment of skin temperature daily rhythm in two domestic mammalian species. J. Therm. Biol. 2020, 92, 102677. [Google Scholar] [CrossRef] [PubMed]
- Meisfjord Jorgensen, G.H.; Mejdell, C.M.; Boe, K.E. Effects of hair coat characteristics on radiant surface temperature in horses. J. Therm. Biol. 2020, 87, 102474. [Google Scholar] [CrossRef]
- Prochno, H.C.; Barussi, F.M.; Bastos, F.Z.; Weber, S.H.; Bechara, G.H.; Rehan, I.F.; Michelotto, P.V. Infrared thermography applied to monitoring musculoskeletal adaptation to training in Thoroughbred race horses. J. Equine Vet. Sci. 2020, 87, 102935. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ohmura, H.; Mukai, K.; Shiose, T.; Takahashi, T. A comparison of five cooling methods in hot and humid environments in Thoroughbred horses. J. Equine Vet. Sci. 2020, 91, 103130. [Google Scholar] [CrossRef]
- Wilk, I.; Wnuk-Pawlak, E.; Janczarek, I.; Kaczmarek, B.; Dybczynska, M.; Przetacznik, M. Distribution of superficial body temperature in horses ridden by two riders with varied body weights. Animals 2020, 10, 340. [Google Scholar] [CrossRef]
- Maśko, M.; Witkowska-Piłaszewicz, O.; Jasiński, T.; Domino, M. Thermal features, ambient temperature and hair coat lengths: Limitations of infrared imaging in pregnant primitive breed mares within a year. Reprod. Dom. Anim. 2021, 56, 1315–1328. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, P.; Soroko, M.; Howell, K.; Godlewska, M.; Hildebrand, W.; Dudek, K. Comparison of the effect of high-intensity laser therapy (HILT) on skin surface temperature and vein diameter in pigmented and non-pigmented skin in healthy racehorses. Animals 2021, 11, 1965. [Google Scholar] [CrossRef] [PubMed]
- Domino, M.; Borowska, M.; Trojakowska, A.; Kozłowska, N.; Zdrojkowski, Ł.; Jasiński, T.; Smyth, G.; Maśko, M. The Effect of rider:horse bodyweight ratio on the superficial body temperature of horse’s thoracolumbar region evaluated by advanced thermal image processing. Animals 2022, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Klous, L.; Siegers, E.; van den Broek, J.; Folkerts, M.; Gerrett, N.; van Oldruitenborgh-Oosterbaan, M.S.; Munsters, C. Effects of pre-cooling on thermophysiological responses in elite eventing horses. Animals 2020, 10, 1664. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, K.; Fleming, J.; Stratton, T.D.; Brassington, R. Monitoring changes in skin temperature associated with exercise in horses on a water treadmill by use of infrared thermography. J. Therm. Biol. 2014, 45, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Janczarek, I.; Wiśniewska, A.; Tkaczyk, E.; Wnuk-Pawlak, E.; Kaczmarek, B.; Liss-Szczepanek, M.; Kędzierski, W. Effect of different water cooling treatments on changes in rectal and surface body temperature in leisure horses after medium-intensity effort. Animals 2022, 12, 525. [Google Scholar] [CrossRef]
- Hillen, B.; Pfirrmann, D.; Nägele, M.; Simon, P. Infrared thermography in exercise physiology: The dawning of exercise radiomics. Sports Med. 2019, 50, 263–282. [Google Scholar] [CrossRef]
- Geor, R.J.; McCutcheon, L.J.; Ecker, G.L.; Lindinger, M.I. Thermal and cardiorespiratory responses of horses to submaximal exercise under hot and humid conditions. Equine Vet. J. 1995, 27 (Suppl. 20), 125–132. [Google Scholar] [CrossRef]
- Geor, R.J.; McCutcheon, L.J.; Ecker, G.L.; Lindinger, M.I. Heat storage in horses during submaximal exercise before and after humid heat acclimation. J. Appl. Physiol. 2000, 89, 2283–2293. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.N.; Tao, X.M.; Ding, X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv. Healthc. Mat. 2017, 6, 1601371. [Google Scholar] [CrossRef]
