Effects of Climatic Conditions and Supplementation with Palm Cake on the Thermoregulation of Crossbred Buffaloes Raised in a Rotational Grazing System and with Natural Shade in Humid Tropical Regions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Aspects
2.2. Experimental Area
2.3. Animals, Diets and Husbandry Conditions
2.4. Data Collect
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDowell, R.E.; Hooven, N.W.; Camoens, J.K. Effect of climate on performance of Holsteins in first lactation. J. Dairy Sci. 1976, 59, 965–973. [Google Scholar] [CrossRef]
- Abduch, N.G.; Pires, B.V.; Souza, L.L.; Vicentini, R.R.; Zadra, L.E.F.; Fragomeni, B.O.; Silva, R.M.O.; Baldi, F.; Paz, C.C.P.; Stafuzza, N.B. Effect of Thermal Stress on Thermoregulation, Hematological and Hormonal Characteristics of Caracu Beef Cattle. Animals 2022, 12, 3473. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.C.; Silveira, R.M.F.; Castro, M.S.M.; De Vecchi, L.B.; da Fernandes, M.H.M.R.; Resende, K.T. Relationship between thermal environment, thermoregulatory responses and energy metabolism in goats: A comprehensive review. J. Therm. Biol. 2022, 109, 103324. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.M.; Souza-Junior, J.B.F.; Dantas, M.R.T.; de Macedo Costa, L.L. An updated review on cattle thermoregulation: Physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environ. Sci. Pollut. Res. 2021, 28, 30471–30485. [Google Scholar] [CrossRef]
- Marai, I.F.M.; Haeeb, A.A.M. Buffalo’s biological functions as affected by heat stress—A review. Livest. Sci. 2010, 127, 89–109. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Silva, J.A.R.D.; Camargo-Júnior, R.N.C.; Silva, É.B.R.D.; Santos, M.R.P.D.; Viana, R.B.; Silva, C.M.G.D.; Lourenço-Júnior, J.D.B. Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Front. Vet. Sci. 2023, 10, 1083469. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.C.D.; Silva, J.A.R.D.; Silva, É.B.R.D.; Barbosa, A.V.C.; Sousa, C.E.L.; Carvalho, K.C.D.; Santos, M.R.P.D.; Neves, K.A.L.; Martorano, L.G.; Camargo Júnior, R.N.C.; et al. Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animals 2023, 13, 2735. [Google Scholar] [CrossRef]
- Colombo, E.A.; Cooke, R.F.; Millican, A.A.; Schubach, K.M.; Scatolin, G.N.; Rett, B.; Brandão, A.P. Supplementing an immunomodulatory feed ingredient to improve thermoregulation and performance of finishing beef cattle under heat stress conditions. J. Anim. Sci. 2019, 97, 4085–4092. [Google Scholar] [CrossRef]
- Somagond, Y.M.; Singh, S.V.; Deshpande, A.; Sheoran, P.; Chahal, V.P. Infrared thermography to assess thermoregulatory reactions of buffaloes supplemented with antioxidant and dense energy source in summer season. J. Agrometeorol. 2021, 23, 243–248. [Google Scholar] [CrossRef]
- Silveira, R.M.F.; Silva, B.E.B.E.; de Vasconcelos, A.M.; Façanha, D.A.E.; Martins, T.P.; Rogério, M.C.P.; Ferreira, J. Does organic selenium supplement affect the thermoregulatory responses of dairy goats? Biol. Rhythm Res. 2021, 52, 869–881. [Google Scholar] [CrossRef]
- Henry, M.L.; Kemp, S.; Clarke, I.J.; Dunshea, F.R.; Leury, B.J. Perennial ryegrass alkaloids increase respiration rate and decrease plasma prolactin in merino sheep under both thermoneutral and mild heat conditions. Toxins 2019, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Prathap, P.; Chauhan, S.S.; Leury, B.J.; Cottrell, J.J.; Joy, A.; Zhang, M.; Dunshea, F.R. Reducing the fermentability of wheat with a starch binding agent reduces some of the negative effects of heat stress in sheep. Animals 2022, 12, 1396. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; He, S.; Xiong, Y.; Liu, D.; Dai, S.; Hu, H. Effects of dietary supplementation of fumaric acid on growth performance, blood hematological and biochemical profile of broiler chickens exposed to chronic heat stress. Braz. J. Poult. Sci. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Serviento, A.M.; Labussière, E.; Castex, M.; Renaudeau, D. Effect of heat stress and feeding management on growth performance and physiological responses of finishing pigs. J. Anim. Sci. 2020, 98, skaa387. [Google Scholar] [CrossRef] [PubMed]
- Adepará. Agencia de Defesa Agropecuário do Estado do Pará. Estado do Pará Detém o Segundo Maior Rebanho Bovino do Brasil e o Maior de Búfalos. 2023. Available online: http://www.adepara.pa.gov.br/artigos (accessed on 9 August 2023).
