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Simple Summary: Metals are ubiquitous environmental contaminants that can be easily accumulated
and biomagnified in various fishes and mammalian species at the top of the aquatic food chain.
Among marine mammalians, the striped dolphin (Stenella coeruleoalba) is considered to be a sentinel
species of marine environmental pollution. The aim of this study was to assess, through Inductively
Coupled Plasma-Mass Spectrometry (ICP-MS) analysis, the concentrations of toxic metals and
metalloids, essential micro- and macro-elements in organs/tissues of Stenella coeruleoalba. Considering
the low content of toxic metals and metalloids found, the analysis of some specific parameters was
carried out: the marine pollution index (MPI) underlines the key role of dolphins to assess marine
pollution, while the coefficient of condition (K) and the complete mineral profile are predictive of
dolphins good health status. However, the correlations among toxic and essential metals, expressed
as molar ratios, have shown that toxic metals cannot be detoxified by the analyzed essential metals.

Abstract: Heavy metals are environmental contaminants and can easily accumulate and biomagnify
in various marine species (fishes and mammalians) at the top of the aquatic food chain. Among
marine mammalians, the striped dolphin (Stenella coeruleoalba) is the most abundant cetacean in
the Mediterranean Sea and is considered to be a sentinel species to monitor the environmental
marine pollution. In this study, the contents of toxic metals and metalloids (Cd, Pb, Hg, and As),
micro-elements (Ni, Cr, Cu, Fe, Co, Mn, Se and Zn) and macro-elements (Na, Ca, K, Mg and
P) were evaluated by ICP-MS analysis in several organs/tissues (lung, skin, muscle and liver)
of Stenella coeruleoalba. The assessment of marine environmental pollution and dolphins health
status was carried out through further analysis of the same specific parameters such as the metal
pollution index (MPI) and coefficient of condition (K). Finally, the correlation between toxic metals
and metalloids and essential micro-elements, expressed as molar ratios, was analyzed to evaluate
the detoxifying ability (effectiveness) of Zn, Se and Cu. Data obtained showed the presence of toxic
metals and metalloids analyzed in the Stenella coeruleoalba samples but the MPI values suggested
a low environmental contamination of the Mediterranean Sea where dolphins lived. The content
of micro- and macro-elements was found to be in a normal range for this species and predictive of
dolphins good health status, as confirmed by the coefficient of condition K. However, the correlation
between toxic and essential metals, expressed as molar ratios, showed that the following toxic metals
cannot be detoxified by the essential metals: 66Zn/201Hg, 82Se/201Hg, 63Cu/201Hg and 66Zn/52Cr,
82Se/52Cr, 63Cu/52Cr. Therefore, this study highlights the key role of dolphin Stenella coeruleoalba to
assess marine pollution and the importance of analyzing the complete mineral profile to evaluate the
animal health status.
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1. Introduction

Heavy metals are persistent environmental contaminants present in the aquatic ecosys-
tem and assimilated by biota, and can be easily accumulated and biomagnified in predatory
fishes and marine mammalians at the top of the aquatic food chain [1]. The quality of
marine ecosystem is strongly influenced by the anthropogenic activity (fossil fuels combus-
tion, exhaust gases, waste incineration, industrial waste, agricultural practices, aquaculture
discharges, oil waste in the sea from tank washing, etc.) and natural process (volcanic
activity, dust deposition, terrestrial crust erosion, etc.), which are responsible for metals
release and significantly affect the health of both the marine environment and animal
species. In fact, these environmental pollutants could cause alterations in marine habitats
and compromise the biodiversity of species living in this ecosystem (fishes, birds, algae,
etc.) [2,3]. The presence of metals in marine environment, however, is also influenced by
pH, temperature, sea composition, microorganisms, redox conditions, ability of detoxifying
systems, integrity of excretion routes, etc. [2]; therefore, the accumulation of metals in
marine species, used as bioindicators, reflects the contamination of the marine environment
where they lived [4–6].