- Turner, T.A. Diagnostic thermography. Vet. Clin. N. Am. Equine Pr. 2001, 17, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Soroko, M.; Howell, K.; Dudek, K. The effect of ambient temperature on infrared thermographic images of joints in the distal forelimbs of healthy racehorses. J. Therm. Biol. 2017, 66, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Thompson, M.W. Cardiovascular adjustments to heat stress during prolonged exercise. J. Sports Med. Phys. Fit. 2018, 58, 727–743. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Pilaszewicz, O.; Masko, M.; Domino, M.; Winnicka, A. Infrared thermography correlates with lactate concentration in blood during race training in horses. Animals 2020, 10, 2072. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.; Funkquist, P.; Nyman, G. The effect of coat clipping on thermoregulation during intense exercise in trotters. Equine Vet. J. 2002, 34 (Suppl. 34), 564–567. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.L.; Gaughan, E.M.; Epp, T.; Spire, M. Influence of exercise on thermographically determined surface temperatures of thoracic and pelvic limbs in horses. J. Am. Vet. Med. Assoc. 2006, 229, 1940–1944. [Google Scholar] [CrossRef]
- Jodkowska, M.; Oblacinska, A.; Tabak, I.; Radiukiewicz, K. Differences in dietary patterns between overweight and normal-weight adolescents. Med. Wieku Rozw. 2011, 15, 266–273. [Google Scholar]
- Brownlow, M.; Mizzi, J. Exertional heat illness in Thoroughbred racehorses–Pathophysiology, case definition and treatment rationale. Equine Vet. Ed. 2021, 34, 259–271. [Google Scholar] [CrossRef]
- Brownlow, M.; Mizzi, J.X. Epidemiology of exertional heat illness in Thoroughbred racehorses in temperate eastern Australia: The role of extrinsic (environmental) factors in disease causation. Equine Vet. Ed. 2022, 34, 660–672. [Google Scholar] [CrossRef]
- Kang, H.; Zsoldos, R.R.; Woldeyohannes, S.M.; Gaughan, J.B.; Sole Guitart, A. The Use of Percutaneous Thermal Sensing Microchips for Body Temperature Measurements in Horses Prior to, during and after Treadmill Exercise. Animals 2020, 10, 2274. [Google Scholar] [CrossRef]
- Byrd, S.K.; McCutcheon, L.J.; Hodgson, D.R.; Gollnick, P.D. Altered sarcoplasmic reticulum function after high-intensity exercise. J. Appl. Physiol. 1989, 67, 2072–2077. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, L.J.; Byrd, S.K.; Hodgson, D.R. Ultrastructural changes in skeletal muscle after fatiguing exercise. J. Appl. Physiol. 1992, 72, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Fenemor, S.P.; Gill, N.D.; Sims, S.T.; Beaven, C.M.; Driller, M.W. Validity of a tympanic thermometer and thermal Imaging camera for measuring core and skin temperature during exercise in the heat. Meas. Phys. Ed Exerc. Sci. 2020, 24, 49–55. [Google Scholar] [CrossRef]
- Foster, J.; Hodder, S.G.; Lloyd, A.B.; Havenith, G. Individual responses to heat stress: Implications for hyperthermia and physical work capacity. Front. Physiol. 2020, 11, 1483. [Google Scholar] [CrossRef] [PubMed]
- De Korte, J.Q.; Bongers, C.C.W.G.; Hopman, M.T.E.; Eijsvogels, T.M.H. Exercise performance and thermoregulatory responses of elite athletes exercising in the heat: Outcomes of the thermo Tokyo study. Sports Med. 2021, 51, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Westwood, C.S.; Fallowfield, J.L.; Delves, S.K.; Nunns, M.; Ogden, H.B.; Layden, J.D. Individual risk factors associated with exertional heat illness: A systematic review. Exp. Physiol. 2021, 106, 191–199. [Google Scholar] [CrossRef]
- Mostert, H.J.; Lund, R.J.; Guthrie, A.J.; Cilliers, P.J. Integrative model for predicting thermal balance in exercising horses. Equine Vet. J. 1996, 28 (Suppl. 22), 7–15. [Google Scholar] [CrossRef]
- Eggenberger, P.; MacRae, B.A.; Kemp, S.; Burgisser, M.; Rossi, R.M.; Annaheim, S. Prediction of core body temperature based on skin temperature, heat flux, and heart rate under different exercise and clothing conditions in the heat in young adult males. Front. Physiol. 2018, 9, 1780. [Google Scholar] [CrossRef]
- Tanda, G. A simplified approach to describe the mean skin temperature variations during prolonged running exercise. J. Therm. Biol. 2021, 99, 103005. [Google Scholar] [CrossRef]
- Pérez-Guarner, A.; Priego-Quesada, J.I.; Oficial-Casado, F.; Cibrián Ortiz de Anda, R.M.; Carpes, F.P.; Palmer, R.S. Association between physiological stress and skin temperature response after a half marathon. Physiol. Meas. 2019, 40, 034009. [Google Scholar] [CrossRef]