- Forti, M.C.; Melfi, A.J.; Astolfo, R.; Fostier, A.H. Rainfall chemistry composition in two ecosystems in the northeastern Brazilian Amazon (Amapá State). J. Geophys. Res. Atmos. 2000, 105, 28895–28905. [Google Scholar] [CrossRef]
- Algra, M.; de Keijzer, L.; Arndt, S.S.; van Eerdenburg, F.J.; Goerlich, V.C. Evaluation of the Thermal Response of the Horns in Dairy Cattle. Animals 2023, 13, 500. [Google Scholar] [CrossRef]
- Rueda, B.L.; McRoberts, K.C.; Blake, R.W.; Nicholson, C.F.; Valentim, J.F.; Fernandes, E.C.M. Nutrient status of cattle grazing systems in the western brazilian amazon. Cogent Food Agric. 2020, 6, 1722350. [Google Scholar] [CrossRef]
- Chong, C.H.; Zulkifli, I.; Blair, R. Effects of dietary inclusion of palm kernel cake and palm oil, and enzyme supplementation on performance of laying hens. Asian-Australas. J. Anim. Sci. 2008, 21, 1053–1058. [Google Scholar] [CrossRef]
- Soares, C.; Rossa, F.; da Silva, F.F.; da Silva, A.P.; Santos, L.V.; de Lima Júnior, D.M.; Silva, R.R. Effect of palm kernel cake inclusion in the supplement of pasture-finished heifers on performance, carcass traits, and meat quality. N. Z. J. Agric. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Ferreira, F.G.; Leite, L.C.; Alba, H.D.; Pina, D.D.S.; Santos, S.A.; Tosto, M.S.; Rodrigues, C.S.; de Lima Júnior, D.M.; de Oliveira, J.S.; de Freitas Júnior, J.E.; et al. Palm kernel cake in diets for lactating goats: Intake, digestibility, feeding behavior, milk production, and nitrogen metabolism. Animals 2022, 12, 2323. [Google Scholar] [CrossRef]
- Alford, A.R.; Hegarty, R.S.; Parnell, P.F.; Cacho, O.J.; Herd, R.M.; Griffith, G.R. The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry. Aust. J. Exp. Agric. 2006, 46, 813–820. [Google Scholar] [CrossRef]
- Freitas, T.B.; Felix, T.L.; Pedreira, M.S.; Silva, R.R.; Silva, F.F.; Silva, H.G.O.; Moreira, B.S. Effects of increasing palm kernel cake inclusion in supplements fed to grazing lambs on growth performance, carcass characteristics, and fatty acid profile. Anim. Feed Sci. Technol. 2017, 226, 71–80. [Google Scholar] [CrossRef]
- Alemu, A.W.; Vyas, D.; Manafiazar, G.; Basarab, J.A.; Beauchemin, K.A. Enteric methane emissions from low–and high–residual feed intake beef heifers measured using GreenFeed and respiration chamber techniques. J. Anim. Sci. 2017, 95, 3727–3737. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Titto, C.G.; de Mira Geraldo, A.; Martínez-Burnes, J.; Gómez, J.; Hernández-Ávalos, I.; Casas, A.; Domínguez, A.; José, N.; Bertoni, A.; et al. Efficacy and function of feathers, hair, and glabrous skin in the thermoregulation strategies of domestic animals. Animals 2021, 11, 3472. [Google Scholar] [CrossRef]
- Bertoni, A.; Napolitano, F.; Mota-Rojas, D.; Sabia, E.; Álvarez-Macías, A.; Mora-Medina, P.; Morales-Canela, A.; Berdugo-Gutiérrez, J.; Guerrero-Legarreta, I. Similarities and differences between river buffaloes and cattle: Health, physiological, behavioral and productivity aspects. J. Buffalo Sci. 2020, 9, 92–109. [Google Scholar] [CrossRef]