In the last decades [7–9], several eco-toxicological studies focused their attention
on the pollution in the Mediterranean Sea and its effect on the marine species and the
peculiar characteristics of this area. The Mediterranean Sea, in fact, is a basin with a high
population density, maritime traffic and urbanization of the coastlines, particularly in the
summer period, and for this reason it is highly exposed to the circulation of pollutants
such as heavy metals [10]. Due to its geo-morphological characteristic and the presence of
submarine volcanoes, the sea bottom is naturally rich in trace elements, particularly Hg,
and through chemical and biochemical processes, toxic compounds such as methylmercury
can be released and enter the aquatic food chain through plankton. In addition, its natural
structure of semi-enclosed basin promotes the bioconcentration of these pollutants and the
subsequent biomagnifications in marine species according to the trophic levels. Therefore,
the pollution of Mediterranean Sea strongly affects the marine environment, aquatic wildlife
and quality of fishery products.

Among marine mammalians, dolphins can serve as sentinel species to monitor the
environmental pollution [11], according to the Marine Strategy Framework Directive
(MSFD) [12], because they are long-lived, predatory, reside in coastal areas, and the metals
exposure in these species is an expression of danger for the aquatic ecosystem, which
is useful for risk assessment of marine environmental pollution [13]. This species can
accumulate pollutants through several routes (ingestion of food, sea water, breathing, skin,
placenta, etc.) [1,14,15]. Metals exposure in these marine mammalians is influenced by
several factors such as habitat, food habits, physio-pathological status of the animal, age,
and sex [16]. Being an organism at the top of the aquatic food chain, dolphins consume
mainly pelagic, cephalopod and demersal fishes [17–20], which are a source of essential
minerals, such as Se, Zn, Cu, macronutrients, protein, lipids and vitamins, but at the
same time, they introduce toxic metals, particularly Hg and Pb, which are responsible
for adverse effects at low concentrations. As documented by our previous studies [21]
and by other authors [22,23], pelagic and cephalopod fishes are good accumulators of
heavy metals and they are adsorbed according to the trophic transfer factor, reaching very
abundant concentrations in predatory fishes [6] and, particularly, in marine mammalians [4].
Toxic metals, in fact, could affect several biological functions and cause neurotoxicity,
immune-suppression, endocrine disruption, and susceptibility to infections from pathogens,
etc. [2,24–26], and can be responsible for multiple symptomatic effects that are capable
of compromising their health and survival. In addition, toxic metals may influence the
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growth, metabolism, nutrition state, and maturity of young individuals [16,27], reducing the
bioavailability of essential minerals and substitution in biological processes [28]. However,
the marine mammalians activate several processes to counteract the toxic effect of metals
and prevent their accumulation in organs and tissues according to metal affinity [29] such as
storage, biotransformation, excretion, homeostatic regulation, release of metallothioneines,
and detoxification processes. Therefore, the study of complete mineral profile is useful to
assess dolphins’ good health status.

The aim of this study was to evaluate the content of toxic metals and metalloids as
well as essential micro- and macro-elements in organs/tissues of striped dolphin (Stenella
coeruleoalba), the most abundant cetacean present in the Mediterranean Sea and to assess
both the marine environmental pollution and dolphins’ health status. Finally, the correlation
between toxic and essential metals, expressed through the analysis of molar ratios of each
element, was evaluated to know the ability (effectiveness) of the detoxifying system in this
marine mammalian.

2. Materials and Methods
2.1. Reagents

Ultrapure water (resistivity of 18 MΩ cm), HNO3 (70% v/v), and H2O2 (30% v/v) for
trace metal analysis were purchased from J.T. Backer (Mallinckrodt Backer, Milan, Italy).
The stock standard solutions (1000 mg L−1 in 2% nitric acid) of each element and online
internal standards of Sc, Ge, In, and Bi (1000mg L−1 in 2% nitric acid) were purchased from
Fluka (Milan, Italy).

