Functional Analysis of Oligoadenylate Synthetase in the Emu (Dromaius novaehollandiae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. RNA Extraction
2.2. Cloning
2.3. Phylogenetic Tree
2.4. Enzymatic Activity Assay
2.5. Antiviral Experiments
2.6. Statistical Analysis
3. Results
3.1. Cloning
3.2. Phylogenetic Tree
3.3. Enzymatic Activity
3.4. Inhibitory Activity on the WNV Replicon Replication
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.Y.; Sanchez, D.J.; Cheng, G. New developments in the induction and antiviral effectors of type I interferon. Curr. Opin. Immunol. 2011, 23, 57–64. [Google Scholar] [CrossRef] [PubMed]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Takahasi, K.; Fujita, T. RIG-I-like receptors: Cytoplasmic sensors for non-self RNA. Immunol. Rev. 2011, 243, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.M.; Santa Maria, F.G.; Lahiri, T.; Friedman, E.; Marié, I.J.; Levy, D.E. PKR transduces MDA5-dependent signals for Type I IFN induction. PLoS Pathog. 2016, 12, e1005489. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, M.; Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 2009, 227, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.L.; Conn, G.L. RNA regulation of the antiviral protein 2’-5’-oligoadenylate synthetase. Wiley Interdiscip. Rev. RNA 2019, 10, e1534. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, H.; Gad, H.H.; Eskildsen-Larsen, S.; Despres, P.; Hartmann, R. The oligoadenylate synthetase family: An ancient protein family with multiple antiviral activities. J. Interferon Cytokine Res. 2011, 31, 41–47. [Google Scholar] [CrossRef]
- Malathi, K.; Paranjape, J.M.; Bulanova, E.; Shim, M.; Guenther-Johnson, J.M.; Faber, P.W.; Eling, T.E.; Williams, B.R.G.; Silverman, R.H. A transcriptional signaling pathway in the IFN system mediated by 2’-5’-oligoadenylate activation of RNase L. Proc. Natl. Acad. Sci. USA 2005, 102, 14533–14538. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Hassel, B.A.; Silverman, R.H. Expression cloning of 2-5A-dependent RNAase: A uniquely regulated mediator of interferon action. Cell 1993, 72, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Calderon, B.M.; Conn, G.L. A human cellular noncoding RNA activates the antiviral protein 2’-5’-oligoadenylate synthetase 1. J. Biol. Chem. 2018, 293, 16115–16124. [Google Scholar] [CrossRef] [PubMed]
- Perelygin, A.A.; Zharkikh, A.A.; Scherbik, S.V.; Brinton, M.A. The mammalian 2’-5’ oligoadenylate synthetase gene family: Evidence for concerted evolution of paralogous Oas1 genes in Rodentia and Artiodactyla. J. Mol. Evol. 2006, 63, 562–576. [Google Scholar] [CrossRef] [PubMed]
- Wiens, M.; Kuusksalu, A.; Kelve, M.; Müller, W.E. Origin of the interferon-inducible (2’-5’)oligoadenylate synthetases: Cloning of the (2’-5’)oligoadenylate synthetase from the marine sponge Geodia cydonium. FEBS Lett. 1999, 462, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Hovanessian, A.G.; Justesen, J. The human 2’-5’oligoadenylate synthetase family: Unique interferon-inducible enzymes catalyzing 2’-5’ instead of 3’-5’ phosphodiester bond formation. Biochimie 2007, 89, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Feng, N.; Li, Z.; Wang, P.; Qi, Z.; Liang, W.; Zhou, X.; Xu, X.; Liu, B. 2’,5’-oligoadenylate synthetase 1(OAS1) inhibits PRRSV replication in Marc-145 cells. Antivir. Res. 2016, 132, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Shepard, J.D.; Freitas, B.T.; Rodriguez, S.E.; Scholte, F.E.M.; Baker, K.; Hutchison, M.R.; Longo, J.E.; Miller, H.C.; O’Boyle, B.M.; Tandon, A.; et al. The structure and immune regulatory implications of the ubiquitin-like tandem domain within an avian 2’-5’ oligoadenylate synthetase-like protein. Front. Immunol. 2021, 12, 794664. [Google Scholar] [CrossRef] [PubMed]
- Rong, E.; Wang, X.; Chen, H.; Yang, C.; Hu, J.; Liu, W.; Wang, Z.; Chen, X.; Zheng, H.; Pu, J.; et al. Molecular mechanisms for the adaptive switching between the OAS/RNase L and OASL/RIG-I Pathways in birds and mammals. Front. Immunol. 2018, 9, 1398. [Google Scholar] [CrossRef] [PubMed]