- Martorano, L.G.; Nechet, D.; Pereira, L.C. Tipologia climática do Estado do Pará: Adaptação do método de Köppen. Bol. Geogr. Teorética 1993, 23, 45–46. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association Analytical Chemists, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo Arocho, A.; Canton, G.H.; Pitt, D. Black globe humidity index (BGHI) as a comfort equation for dairy cows. Trans. ASAE 1981, 24, 711–714. [Google Scholar] [CrossRef]
- Marcheto, F.G.; Nääs, I.D.A.; Salgado, D.D.A.; Souza, S.R.L.D. Efeito das temperaturas de bulbo seco e de globo negro e do índice de temperatura e umidade, em vacas em produção alojadas em sistema de free-stall. Braz. J. Vet. Res. Anim. Sci. 2002, 39, 320–323. [Google Scholar] [CrossRef]
- Souza, C.D.F.; Tinôco, I.D.F.; Baêta, F.D.C.; Ferreira, W.P.M.; Silva, R.D. Avaliação de materiais alternativos para confecção de termômetro de globo. Ciência Agrotecnologia 2002, 26, 157–164. [Google Scholar]
- Statistical Analysis System—SAS. SAS User’s Guide; Version 6.08; Statistical Analysis System Institute: San Diego, CA, USA, 2003. [Google Scholar]
- Pachêco, N.A.; Santiago, A.V.; Bastos, T.X.; Cordeiro, A.H.F. Boletim Agrometerorológico de 2009 para Belém, P.A. Documentos, 371; Embrapa Amazônia Oriental: Belém, Brazil, 2009. [Google Scholar]
- Silva, J.A.R.D.; Araújo, A.A.D.; Lourenço Júnior, J.D.B.; Santos, N.D.F.A.D.; Garcia, A.R.; Nahúm, B.D.S. Conforto térmico de búfalas em sistema silvipastoril na Amazônia Oriental. Pesqui. Agropecuária Bras. 2011, 46, 1364–1371. [Google Scholar] [CrossRef]
- Santos, F.C.B.D.; Souza, B.B.D.; Peña Alfaro, C.E.; Cézar, M.F.; Pimenta Filho, E.C.; Acosta, A.A.A.; Santos, J.R.S.D. Adaptabilidade de caprinos exóticos e naturalizados ao clima semi-árido do Nordeste brasileiro. Ciência Agrotecnologia 2005, 29, 142–149. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Dash, S.; Chakravarty, A.K.; Singh, A.; Upadhyay, A.; Singh, M.; Yousuf, S. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Vet. World 2016, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Lendez, P.A.; Cuesta, L.M.; Farias, M.V.N.; Vater, A.A.; Ghezzi, M.D.; Mota-Rojas, D.; Dolcini, G.L.; Ceriani, M.C. Alterations in TNF-α and its receptors expression in cows undergoing heat stress. Vet. Immunol. Immunopathol. 2021, 235, 110232. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.R. Thermoregulatory responses in riverine buffaloes against heat stress: An updated review. J. Therm. Biol. 2021, 96, 102844. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.E. Homeostase—Termorregulação. In Tratado de Fisiologia Veterinária, 3rd ed.; Cunningham, J.G., Ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2004; pp. 550–560. [Google Scholar]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J. Non-invasive physiological indicators of heat stress in cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef]