- McConaghy, F.F.; Hodgson, D.R.; Rose, R.J.; Hales, J.R. Redistribution of cardiac output in response to heat exposure in the pony. Equine Vet. J. 1996, 28 (Suppl. 22), 42–46. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.R.; Hussey, S.B.; Hill, A.E.; Heckendorf, C.C.; Stricklin, J.B.; Traub-Dargatz, J.L. Comparison of temperature readings from a percutaneous thermal sensing microchip with temperature readings from a digital rectal thermometer in equids. J. Am. Vet. Med. 2008, 233, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Wartzek, T.; Muhlsteff, J.; Imhoff, M. Temperature measurement. Biomed. Tech. 2011, 56, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, K.E.; Tucker, C.B.; Stull, C.L. Physiological, behavioral, and serological responses of horses to shaded or unshaded pens in a hot, sunny environment1. J. Sci. 2013, 91, 5926–5936. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.K.M. Climatic energy demand of horses. Equine Vet. J. 1995, 27, 396–399. [Google Scholar] [CrossRef]
- Guthrie, A.J.; Lund, R.J. Thermoregulation. Base mechanisms and hyperthermia. Vet. Clin. N. Am. Equine Pr. 1998, 14, 45–59. [Google Scholar] [CrossRef]
- Mayhew, I.G.; Ferguson, H.O., 2nd. Clinical, clinicopathologic, and epidemiologic features of anhidrosis in central Florida Thoroughbred horses. J. Vet. Intern. Med. 1987, 1, 136–141. [Google Scholar] [CrossRef]
- Johnson, S.R.; Rao, S.; Hussey, S.B.; Morley, P.S.; Traub-Dargatz, J.L. Thermographic eye temperature as an index to body temperature in ponies. J. Equine Vet. Sci. 2011, 31, 63–66. [Google Scholar] [CrossRef]
- Hetem, R.S.; Mitchell, D.; de Witt, B.A.; Fick, L.G.; Meyer, L.C.; Maloney, S.K.; Fuller, A. Cheetah do not abandon hunts because they overheat. Biol. Lett. 2013, 9, 20130472. [Google Scholar] [CrossRef]
- Fernandes, A.d.A.; Amorim, P.R.d.S.; Brito, C.J.; de Moura, A.G.; Moreira, D.G.; Costa, C.M.A.; Sillero-Quintana, M.; Marins, J.C.B. Measuring skin temperature before, during and after exercise: A comparison of thermocouples and infrared thermography. Physiol. Meas. 2014, 35, 189–203. [Google Scholar] [CrossRef] [PubMed]
- James, C.A.; Richardson, A.J.; Watt, P.W.; Maxwell, N.S. Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J. Therm. Biol. 2014, 45, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Ramey, D.; Bachmann, K.; Lee, M.L. A comparative study of non-contact infrared and digital rectal thermometer measurements of body temperature in the horse. J. Equine Vet. Sci. 2011, 31, 191–193. [Google Scholar] [CrossRef]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- Cuddy, J.S.; Buller, M.; Hailes, W.S.; Ruby, B.C. Skin temperature and heart rate can be used to estimate physiological strain during exercise in the heat in a cohort of fit and unfit males. Mil. Med. 2013, 178, e841–e847. [Google Scholar] [CrossRef]
- Welles, A.P.; Buller, M.J.; Looney, D.P.; Rumpler, W.V.; Gribok, A.V.; Hoyt, R.W. Estimation of metabolic energy expenditure from core temperature using a human thermoregulatory model. J. Therm. Biol. 2018, 72, 44–52. [Google Scholar] [CrossRef]
Reference | Aim | N | Type | C or N/C | Compared Tc Y/N | ROIs | Delta Tsk | Conclusion |
---|---|---|---|---|---|---|---|---|
Verdegaal et al., 2022 [24] | E-field, C Tsk compared to C Tc | 12 | IRT device | C | Y, Tc GI | 1: girth at ventral thorax | 11–13 °C | Tsk is not proxy for Tc in field |
Janczarek et al., 2022 [59] | E-field, post- cooling effect | 19 | IRT camera | N/C | Y, Tre | 6: 4 legs, neck, hip | 2.1–3.7 °C | Tsk and delta Tsk varied with body location |
Brownlow and Smith, 2020 [48] | E-field, post exercise Tsk | 260 | IRT camera | N/C: post-exercise | N | 3: neck, shoulder, thorax | - | Tsk > 39 °C direct post-race = higher risk for EHI development |
Klous et al., 2020 [57] | E-field, pre-cooling effect | 10 | i-Button® & glue | C | Y: C Tre | 2: Shoulder, rump | −3 °C | Pre-cooling (rinsing cold water for 8 min) -> Tre median 0.3 °C & Tsk mean −3 °C |