- Tag-El-Din-Hassan, H.T.; Morimatsu, M.; Agui, T. Functional analysis of duck, goose, and ostrich 2’-5’-oligoadenylate synthetase. Infect. Genet. Evol. 2018, 62, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, C.; Zhang, J.; Wu, Z.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; Yang, Q.; Wu, Y.; et al. Conserved active-site residues associated with OAS enzyme activity and ubiquitin-like domains are not required for the antiviral activity of goOASL protein against avian Tembusu virus. Viruses 2018, 10, 371. [Google Scholar] [CrossRef] [PubMed]
- Tag-El-Din-Hassan, H.T.; Sasaki, N.; Torigoe, D.; Morimatsu, M.; Agui, T. Analysis of the relationship between enzymatic and antiviral activities of the chicken oligoadenylate synthetase-like. J. Interferon Cytokine Res. 2017, 37, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Mashimo, T.; Glaser, P.; Lucas, M.; Simon-Chazottes, D.; Ceccaldi, P.E.; Montagutelli, X.; Desprès, P.; Guénet, J.L. Structural and functional genomics and evolutionary relationships in the cluster of genes encoding murine 2’,5’-oligoadenylate synthetases. Genomics 2003, 82, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, H.; Scherer, C.A.; McVean, M.; Iadonato, S.P.; Vends, S.; Thavachelvam, K.; Steffensen, T.B.; Horan, K.A.; Kuri, T.; Weber, F.; et al. Extracellular 2’-5’ oligoadenylate synthetase stimulates RNase L-independent antiviral activity: A novel mechanism of virus-induced innate immunity. J. Virol. 2010, 84, 11898–11904. [Google Scholar] [CrossRef] [PubMed]
- Elkhateeb, E.; Tag-El-Din-Hassan, H.T.; Sasaki, N.; Torigoe, D.; Morimatsu, M.; Agui, T. The role of mouse 2’,5’-oligoadenylate synthetase 1 paralogs. Infect. Genet. Evol. 2016, 45, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Takezaki, N. Effect of different types of sequence data on palaeognath phylogeny. Genome Biol. Evol. 2023, 15, evad092. [Google Scholar] [CrossRef] [PubMed]
- Hackett, S.J.; Kimball, R.T.; Reddy, S.; Bowie, R.C.K.; Braun, E.L.; Braun, M.J.; Chojnowski, J.L.; Cox, W.A.; Han, K.L.; Harshman, J.; et al. A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Summer, H.; Grämer, R.; Dröge, P. Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J. Vis. Exp. 2009, 32, 1485. [Google Scholar] [CrossRef] [PubMed]
- Moritoh, K.; Maeda, A.; Nishino, T.; Sasaki, N.; Agui, T. Development and application of West Nile virus subgenomic replicon RNA expressing secreted alkaline phosphatase. J. Vet. Med. Sci. 2011, 73, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Desai, S.Y.; Sarkar, S.N.; Ramaraj, P.; Ghosh, S.K.; Bandyopadhyay, S.; Sen, G.C. Effects of mutating specific residues present near the amino terminus of 2’-5’-oligoadenylate synthetase. J. Biol. Chem. 1997, 272, 15452–15458. [Google Scholar] [CrossRef] [PubMed]
- Grealy, A.; Phillips, M.; Miller, G.; Gilbert, M.T.P.; Rouillard, J.M.; Lambert, D.; Bunce, M.; Haile, J. Eggshell palaeogenomics: Palaeognath evolutionary history revealed through ancient nuclear and mitochondrial DNA from Madagascan elephant bird (Aepyornis sp.) eggshell. Mol. Phylogenet. Evol. 2017, 109, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, T.; Segawa, T.; Mori, H.; Campos, P.F.; Hongoh, Y.; Endo, H.; Akiyoshi, A.; Kohno, N.; Nishida, S.; Wu, J.; et al. Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the ratites. Curr. Biol. 2017, 27, 68–77. [Google Scholar] [CrossRef]
- Perelygin, A.A.; Scherbik, S.V.; Zhulin, I.B.; Stockman, B.M.; Li, Y.; Brinton, M.A. Positional cloning of the murine flavivirus resistance gene. Proc. Natl. Acad. Sci. USA 2002, 99, 9322–9327. [Google Scholar] [CrossRef] [PubMed]
- Mashimo, T.; Lucas, M.; Simon-Chazottes, D.; Frenkiel, M.P.; Montagutelli, X.; Ceccaldi, P.E.; Deubel, V.; Guenet, J.L.; Despres, P. A nonsense mutation in the gene encoding 2’-5’-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc. Natl. Acad. Sci. USA 2002, 99, 11311–11316. [Google Scholar] [CrossRef] [PubMed]