- Magalhães, J.A.; Takigawa, R.M.; Townsend, C.R.; Costa, N.D.L.; Pereira, R.D.A. Tolerância de bovídeos à Temperatura e Umidade do Trópico Úmido. Rev. Científica Produção Anim. 2000, 2, 162–167. [Google Scholar]
- Silva, J.A.R.; Araújo, A.A.; Lourenço Júnior, J.D.B.; Viana, R.B.; Santos, N.D.F.A.; Garcia, A.R. Perfil hematológico de búfalas da raça Murrah, criadas ao sol e à sombra, em clima tropical da Amazônia Oriental. Acta Amaz. 2011, 41, 425–430. [Google Scholar] [CrossRef]
- Shenhe, L.; Jun, L.; Zipeng, L.; Tingxian, D.; ur Rehman, Z.; Zichao, Z.; Liguo, Y. Effect of season and breed on physiological and blood parameters in buffaloes. J. Dairy Res. 2018, 85, 181–184. [Google Scholar] [CrossRef]
- Shafie, M.M. Physiology responses adaptation of water buffalo. In MK Stress Physiology in Livestock, Volume 2, Ungulates; Yousef, M.K., Ed.; CRS Press: Boca Raton, FL, USA, 2000; 260p. [Google Scholar]
- Mishra, S.R. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: An updated review. Trop. Anim. Health Prod. 2021, 53, 400. [Google Scholar] [CrossRef] [PubMed]
- Chikamune, T.; Shimizu, H. Comparison of physiological response to climatic conditions in swamp buffaloes and cattle. Indian J. Anim. Sci. 1983. [Google Scholar]
- Ferreira, F.; Pires, M.F.A.; Martinez, M.L.; Coelho, S.G.; Carvalho, A.U.; Ferreira, P.M.; Facury Filho, E.J.; Campos, W.E. Parâmetros fisiológicos de bovinos cruzados submetidos ao estresse calórico. Arq. Bras. Med. Veterinária Zootec. 2006, 58, 732–738. [Google Scholar] [CrossRef]
- Berihulay, H.; Abied, A.; He, X.; Jiang, L.; Ma, Y. Adaptation mechanisms of small ruminants to environmental heat stress. Animals 2019, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, C.M.C.; Falco, J.E.; Titto, E.A.L.; Franzolin Neto, R.; Muniz, J.A. Termorregulação em bubalinos submetidos a duas temperaturas de ar e duas proporções de volumoso:concentrado. Ciência Agrotecnologia 2001, 25, 437–443. [Google Scholar]
- Mota-Rojas, D.; Napolitano, F.; Braghieri, A.; Guerrero-Legarreta, I.; Bertoni, A.; Martínez-Burnes, J.; Cruz-Monterrosa, R.; Gómez, J.; Ramírez-Bribiesca, E.; Barrios-García, H.; et al. Thermal biology in river buffalo in the humid tropics: Neurophysiological and behavioral responses assessed by infrared thermography. J. Anim. Behav. Biometeorol. 2020, 9, 2103. [Google Scholar] [CrossRef]
- Fu, M.; Weng, W.; Chen, W.; Luo, N. Review on modeling heat transfer and thermoregulatory responses in human body. J. Therm. Biol. 2016, 62, 189–200. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river buffalo to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef]