Takahashi et al., 2020 [52] | E-SET—to 42 °C TPA post-cooling methods until TPA < 39 °C | 5 | IRT camera | N/C | Y: TPA | 1: left thorax | N/A | When TPA 42 °C, best Tsk at 17e ICS > 40 °C Shower for 30 min with tap water most affective to lower Tc |
Wilk et al., 2020 [53] | E–field, ridden–compare BM riders | 12 | IRT camera | N/C | Y, Tre (N/C) | 7 | ~6 °C | Rider > 20% of horse BW -> higher Tsk |
Witkowska-Pilaszewicz et al., 2020 [67] | E–field, correlate with blood lactate | 30 | IRT camera | N/C | N | 11 | ~max. 4 °C | >Tsk at 30 min post-exercise correlated with > blood lactate (10.4 mmol/L) |
Redaelli et al., 2019 [45] | E–field, intensity with Tsk & cortisol | 8 | IRT camera | N/C | N | 7 | ~max. 17 °C | Tsk at crown of head correlated with E intensity & increased serum cortisol |
Soroko et al., 2019 [46] | E–SET pre & post Tsk: ridden & blood values | 9 | IRT camera | N/C | N | 7 muscle regions | ~1–2 °C | Higher Tsk in ridden horses compared to non-ridden |
Soroko, 2018 [44] | E–SET dynamic IRT camara | 5 | Dynamic use IRT camara q15s | C | N | 4: SH, neck, croup, chest | ~max. 4 °C | Neck was hottest ROI (34.7 °C) |
Rizzo et al., 2018 [66] | E–field, Acupuncture & transport | 5 | IRT camera | N/C | N | 6 | ~4 °C | Both flank Tsk and Tre higher post acupuncture, transport, exercise |
Yarnell et al., 2014 [58] | E–SET Dry/water treadmill | 7 | IRT camera | N/C | N | 1 | ~6 °C | Tsk during dry treadmill assess changes in blood flow muscles |
Wallsten et al., 2012 [30] | E–field, clipping & blanket in cold Ta | 3 | Thermistor probes with sensors on skin | N/C | N | 2: neck, biceps, tail | ~7 °C | Unclipped & covered with blanket → higher RR & Tre (38.2 °C) |
Jodkowska et al., 2011 [70] | E–field, Tmax whole BSA, jumping | 35 | IRT camera | N/C | Y, N/C Tre | 36 ROIs and 25 ROIs post- exercise | ~5 °C | Tsk rise highest at head, neck, trunk. Tre WNL |
Simon et al., 2006 [69] | E–SET time return base Tsk | 6 | IRT camera | N/C | N | 2: FL & HL | ~5–6 °C | All return to base Tsk in 45 min |
Morgan et al., 2002 [68] | E–SET coat clipping on TCV, Tsk, Tsk | 6 | IRT thermometer | N/C | N | 1 | - | Clipping results in better heat loss |
Geor et al., 2000 [62] | E–field, acclimation HH and CD, HD | 6 | Thermocouples with sticky tape | C | Y: TPA | 1- Shaved at thorax | ~2.5 °C | No difference in delta Tsk (no TRA corr. ~3 °C difference) |
Marlin et al., 1999 [38] | E–SET acclimation & sweating | 5 | Thermistor probe | C | Y: TRA N | 1: tail skin (TPA, Tre) | ~7 °C | Onset of sweating occurred at lower Tsk following acclimation |
Marlin et al., 1998 [37] | E–SET cooling | 5 | Thermistor probe | C | Y: TPA N | 2: tail skin, coat | ~5 °C overall | Both Tsk & TPA decreased 0.8 °C in response to cooling (6 × 30 s cold water) over 6.5 min |
Marlin et al., 1996 [36] | E–SET Cool and hot Ta | 4 | Thermistor probe | C | Y: TRA Y | 1: tail skin (TRA, Tre) | ~6 °C | Tsk follows TRA pattern |
Geor et al., 1995 [61] | E–field, HH and CD, HD | 5 | Thermocouples with sticky tape | C | Y: TRA N | 1- Shaved thorax | Tsk different from Tc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdegaal, E.-L.J.M.M.; Howarth, G.S.; McWhorter, T.J.; Delesalle, C.J.G. Thermoregulation during Field Exercise in Horses Using Skin Temperature Monitoring. Animals 2024, 14, 136. https://doi.org/10.3390/ani14010136
Verdegaal E-LJMM, Howarth GS, McWhorter TJ, Delesalle CJG. Thermoregulation during Field Exercise in Horses Using Skin Temperature Monitoring. Animals. 2024; 14(1):136. https://doi.org/10.3390/ani14010136
Chicago/Turabian StyleVerdegaal, Elisabeth-Lidwien J. M. M., Gordon S. Howarth, Todd J. McWhorter, and Catherine J. G. Delesalle. 2024. "Thermoregulation during Field Exercise in Horses Using Skin Temperature Monitoring" Animals 14, no. 1: 136. https://doi.org/10.3390/ani14010136
APA StyleVerdegaal, E. -L. J. M. M., Howarth, G. S., McWhorter, T. J., & Delesalle, C. J. G. (2024). Thermoregulation during Field Exercise in Horses Using Skin Temperature Monitoring. Animals, 14(1), 136. https://doi.org/10.3390/ani14010136