2.2. Sampling

Striped dolphins (Stenella coeruleoalba) were collected dead by the Istituto Zooprofilat-
tico Sperimentale della Sicilia “A. Mirri”, Palermo (Italy). All samples were stranded along
the Sicilian coast of the Mediterranean Sea (Figure 1), with different states of conservation
of carcasses, reported according to the National score (Table 1).
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Table 1. Characteristics of striped dolphins (Stenella coeruleoalba) collected stranded along the Sicilian
coast of the Mediterranean Sea.

Sample Sex Weight
(kg)

Length
(m)

Developmental
Stage

Collection
Site

a State of
Beached Carcasses

1 F 14.5 0.98 Juveniles Siracusa 2

2 M 35.5 1.35 Juveniles Messina 2

3 M 20.7 1.02 Juveniles Palermo 2

4 M 17 1.16 Juveniles Siracusa 2

5 M 21.6 1.28 Juveniles Messina 3

6 F 15 1.10 Juveniles Messina 2

7 M 23 1.30 Juveniles Palermo 2

8 F 58 1.88 Adult Siracusa 3

9 M 80 2.07 Adult Siracusa 2

10 F 61 1.95 Adult Messina 2

11 F 69 1.89 Adult Palermo 3

12 F 64 1.91 Adult Palermo 2

13 F 84 2.21 Adult Messina 2

14 M 75 2.04 Adult Siracusa 3

15 M 68 1.80 Adult Siracusa 2
a State of conservation of beached carcasses, expressed according to a score system: 1 alive/just deceased,
2 fresh carcass, 3 moderately decomposed carcass, 4 advanced decomposed carcass, 5 mummified carcass or
skeletal remains.

The necropsies of dolphins showed the absence of particular signs on the carcass, no
evidence of bacteria from the microbiological analysis, and not useful data to identify the
causes of death. The animals were of different sex, weight, length, and age. In relation
to the age, the length was used as an index of the different development stages. More
precisely, a length between 0.95 and 1.80 m was considered to be indicative of juveniles,
while >1.81 m was indicative of adults [30]. From each dolphin, samples of liver, muscle,
lung and skin were taken and preserved in PET containers, and finally frozen at −20 ◦C
until analysis.

2.3. Sample Preparation

All organs/tissues of each dolphin were homogenized, and then mineralized according
to the method by Naccari et al. 2015 [21] and Ferrantelli et al. 2012 [5]. Briefly, all
samples (0.5 g), previously homogenized, were digested with HNO3 (70%) and H2O2 (30%)
in a closed-vessel microwave digestion system (CEM MicrowaveTM Digestion System,
Discovery SP-D, CEM Corporation, Mathews, NC, USA), and finally submitted to analysis
in ICP-MS for metals determination. Each set of samples was analyzed in the presence
of a blank and processed in a similar manner. All determinations were carried out in
triplicate. All glassware used for the analysis was treated with HNO3 (15%) overnight to
avoid contamination, then rinsed with ultrapure water and dried prior to use.

2.4. Analysis in Inductively Coupled Plasma-Mass Spectometry (ICP-MS)

The metals analysis has been carried out using an ICP-MS spectrometer equipped
with an auto-sampler ASX520 (Cetac Technologies Inc., Omaha, NE, USA) under the
following conditions: RF power, 1550 W; plasma gas flow rate, 14 L min−1; auxiliary gas
flow rate, 0.89 L min−1; carrier gas flow rate, 0.91 L min−1; helium collision gas flow
rate, 4.5 mL min−1; spray chamber temperature, 2.70 ◦C; sample depth, 4.27 mm; sample
introduction flow, 0.93 mL min−1; nebulizer pump, 0.1 rps; extract lens 1 voltage, 1.5 V. The
instrument has been operated in He KED mode to remove spectral interferences for the low
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and high mass elements using the following monitored isotopes: 111Cd, 208Pb, 202Hg, 75As,
60Ni,52Cr,57Fe, 66Zn,63Cu, 82Se, 59Co, 55Mn,23Na, 39K, 44Ca,24Mg, 31P, and online internal
standards: 45Sc, 72Ge, 209Bi, 115In.