- Li, M.; Liang, X.; Tang, Z.; Hassan, F.U.; Li, L.; Guo, Y.; Peng, K.; Liang, X.; Yang, C. Thermal comfort index for lactating water buffaloes under hot and humid climate. Animals 2021, 11, 2067. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Brcko, C.C.; Silva, J.A.R.D.; Martorano, L.G.; Vilela, R.A.; Nahúm, B.D.S.; Silva, A.G.M.; Barbosa, A.V.C.; Bezerra, A.S.; Lourenço Júnior, J.D.B. Infrared thermography to assess thermoregulatory reactions of female buffaloes in a humid tropical environment. Front. Vet. Sci. 2020, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Petrocchi Jasinski, F.; Evangelista, C.; Basiricò, L.; Bernabucci, U. Responses of Dairy Buffalo to Heat Stress Conditions and Mitigation Strategies: A Review. Animals 2023, 13, 1260. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hassan, F.U.; Guo, Y.; Tang, Z.; Liang, X.; Xie, F.; Peng, L.; Yang, C. Seasonal dynamics of physiological, oxidative and metabolic responses in non-lactating Nili-Ravi buffaloes under hot and humid climate. Front. Vet. Sci. 2020, 7, 622. [Google Scholar] [CrossRef] [PubMed]
- Vittorazzi, P.C., Jr.; Takiya, C.S.; Nunes, A.T.; Chesini, R.G.; Bugoni, M.; Silva, G.G.; Silva, T.B.; Dias, M.S.; Grigoletto, N.T.; Rennó, F.P. Feeding encapsulated pepper to dairy cows during the hot season improves performance without affecting core and skin temperature. J. Dairy Sci. 2022, 105, 9542–9551. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.R.D.; Pantoja, M.H.D.A.; Silva, W.C.D.; Almeida, J.C.F.D.; Noronha, R.D.P.P.; Barbosa, A.V.C.; Lourenço Júnior, J.D.B. Thermoregulatory reactions of female buffaloes raised in the sun and in the shade, in the climatic conditions of the rainy season of the Island of Marajó, Pará, Brazil. Front. Vet. Sci. 2022, 9, 998544. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Silva, É.B.R.D.; Santos, M.R.P.D.; Camargo Junior, R.N.C.; Barbosa, A.V.C.; Silva, J.A.R.D.; Vinhote, J.A.; Sousa, E.D.V.D.; Lourenço Júnior, J.D.B. Behavior and thermal comfort of light and dark coat dairy cows in the Eastern Amazon. Front. Vet. Sci. 2022, 9, 1006093. [Google Scholar] [CrossRef]
- Da Silva, W.C.; Printes, O.V.N.; Lima, D.O.; da Silva, É.B.R.; Dos Santos, M.R.P.; Júnior, R.N.C.C.; Barbosa, A.V.C.; da Silva, J.A.R.; e Silva, A.G.M.; Silva, L.K.X.; et al. Evaluation of the temperature and humidity index to support the implementation of a rearing system for ruminants in the Western Amazon. Front. Vet. Sci. 2023, 10, 1198678. [Google Scholar] [CrossRef]
- Da Silva, W.C.; Rodrigues, J.A.; de Alvarenga, A.B.B.; Barbosa, A.V.C.; da Silva, É.B.R.; dos Santos, M.R.P.; de Brito Lourenço-Júnior, J.; Júnior, R.N.C.C.; e Silva, A.G.M. New proposal for the use of the focal animal technique in buffaloes in the Eastern Amazon. Front. Vet. Sci. 2023, 10, 1266451. [Google Scholar] [CrossRef]
Diet | Components (% DM) | |||||
---|---|---|---|---|---|---|
DM | Ash | EE | CP | NDF | ADF | |
Palm kernel cake | 90.47 | 4.61 | 11.64 | 11.12 | 69.87 | 48.23 |
Wheat bran | 88.32 | 5.88 | 3.48 | 15.49 | 44.19 | 14.27 |
Brachiaria brizantha | 37.4 | 6.76 | 2.54 | 8.19 | 68.14 | 40.55 |
0% | 88.32 | 5.88 | 3.48 | 11.69 | 44.19 | 14.27 |
0.25% | 89.66 | 5.09 | 8.58 | 12.13 | 60.24 | 35.5 |
0.50% | 89.97 | 4.9 | 9.75 | 12.76 | 63.94 | 40.39 |
1% | 90.17 | 4.78 | 10.57 | 15.49 | 66.51 | 43.78 |
Period | Shift | |
---|---|---|