- Madden, J.C.; Cui, D.; Brinton, M.A. RNase L antiviral activity is not a critical component of the Oas1b-mediated flavivirus resistance phenotype. J. Virol. 2019, 93, e00946-19. [Google Scholar] [CrossRef] [PubMed]
- Lam, V.; Duca, K.A.; Yin, J. Arrested spread of vesicular stomatitis virus infections in vitro depends on interferon-mediated antiviral activity. Biotechnol. Bioeng. 2005, 90, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Scherbik, S.V.; Pulit-Penaloza, J.A.; Basu, M.; Courtney, S.C.; Brinton, M.A. Increased early RNA replication by chimeric West Nile virus W956IC leads to IPS-1-mediated activation of NF-κB and insufficient virus-mediated counteraction of the resulting canonical type I interferon signaling. J. Virol. 2013, 87, 7952–7965. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, J.; Song, L.; Rong, E.; Yang, C.; Chen, X.; Pu, J.; Sun, H.; Gao, C.; Burt, D.W.; et al. Functional divergence of oligoadenylate synthetase 1 (OAS1) proteins in tetrapods. Sci. China Life Sci. 2022, 65, 1395–1412. [Google Scholar] [CrossRef] [PubMed]
- Chitrakar, A.; Rath, S.; Donovan, J.; Demarest, K.; Li, Y.; Sridhar, R.R.; Weiss, S.R.; Kotenko, S.V.; Wingreen, N.S.; Korennykh, A. Real-time 2-5A kinetics suggest that interferons β and λ evade global arrest of translation by RNase L. Proc. Natl. Acad. Sci. USA 2019, 116, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Elbahesh, H.; Jha, B.K.; Silverman, R.H.; Scherbik, S.V.; Brinton, M.A. The Flvr-encoded murine oligoadenylate synthetase 1b (Oas1b) suppresses 2-5A synthesis in intact cells. Virology 2011, 409, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Komar, N.; Langevin, S.; Hinten, S.; Nemeth, N.; Edwards, E.; Hettler, D.; Davis, B.; Bowen, R.; Bunning, M. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg. Infect. Dis. 2003, 9, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Venter, M.; Swanepoel, R. West Nile virus lineage 2 as a cause of zoonotic neurological disease in humans and horses in southern Africa. Vector Borne Zoonotic Dis. 2010, 10, 659–664. [Google Scholar] [CrossRef]
Name | Direction | Primer Sequence |
---|---|---|
OAS1-5′RACE | Reverse | CCTCTGCTTCTTGCACTCCA |
OAS1-3′RACE | Forward | CTGTCAGCACCTCAACCTGCA |
OASL-5′RACE | Reverse | TACCAGTGCTTGACCAGGC |
OASL-3′RACE | Forward | GCCTGGTCAAGCACTGGTA |
OAS1-Xba Ⅰ | Forward | TGCTCTAGAGCAGCACGGGCGCTGTCACAG |
OASL-Xba Ⅰ | Forward | TGCTCTAGAGTATGGATGGGCTGGAGA |
Emu OAS1 FLAG-Xba Ⅰ | Reverse | TTATTATCTAGATCACTTGTCGTCATCGTCTTTGTAGTCGAGGACAGTGCAGAGGTC |
Emu OASL FLAG-Xba Ⅰ | Reverse | TTATTATCTAGATCACTTGTCGTCATCGTCTTTGTAGTCGTTTATTTCCGGCATGATA |
Species | OAS Family | Reference |
---|---|---|
Birds | ||
Chicken | OASL *,** | [20] |
Goose | OASL *,** | [18,19] |
Duck | OASL *,** | [18] |
Ostrich | OASL *, OAS1 ** | [18] |
Emu | OASL *, OAS1 ** | This study |
Mammals | ||
Human | OAS1 **, OAS2 **, OAS3 **, OASL1 | [14] |
Swine | OAS1a **, OAS1b **, OAS2, OASL | [15] |
Rat | OAS1a, OAS1b, OAS1c, OAS1d, OAS1e, OAS1f, OAS1g, OAS1h, OAS1i, OAS2, OAS3, OASL | [12] |
Mouse | Oas1a **, Oas1b *, Oas1c, Oas1d, Oas1e, Oas1f, Oas1g **, Oas1h, Oas2, Oas3, OasL1, OasL2 | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, K.; Nakamura, T.; Morimatsu, M.; Agui, T. Functional Analysis of Oligoadenylate Synthetase in the Emu (Dromaius novaehollandiae). Animals 2024, 14, 1579. https://doi.org/10.3390/ani14111579
Sato K, Nakamura T, Morimatsu M, Agui T. Functional Analysis of Oligoadenylate Synthetase in the Emu (Dromaius novaehollandiae). Animals. 2024; 14(11):1579. https://doi.org/10.3390/ani14111579
Chicago/Turabian StyleSato, Keisuke, Teppei Nakamura, Masami Morimatsu, and Takashi Agui. 2024. "Functional Analysis of Oligoadenylate Synthetase in the Emu (Dromaius novaehollandiae)" Animals 14, no. 11: 1579. https://doi.org/10.3390/ani14111579
APA StyleSato, K., Nakamura, T., Morimatsu, M., & Agui, T. (2024). Functional Analysis of Oligoadenylate Synthetase in the Emu (Dromaius novaehollandiae). Animals, 14(11), 1579. https://doi.org/10.3390/ani14111579