2.5. Validation Method

In Table 2, all analytical parameters of the validation method were reported. The
accuracy was assessed by the analysis of certified reference material DOLT-5 (dogfish liver
reference material for trace metals) from the National Research Council of Canada; the
precision was expressed as the relative standard deviation (RSD%) of four independent
determinations; the specificity was confirmed by the analysis of blanks to exclude contami-
nation and interference during the analysis and to confirm reagents purity. Good laboratory
practice (GLP) was applied throughout and procedural blanks were analyzed.

Table 2. Parameters of the analytical method.

Element Linearity
(R2)

LOD a

(ng/g)
LOQ b

(ng/g)
DOLT-5 c

(µg/g)
Observed Values

(µg/g)
Recovery

(Range and %)
RSD d

(%)

Hg 0.997 0.022 0.042 0.44 ± 0.18 0.33 ± 0.08 97–102% (99.8) 1.122
Pb 1.001 0.146 1.038 0.162 ± 0.032 0.154 ± 0.012 96–123% (99.7) 0.418
Cd 0.998 0.022 0.031 14.5 ± 0.6 14.1 ± 0.43 98–134% (99.9) 1.775
As 0.999 0.014 0.021 34.6 ± 2.4 33.8 ± 0.32 95–122% (99.9) 1.273
Ni 0.991 0.041 0.184 1.71 ± 0.56 1.62 ± 0.53 92–133% (98.6) 4.32
Cr 0.999 0.021 0.199 - - 92–136% (99.1) 1.410
Se 0.999 0.019 0.063 8.3 ± 1.8 7.75 ± 0.68 98–184% (98.9) 1.454
Co 0.999 0.006 0.026 0.267 ± 0.026 0.19 ± 0.06 96–149% (98.2) 1.048
Mn 0.996 0.104 0.162 105.3 ± 5.4 100.7 ± 6.72 95–118% (99.3) 2.521
Cu 0.995 0.152 1.495 35.0 ± 2.4 32.22 ± 0.86 98–111% (99.1) 2.753
Zn 0.990 0.012 0.721 105.3 ± 5.4 108.2 ± 8.04 97–110% (99.5) 4.052
Fe 0.999 0.014 0.493 1070 ± 80 998 ± 13.2 97–111% (98.1) 1.094
Na 0.998 0.181 1.722 9.900 ± 1600 9561± 87.4 98–110% (99.7) 1.111
Ca 0.997 0.153 1.586 550 ± 80 508 ± 67 97–115% (98.2) 1.542
K 0.999 0.168 1.778 14.400 ± 300 13.980 ± 450 98–118% (99.1) 2.018

Mg 0.998 0.144 1.825 940 ± 100 912 ± 65 97–125% (99.3) 1.756
P 0.997 0.211 1.967 - - 98–132% (99.1) 1.438

a LOD: limit of detection. b LOQ: limit of quantification. c Dogfish liver certified reference material for trace
metals and other constituents from the National Research Council of Canada (NRC-CNRC). d RSD (%): relative
standard deviation of five independent determinations.

2.6. Assessment of Metals Pollution and Dolphin Health Status

The risk of metals marine pollution was assessed using a specific parameter such as
the metal pollution index (MPI), which calculates the metals accumulation levels in each
organ and tissue [31,32] according to the following formula:

MPI = (M1 × M2 × M3 × . . . Mn)/n (1)

where Mn is the concentration of “n” metal (mg/kg) in a specific tissue sample. According
to Jamil et al. 2014 [33], values of MPI among the range of 5–10 express a low contamination,
among the range of 2–5 very low contamination, and values <2 express a not significant
contamination.

The dolphin’s health status, instead, was evaluated through the coefficient of condition
(K) (Figure 1). The parameters used to express the relationship between weight and
length [31,34] were calculated for each sample according to the following Fulton equation:

K = 100 × W/L3 (2)

where W is the weight (g) and L is the body length (cm), with a value of 1 considered as a
safety level.
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In addition, the length–weight relationship was evaluated through a linear regression
analysis (Figure 2) and expressed according to the following equation:

logW = log a + b logL (3)

where a is the intercept and b is the slope.
The correlation among toxic and essential metals has been expressed as molar ratios,

which is calculated using the atomic mass of each element: 111Cd, 208Pb, 201Hg, 75As,
52Cr, 60Ni, 66Zn, 82Se, 63Cu. As described by Méndez-Fernandez et al. 2014 [35], values
corresponding to 1 were considered as protection index.