Morning | Afternoon | |
Rainier | 74.11 ± 1.09 Aa | 88.66 ± 3.78 bA |
Transition | 74.79 ± 1.27 aA | 87.65 ± 3.76 bA |
Less rainy | 74.46 ± 1.37 aA | 92.06 ± 2.74 bB |
Physiological Variable | Period | Shift | |
---|---|---|---|
Morning | Afternoon | ||
Rectal temperature (°C) | Rainier | 38.64 ± 0.36 aA | 39.23 ± 0.86 bA |
Transition | 38.62 ± 0.22 aA | 39.00 ± 0.93 bA | |
Less rainy | 38.77 ± 0.70 aA | 39.15 ± 0.66 bA | |
Respiratory rate (mov./min.) | Rainier | 19.95 ± 5.94 aA | 49.40 ± 28.75 bA |
Transition | 19.05 ± 5.39 aA | 40.16 ± 22.15 bAB | |
Less rainy | 19.94 ± 7.04 aA | 35.66 ± 17.08 aB | |
Body surface temperature (°C) | Rainier | 30.46 ± 1.34 aA | 34.46 ± 2.07 bA |
Transition | 29.55 ± 1.33 aA | 34.30 ± 1.72 bA | |
Less rainy | 29.84 ± 1.41 aA | 34.82 ± 1.23 bA |
Index | RT (°C) | RR (mov./min.) | BST (°C) |
---|---|---|---|
Air temperature | 0.628 ** | 0.748 ** | 0.939 ** |
Relative humidity | −0.569 ** | −0.637 ** | −0.873 ** |
Globe Temperature and Humidity Index | 0.597 ** | 0.689 ** | 0.933 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brcko, C.C.; Silva, J.A.R.d.; Garcia, A.R.; Silva, A.G.M.e.; Martorano, L.G.; Vilela, R.A.; Nahúm, B.d.S.; Barbosa, A.V.C.; Silva, W.C.d.; Rodrigues, T.C.G.d.C.; et al. Effects of Climatic Conditions and Supplementation with Palm Cake on the Thermoregulation of Crossbred Buffaloes Raised in a Rotational Grazing System and with Natural Shade in Humid Tropical Regions. Animals 2024, 14, 53. https://doi.org/10.3390/ani14010053
Brcko CC, Silva JARd, Garcia AR, Silva AGMe, Martorano LG, Vilela RA, Nahúm BdS, Barbosa AVC, Silva WCd, Rodrigues TCGdC, et al. Effects of Climatic Conditions and Supplementation with Palm Cake on the Thermoregulation of Crossbred Buffaloes Raised in a Rotational Grazing System and with Natural Shade in Humid Tropical Regions. Animals. 2024; 14(1):53. https://doi.org/10.3390/ani14010053
Chicago/Turabian StyleBrcko, Carolina Carvalho, Jamile Andrea Rodrigues da Silva, Alexandre Rossetto Garcia, André Guimarães Maciel e Silva, Lucieta Guerreiro Martorano, Reíssa Alves Vilela, Benjamim de Souza Nahúm, Antônio Vinícius Corrêa Barbosa, Welligton Conceição da Silva, Thomaz Cyro Guimarães de Carvalho Rodrigues, and et al. 2024. "Effects of Climatic Conditions and Supplementation with Palm Cake on the Thermoregulation of Crossbred Buffaloes Raised in a Rotational Grazing System and with Natural Shade in Humid Tropical Regions" Animals 14, no. 1: 53. https://doi.org/10.3390/ani14010053
APA StyleBrcko, C. C., Silva, J. A. R. d., Garcia, A. R., Silva, A. G. M. e., Martorano, L. G., Vilela, R. A., Nahúm, B. d. S., Barbosa, A. V. C., Silva, W. C. d., Rodrigues, T. C. G. d. C., Silva, É. B. R. d., & Lourenço-Júnior, J. d. B. (2024). Effects of Climatic Conditions and Supplementation with Palm Cake on the Thermoregulation of Crossbred Buffaloes Raised in a Rotational Grazing System and with Natural Shade in Humid Tropical Regions. Animals, 14(1), 53. https://doi.org/10.3390/ani14010053