2.7. Statistical Analyses

The statistical analyses for this study were computed in Microsoft Excel and GraphPad
PRISM (version 9.0, GraphPad program Inc., La Jolla, CA, USA). Shapiro-Wilk test for
normality and Barlett’s test for homogeneity were performed. The Kruskal-Wallis test
was used to compare the concentration of all metals analyzed in various organs/tissues.
Data are expressed as mean values ± SD of at least three determinations. The differences
were considered statistically significant when the p-value was <0.05. The linear regression
analysis was used to evaluate the relationship between variables considered in the study.

3. Results

The results showed the presence of all metals analyzed in striped dolphin samples
(Tables 3–5). From the statistical analysis carried out to correlate the distribution of each
metal, significant differences were observed (Figure 2a). Hg concentrations were higher
in skin (41.51 ± 2.15 µg g−1) and liver (31.22 ± 1.24 µg g−1) than in the lung and mus-
cle (p < 0.001). Additionally, concentrations in all different organs/tissues analyzed were
among the lowest and statistically not different from each other metal. Cd, as well as Pb,
Ni, Cr, Co, Mn, Cu, Zn, Se, and P, showed no significant differences in their concentrations
in different organs/tissues. Fe was found to be statistically more concentrated in lung
(79.53 ± 2.18 µg g−1) than in skin (p < 0.001) and muscle (p < 0.001), but not compared to the
liver, which presented comparable concentrations (82.24 ± 1.18 µg g−1). Ca was statistically
more concentrated in the lung (411.32 ± 37.29 µg g−1) than in the skin (p < 0.001), muscle
(p < 0.05), and liver (p < 0.001). K present in the lung (388.23 ± 43.30 µg g−1) was statisti-
cally higher than in the skin (p < 0.001) and liver (p < 0.01), but not statistically different than
in the muscle. Mg was statistically more concentrated in muscle (103.87 ± 32.16 µg g−1)
compared with liver (p < 0.05) and with skin (p < 0.001), but in concentrations not statis-
tically significant when compared with the lung. Na concentrations were higher in the
lung (534.54 ± 42.35 µg g−1) than in the skin, muscle, and liver (p < 0.001). Considering,
instead, the distribution of all metals in organs/tissues analyzed, it is possible to observe
the following differences (Figure 2b). In the lung, the most abundant element was P
(p < 0.001) with a mean concentration of 3296.55 ± 51.28 µg g−1, followed by K and Na
(388.23 ± 43.30 µg g−1 and 534.54 ± 42.35 µg g−1, respectively). In the skin, P was also
the most abundant element (1989.84 ± 38.25 µg g−1) compared with all other elements
(p < 0.001); K and Na, reaching an average concentration of 344.03 ± 35.29 µg g−1 and
291.89 ± 23.29 µg g−1, respectively, were similarly significant after P compared with the
other elements analyzed (p < 0.001). In muscles, P reported an average concentration of
3834.72 ± 54.27 µg g−1, proving to be the most abundant element among all those exam-
ined (p < 0.001), followed by K (568.09 ± 21.28 µg g−1) and Na (284.0 ± 41.08 µg g−1).
The same pattern of P in the organs just discussed was shown in the liver, thus being the
statistically most concentrated element (3824.01 ± 31.29 µg g−1). K (437.33 ± 25.38 µg g−1)
and Na (311.07 ± 35.09 µg g−1) replicated the same trend observed in the different organs,
including liver, being its highest concentrations after those of P.
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Table 3. Levels of toxic metals and metalloids in organs/tissues of striped dolphin (Stenella
coeruleoalba), expressed as µg g−1 of individual measurements and metal pollution index (MPI).

Cd Pb Hg As MPI

Mean 0.029 0.25 c 9.29 0.12
LUNG S.D 0.01 0.01 1.62 0.008 0.0020

Median 0.03 0.17 6.28 0.101

Mean 0.076 0.17 c 41.51 0.31
SKIN S.D 0.004 0.006 2.15 0.007 0.0408

Median 0.07 0.126 38.92 0.229

Mean 0.049 0.21 a 12.11 0.16
MUSCLE S.D 0.07 0.05 1.02 0.004 0.0050

Median 0.041 0.152 9.84 0.048

Mean 0.54 0.26 c 31.22 0.33
LIVER S.D 0.03 0.01 1.24 0.08 0.3616

Median 0.26 0.16 11.17 0.24
a p < 0.05, c p < 0.001 vs. other metals analyzed.

Table 4. Microelements in organs/tissues of striped dolphins (Stenella coeruleoalba), expressed as
µg g−1 of individual measurements.

Cr Ni Fe Co Mn Se Zn Cu

Mean 10.98 0.81 c 79.53 6.03 0.42 5.14 8.14 1.09
LUNG S.D 1.28 0.03 2.18 2.19 0.04 0.96 2.19 0.62

Median 9.06 0.65 79.22 7.16 0.21 4.81 5.18 1.03

Mean 7.27 0.47 21.45 3.02 0.98 5.48 6.67 1.16
SKIN S.D 1.73 0.03 3.17 0.08 0.07 0.82 1.26 0.74

Median 7.07 0.45 18.37 2.68 0.083 2.39 10.34 0.97

Mean 7.86 0.54 35.63 3.03 0.14 6.05 7.25 1.09
MUSCLE S.D 1.02 0.01 1.98 0.02 0.08 0.71 0.82 0.28

Median 5.07 0.46 32.56 2.01 0.14 2.21 5.79 1.02

Mean 8.54 0.77 c 82.24 6.54 0.84 11.59 8.29 2.35
LIVER S.D 1.02 0.03 1.18 1.27 0.02 1.92 0.5 0.81

Median 6.59 0.52 64.05 8.04 0.61 8.50 10.96 2.73
c p < 0.001 vs. other metals analyzed.

Table 5. Macro-elements in organs/tissues of striped dolphins (Stenella coeruleoalba) expressed as
µg g−1 of individual measurements.

Na K Ca Mg P

Mean 534.54 388.23 411.32 59.78 c 3296.55
LUNG S.D 42.35 43.30 37.29 11.82 51.28

Median 523.56 374.45 428.87 49.96 3311.01

Mean 291.89 c 344.03 c 19.24 c 30.21 c 1989.84
SKIN S.D 23.29 35.29 1.23 7.18 38.25

Median 314.77 412.32 14.56 31.96 2075.93

Mean 284.01 568.09 a 90.13 103.87 c 3834.72
MUSCLE S.D 41.08 21.28 26.21 32.16 54.27

Median 222.28 562.90 19.33 104.74 4036.19

Mean c 311.07 b 437.33 c 32.38 a 60.17 c 3824.01
LIVER S.D 35.09 25.38 9.27 21.19 31.29

Median 298.17 426.82 18.62 30.68 3394.25
a p < 0.05, b p < 0.01, c p < 0.001 vs. other metals analyzed.

No significant differences were found among metals content according to the different
geographical areas where the dolphin samples were collected.
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In Table 3, the MPI is reported. This parameter, calculated on concentrations of toxic
metals and metalloids in all organs/tissues of dolphins, with greater interest for liver
(0.3616), showed very low values (MPI < 2) in all samples.
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Data relating to the coefficient of condition (K) are reported in Figure 3 and showed
high values in all dolphin samples around or > 1 (value considered as safety level).
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Figure 3. Coefficient of condition (K) in Stenella coeruleoalba samples. The red line corresponds to the
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A further analysis of length–weight relationship of dolphin samples was carried out
to evaluate the animal welfare and relative growth. It showed a positive linear regression
according to the sex (Figure 4a) and the development stage (age) (Figure 4b) of dolphins.
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Figure 4. Length–weight relationship in (a) male and female and (b) juvenile and adult samples of
Stenella coeruleoalba.

Considering the content of all mineral elements analyzed in striped dolphin samples,
the correlation among toxic metals and metalloids and essential micro-elements, expressed
as molar ratios, is reported in Table 6. Particularly, the molar ratios 66Zn/201Hg, 82Se/201Hg,
63Cu/201Hg and 66Zn/52Cr, 82Se/52Cr, 63Cu/52Cr in all organs/tissues analyzed were <1
(protection index), depending on Hg levels in the denominator [20,36].
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Table 6. Molar ratio between toxic metals and essential micro-elements in organs/tissues of striped
dolphins (Stenella coeruleoalba).

Ratio LUNG MUSCLE LIVER SKIN
66Zn/201Hg 0.19 0.59 0.26 0.13
82Se/201Hg 0.12 0.49 0.18 0.10
63Cu/201Hg 0.03 0.09 0.07 0.02
66Zn/207Pb 32.56 34.52 31.88 39.94
82Se/207Pb 20.55 28.80 21.58 32.81
63Cu/207Pb 4.38 5.22 9.03 6.97
66Zn/112Cd 281.87 95.62 147.95 87.76
82Se/112Cd 177.99 79.85 21.46 72.10
63Cu/112Cd 37.97 16.69 37.99 47.61
66Zn/75As 67.83 44.92 25.12 21.55
82Se/75As 42.72 37.48 16.94 17.67
63Cu/75As 9.14 6.78 7.11 3.75
66Zn/60Ni 45.22 44.18 42.12 14.14
82Se/60Ni 28.56 24.25 28.40 9.89
63Cu/60Ni 6.09 6.79 11.93 2.46
66Zn/52Cr 0.74 0.92 0.97 0.91
82Se/52Cr 0.46 0.77 0.65 0.75
63Cu/52Cr 0.02 0.14 0.27 0.16

4. Discussion

The metals content found in dolphin samples is correlated to the specific affinity for
different organs and tissues. Metals in liver are due to storage, sequestration, detoxification
processes, and homeostatic regulation; the lung and skin represent an important route of
adsorption/elimination of metals in marine environment; the content in muscle is indicative
of chronic exposure according to the diet [2,15].

The analysis of toxic metals found in organs/tissues of Stenella coeruleoalba put in
evidence the highest Hg levels, particularly in the skin and liver, and this could be attributed
to the marine pollution of habitat where dolphins were living and feeding.

The presence of Hg and all trace metals found in dolphin samples is clearly linked to
the mineral composition of Mediterranean Sea bottom and its natural structure of semi-
enclosed basin where pollutants could be easily concentrated. However, considering the
MPI, a specific parameter of risk assessment which reflects the diffusion of metals from
the aquatic environment into different organs and tissues of marine species [37,38], data
obtained with value <1 (safety levels) in all tissues analyzed were indicative of a low
pollution level of Mediterranean Sea, suggesting a not significant contamination of marine
environment where dolphins lived. Although this index has been proposed for different
matrices, such as waters, sediments and in filter-feeding organisms, it is actually applied
in a study on several varieties of fishes [39,40] to correlate the impact of environmental
pollution on these species, that are living in contact with the sea-bottom and intermediate
waters. However, in predatory fishes and marine mammalians, MPI could contribute to
providing information on metal distribution, which is introduced according to feeding
habits through the trophic levels until the top of the aquatic food chain.

The study of all essential elements is important to evaluate the health status of ani-
mals [41] or if their accumulation/lack is associated with disorders and pathologic condi-
tions that are able to influence the normal growth. It is known that the micro-elements,
such as Fe, Cu, Zn, Se, play several essential functions in the body as constituents of soft
tissues and biological fluids and are important cofactors of enzymatic systems, but can
become toxic at higher levels. The macro-elements, such as K, Na, Mg and Ca, are needed
for the hydro-electrolytic balance, cellular electric potential, and homeostasis; Na and K are
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needed in the regulation of osmotic pressure; P in energy production, Mg in fat and protein
synthesis; Ca and P in bone structure [42,43].

The studies on macro-elements in marine mammalians are few [44] and generally
focused on their content in liver for its storage, regulation and detoxifying processes [45].
The present study, instead, reports that the mineral content in the skin tissue is metabolically
active in marine mammalians [46], where the essential metals are important to guarantee
the epidermic structure and avoid disorders, whereas in muscle and lung, these elements
are responsible for muscle performance and breathing, respectively.

In general, our results on the content of micro- and macro-elements found in dolphin
samples were in a normal range for Stenella spp., in comparison with data reported in liter-
ature by other authors [2] and not evidence of conditions of accumulation/lack; therefore,
this could be considered predictive of dolphins’ good health status.

The coefficient of condition, which is a biometric parameter used to assess both
the habitat quality and marine species health status, provided useful information of the
organism’s development [47], according to the specific energy level, physiological or
pathological status of animal, etc. The values >1 found for all dolphins analyzed are
an expression of a balanced feeding and indicate that the Stenella coeruleoalba samples of
this study were in good health status. Also, the length–weight relationship, influenced
by several factors such as habitat, fish activities, feeding habits, seasons, temperature,
etc. [48,49], demonstrated the animal welfare and regular growth of dolphin samples, with
a positive linear regression according to the sex and the development stage (age). Therefore,
these specific parameters confirmed the health status of our samples of Stenella coeruleoalba
from the Mediterranean Sea.

In addition, the correlation between toxic and essential metals, evaluated through
their molar ratios, was considered to better understand the health status of animals and
the effects of exposure to these pollutants on their organism. It is known, in fact, that the
essential metals (Se, Zn and Cu) can protect the animals against heavy metals, particularly
Hg, through antioxidant activity, competition for binding sites, and demethylation of
methyl-Hg; however, the formation of Hg-Se could be responsible for a deficiency of free
Se, while the Me-Hg could be inhibited by selenium enzymes [25,50–53]. In this study, the
molar ratios obtained values <1 and showed that Hg and Cr cannot be detoxified by the
essential metals Zn, Se, and Cu, which are present in enzymatic systems. This is probably
due to the sequestration mechanism, deficiency of essential metals, etc.

5. Conclusions

This study showed that the presence of toxic metals and metalloids, particularly Hg,
found in significant concentrations in all organs/tissues of striped dolphins is correlated to
marine environmental pollution, although a not significant pollution level of Mediterranean
Sea ecosystem was documented in this study from low MPI values. The exposure to toxic
metals is directly influenced by the food habits of these marine mammalians, that were
feeding mainly of pelagic, cephalopods and demersal fishes, which are considered good
accumulators of heavy metals.

The content of micro- and macro-elements, introduced with the diet, documents the
dolphin’s good health status, as confirmed by the coefficient of condition (K) calculated for
each dolphin sample, although, as showed by molar ratios among the toxic and essential
metals analyzed, the levels of detoxifying metals, Se, Zn and Cu, are unable to carry out a
protective action against Hg and Cr, probably due to deficiency, sequestration or presence
of other pollutants.

This study, therefore, underlines the key role of dolphins in eco-toxicological studies,
as sentinel species to assess marine environmental pollution, especially in a very polluted
coastline area with a high population density and maritime traffic, such as the Mediter-
ranean basin, where aquatic species are subjected to a long-term exposure to contaminants.

The analysis of complete mineral profile is demonstrated to be useful in the assess-
ment of both marine pollutions and dolphins’ health status. In fact, trace metals were
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adsorbed and bio-accumulated in these marine mammalians according to the feeding
habits, physiological or pathological state, and specific characteristics of animals, such as
age and sex.

In conclusion, the studies on metals exposure in Stenella coeruleoalba could be peri-
odically carried out to guarantee the quality of its marine ecosystem and health status,
considering the increased phenomena of dolphins’ stranding, which is observed more often
in the last period in the Mediterranean coastlines.
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